首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
Type IV secretion systems mediate conjugative plasmid transfer as well as the translocation of virulence factors from various gram-negative pathogens to eukaryotic host cells. The translocation apparatus consists of 9 to 12 components, and the components from different organisms are believed to have similar functions. However, orthologs to proteins of the prototypical type IV system, VirB of Agrobacterium tumefaciens, typically share only 15 to 30% identical amino acids, and functional complementation between components of different type IV secretion systems has not been achieved. We here report a heterologous complementation in the case of A. tumefaciens virB1 defects with its orthologs from Brucella suis (VirB1s) and the IncN plasmid pKM101 (TraL). In contrast, expression of the genes encoding the VirB1 orthologs from the IncF plasmid (open reading frame 169) and from the Helicobacter pylori cag pathogenicity island (HP0523) did not complement VirB1 functions. The complementation of VirB1 activity was assessed by T-pilus formation, by tumor formation on wounded plants, by IncQ plasmid transfer, and by IncQ plasmid recipient assay. Replacement of the key active-site Glu residue by Ala abolished the complementation by VirB1 from B. suis and by TraL, demonstrating that heterologous complementation requires an intact lytic transglycosylase active site. In contrast, the VirB1 active-site mutant from A. tumefaciens retained considerable residual activity in various activity assays, implying that this protein exerts additional effects during the type IV secretion process.  相似文献   

2.
Two DNA transfer systems encoded by the tumor-inducing (Ti) plasmid have been previously identified in Agrobacterium tumefaciens. The virB operon is required for the transfer of transferred DNA to the plant host, and the trb system encodes functions required for the conjugal transfer of the Ti plasmid between cells of Agrobacterium. Recent availability of the genome sequence of Agrobacterium allowed us to identify a third system that is most similar to the VirB type IV secretion system of Bartonella henselae. We have designated this system avhB for Agrobacterium virulence homologue virB. The avhB loci reside on pAtC58 and encode at least 10 proteins (AvhB2 through AvhB11), 7 of which display significant similarity to the corresponding virulence-associated VirB proteins of the Ti plasmid. However, the AvhB system is not required for tumor formation; rather, it mediates the conjugal transfer of the pAtC58 cryptic plasmid between cells of Agrobacterium. This transfer occurs in the absence of the Ti plasmid-encoded VirB and Trb systems. Like the VirB system, AvhB products promote the conjugal transfer of the IncQ plasmid RSF1010, suggesting that these products comprise a mating-pair formation system. The presence of plasmid TiC58 or plasmid RSF1010 reduces the conjugal transfer efficiency of pAtC58 10- or 1,000-fold, respectively. These data suggest that complex substrate interactions exist among the three DNA transfer systems of Agrobacterium.  相似文献   

3.
The complete nucleotide sequence of the virB locus, from the octopine Ti plasmid of Agrobacterium tumefaciens strain 15955, has been determined. In the large virB-operon (9600 nucleotides) we have identified eleven open reading frames, designated virB1 to virB11. From DNA sequence analysis it is proposed that nearly all VirB products, i.e. VirB1 to VirB9, are secreted or membrane associated proteins. Interestingly, both a membrane protein (VirB4) and a potential cytoplasmic protein (VirB11) contain the consensus amino acid sequence of ATP-binding proteins. In view of the conjugative T-DNA transfer model, the VirB proteins are suggested to act at the bacterial surface and there play an important role in directing T-DNA transfer to plant cells.  相似文献   

4.
Agrobacterium tumefaciens translocates DNA and protein substrates between cells via a type IV secretion system (T4SS) whose channel subunits include the VirD4 coupling protein, VirB11 ATPase, VirB6, VirB8, VirB2, and VirB9. In this study, we used linker insertion mutagenesis to characterize the contribution of the outer-membrane-associated VirB9 to assembly and function of the VirB/D4 T4SS. Twenty-five dipeptide insertion mutations were classified as permissive for intercellular substrate transfer (Tra+), completely transfer defective (Tra-), or substrate discriminating, e.g., selectively permissive for transfer only of the oncogenic transfer DNA and the VirE2 protein substrates or of a mobilizable IncQ plasmid substrate. Mutations inhibiting transfer of DNA substrates did not affect formation of close contacts of the substrate with inner membrane channel subunits but blocked formation of contacts with the VirB2 and VirB9 channel subunits, which is indicative of a defect in assembly or function of the distal portion of the secretion channel. Several mutations in the N- and C-terminal regions disrupted VirB9 complex formation with the outer-membrane-associated lipoprotein VirB7 or the inner membrane energy sensor VirB10. Several VirB9.i2-producing Tra+ strains failed to elaborate T pilus at detectable levels (Pil-), and three such Tra+ Pil- mutant strains were rendered Tra- upon deletion of virB2, indicating that the cellular form of pilin protein is essential for substrate translocation. Our findings, together with computer-based analyses, support a model in which distinct domains of VirB9 contribute to substrate selection and translocation, establishment of channel subunit contacts, and T-pilus biogenesis.  相似文献   

5.
The VirB11 ATPase is a subunit of the Agrobacterium tumefaciens transfer DNA (T-DNA) transfer system, a type IV secretion pathway required for delivery of T-DNA and effector proteins to plant cells during infection. In this study, we examined the effects of virB11 mutations on VirB protein accumulation, T-pilus production, and substrate translocation. Strains synthesizing VirB11 derivatives with mutations in the nucleoside triphosphate binding site (Walker A motif) accumulated wild-type levels of VirB proteins but failed to produce the T-pilus or export substrates at detectable levels, establishing the importance of nucleoside triphosphate binding or hydrolysis for T-pilus biogenesis. Similar findings were obtained for VirB4, a second ATPase of this transfer system. Analyses of strains expressing virB11 dominant alleles in general showed that T-pilus production is correlated with substrate translocation. Notably, strains expressing dominant alleles previously designated class II (dominant and nonfunctional) neither transferred T-DNA nor elaborated detectable levels of the T-pilus. By contrast, strains expressing most dominant alleles designated class III (dominant and functional) efficiently translocated T-DNA and synthesized abundant levels of T pilus. We did, however, identify four types of virB11 mutations or strain genotypes that selectively disrupted substrate translocation or T-pilus production: (i) virB11/virB11* merodiploid strains expressing all class II and III dominant alleles were strongly suppressed for T-DNA translocation but efficiently mobilized an IncQ plasmid to agrobacterial recipients and also elaborated abundant levels of T pilus; (ii) strains synthesizing two class III mutant proteins, VirB11, V258G and VirB11.I265T, efficiently transferred both DNA substrates but produced low and undetectable levels of T pilus, respectively; (iii) a strain synthesizing the class II mutant protein VirB11.I103T/M301L efficiently exported VirE2 but produced undetectable levels of T pilus; (iv) strains synthesizing three VirB11 derivatives with a four-residue (HMVD) insertion (L75.i4, C168.i4, and L302.i4) neither transferred T-DNA nor produced detectable levels of T pilus but efficiently transferred VirE2 to plants and the IncQ plasmid to agrobacterial recipient cells. Together, our findings support a model in which the VirB11 ATPase contributes at two levels to type IV secretion, T-pilus morphogenesis, and substrate selection. Furthermore, the contributions of VirB11 to machine assembly and substrate transfer can be uncoupled by mutagenesis.  相似文献   

6.
The Agrobacterium tumefaciens virB7 gene product is a lipoprotein whose function is required for the transmission of oncogenic T-DNA to susceptible plant cells. Three lines of study provided evidence that VirB7 interacts with and stabilizes other VirB proteins during the assembly of the putative T-complex transport apparatus. First, a precise deletion of virB7 from the pTiA6NC plasmid of wild-type strain A348 was correlated with significant reductions in the steady-state levels of several VirB proteins, including VirB4, VirB9, VirB10, and VirB11; trans expression of virB7 in the delta virB7 mutant partially restored the levels of these proteins, and trans coexpression of virB7 and virB8 fully restored the levels of these proteins to wild-type levels. Second, modulation of VirB7 levels resulted in corresponding changes in the levels of other VirB proteins in the following cell types: (i) a delta virB7 mutant expressing virB7 and virB8 from isopropyl-beta-D-thiogalactopyranoside (IPTG)-inducible Plac and other virB genes from acetosyringone (AS)-inducible PvirB; (ii) a delta virB operon mutant expressing virB7 and virB8 from Plac and virB9, virB10, and virB11 from PvirB; and (iii) a delta virB operon mutant expressing virB7 from IPTG-inducible Pklac and virB9 from an AS-inducible PvirB. Third, the synthesis of a VirB7::PhoA fusion protein in strain A348 was correlated with a significant reduction in the steady-state levels of VirB4, VirB5, and VirB7 through VirB11; these cells also exhibited a severely attenuated virulence phenotype, indicating that synthesis of the fusion protein perturbs the assembly of VirB proteins into a stabilized protein complex required for T-complex transport. Extracts of AS-induced cells electrophoresed under nonreducing conditions possessed undetectable levels of the 32-kDa VirB9 and 4.5-kDa VirB7 monomers and instead possessed a 36-kDa complex that cross-reacted with both VirB7 and VirB9 antisera and accumulated as a function of virB7 expression. Our results are consistent with a model in which VirB7 stabilizes VirB9 by formation of a covalent intermolecular cross-link; in turn, the VirB7-VirB9 heterodimer promotes the assembly of a functional T-complex transport machinery.  相似文献   

7.
A L Jones  K Shirasu    C I Kado 《Journal of bacteriology》1994,176(17):5255-5261
The process of T-DNA transfer from Agrobacterium tumefaciens to plant cells is thought to involve passage of a DNA-protein complex through a specialized structure in the bacterial membrane. The virB operon of A. tumefaciens encodes 11 proteins, of which 9 are known to be located in the membranes and 10 have been shown to be essential for virulence. Sequence comparisons between proteins encoded by the virB operon and those encoded by operons from conjugative plasmids indicated that VirB proteins may form a structure similar to a conjugative pilus. Here, we examine the effects of mutations in virB4 on the accumulation and localization of other VirB proteins. VirB4 shares amino acid sequence similarity with the TraC protein of plasmid F, which is essential for pilus formation in Escherichia coli, and with the PtlC protein of Bordetella pertussis, which is required for toxin secretion. Polar and nonpolar virB4 mutants were examined, and all were shown to be unable to accumulate VirB3 protein to wild-type levels. A low level of VirB3 protein which was present in induced NT1RE cells harboring virB4 nonpolar mutant pBM1130 was found to associate with the inner membrane fraction only, whereas in wild-type cells VirB3 associated with both inner and outer membranes. The results indicate that for VirB3 to accumulate in the outer membrane, VirB4 must also be present, and it is possible that one role of VirB4 is in the correct assembly of a VirB protein membrane structure.  相似文献   

8.
9.
The 11 VirB proteins from Agrobacterium tumefaciens are predicted to form a membrane-bound complex that mediates the movement of DNA from the bacterium into plant cells. The studies reported here on the possible VirB protein interactions in such a complex demonstrate that VirB9 and VirB10 can each form high-molecular-weight complexes after treatment with a chemical cross-linker. Analysis of nonpolar virB mutants showed that the formation of the VirB10 complexes does not occur in a virB9 mutant and that VirB9 and VirB10 are not components of the same cross-linked complex. VirB9, when stabilized by the concurrent expression of VirB7, was shown to be sufficient to permit VirB10 to cross-link into its usual high-molecular-weight forms in the absence of other Vir proteins. Randomly introduced single point mutations in virB9 resulted in Agrobacterium strains with severely attenuated virulence. Although some of the mutants contained wild-type levels of VirB9 and displayed an unaltered VirB9 cross-linking pattern, VirB10 cross-linking was drastically reduced. We conclude that specific amino acid residues in VirB9 are necessary for interaction with VirB10 resulting in the capacity of VirB10 to participate in high-molecular-weight complexes that can be visualized by chemical cross-linking.  相似文献   

10.
This study characterized the contribution of Agrobacterium tumefaciens VirB6, a polytopic inner membrane protein, to the formation of outer membrane VirB7 lipoprotein and VirB9 protein multimers required for type IV secretion. VirB7 assembles as a disulfide cross-linked homodimer that associates with the T pilus and a VirB7-VirB9 heterodimer that stabilizes other VirB proteins during biogenesis of the secretion machine. Two presumptive VirB protein complexes, composed of VirB6, VirB7, and VirB9 and of VirB7, VirB9, and VirB10, were isolated by immunoprecipitation or glutathione S-transferase pulldown assays from detergent-solubilized membrane extracts of wild-type A348 and a strain producing only VirB6 through VirB10 among the VirB proteins. To examine the biological importance of VirB6 complex formation for type IV secretion, we monitored the effects of nonstoichiometric VirB6 production and the synthesis of VirB6 derivatives with 4-residue insertions (VirB6.i4) on VirB7 and VirB9 multimerization, T-pilus assembly, and substrate transfer. A virB6 gene deletion mutant accumulated VirB7 dimers at diminished steady-state levels, whereas complementation with a plasmid bearing wild-type virB6 partially restored accumulation of the dimers. VirB6 overproduction was correlated with formation of higher-order VirB9 complexes or aggregates and also blocked substrate transfer without a detectable disruption of T-pilus production; these phenotypes were displayed by cells grown at 28 degrees C, a temperature that favors VirB protein turnover, but not by cells grown at 20 degrees C. Strains producing several VirB6.i4 mutant proteins assembled novel VirB7 and VirB9 complexes detectable by nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and two strains producing the D60.i4 and L191.i4 mutant proteins translocated IncQ plasmid and VirE2 effector protein substrates in the absence of a detectable T pilus. Our findings support a model that VirB6 mediates formation of VirB7 and VirB9 complexes required for biogenesis of the T pilus and the secretion channel.  相似文献   

11.
A Bartonella henselae genomic A library was screened with antiserum generated in mice against live B. henselae. One of the immunoreactive clones expressed a 17-kDa antigen that was characterized previously as an immunodominant protein of B. henselae. Sequence analysis of the recombinant clone, pBHIM-2, revealed that the open reading frame (ORF) encoding the 17-kDa antigen was situated between homologs of virB4 and virB6, two genes that belong to the virB operon. The virB operon has been associated with the transfer of oncogenic T-DNA in Agrobacterium tumefaciens and with secretion of the pertussis toxin in Bordetella pertussis. Downstream of the virB6 gene within pBHIM-2 was a partial open reading frame that was homologous to the virB8 gene. Rescreening of the library by plaque hybridization using probes specific to the 5' and 3' ends of the pBHIM-2 insert resulted in the isolation of recombinant clones containing additional virB genes. Assembly of the sequences obtained from the recombinant clones revealed that eight of the open reading frames encode homologs of the VirB proteins. The homology and colinearity with the virB genes suggest that the gene encoding the 17-kDa antigen is expressed within the virB locus of B. henselae.  相似文献   

12.
Protein fusion with the Escherichia coli alkaline phosphatase is used extensively for the analysis of the topology of membrane proteins. To study the topology of the Agrobacterium T-DNA transfer proteins, we constructed a transposon, Tn 3phoA . The transposon mobilizes into plasmids at a high frequency, is stable after transposition, can produce phoA translational fusions and can be used for the analysis of protein topology directly in the bacterium of interest. For studies on the DNA transfer proteins, an Agrobacterium strain deficient in phoA under our experimental conditions was constructed by chemical mutagenesis. A plasmid containing virB and virD4 was used as a target for mutagenesis. Twenty-eight unique phoA -positive clones that mapped to eight virB genes were isolated. Multiple insertions throughout VirB1, VirB5, VirB7, VirB9 and VirB10 indicated that these proteins primarily face the periplasm. Insertions in VirB2, VirB6 and VirB8 allowed the identification of their periplasmic domains. No insertions were found in VirB3, VirB4 and VirB11. These proteins either lack or have a short periplasmic domain. No insertions mapped to VirD4 either. To study VirD4 topology, targeted phoA fusions and random lacZ fusions were constructed. Analysis of the fusion proteins indicated that VirD4 contains a single periplasmic domain near the N-terminus, and most of the protein lies in the cytoplasm. A hypothetical model for the T-DNA transport pore is presented.  相似文献   

13.
Abstract The virB operon of the Agrobacterium tumefaciens Ti plasmid encodes 11 proteins. Specific antisera to VirB2, VirB3 and VirB9 were used to locate these virulence proteins in the A. tumefaciens cell. Immunoblot analysis located VirB2 protein to the inner and outer membranes; VirB3 and VirB9 were likewise associated with both membranes, but mainly in the outer membrane. VirB2 is processed from a 12.3-kDa protein into a 7.2-kDa polypeptide. Such sized protein results from cleavage at residue Ala47, upstream of which two additional alanine residues Ala45-Ala46 are contained and bearing resemblance to a signal peptide peptidase-I cleavage sequence. VirB2 and VirB3 sequences are strikingly similar to the pilin biosynthetic proteins TraA and TraL encoded by the tra operon of F and R1-19 plasmids. Since traA encodes a propilin that is cleaved into a 7.2-kDa conjugative pilin product and since this cleavage site is present in both TraA and VirB2, we propose that virB2 encodes a pilin-like protein which together with VirB3 and VirB9 as well as other VirB proteins may be used for interkingdom T-DNA transfer between bacteria and plants.  相似文献   

14.
The VirB11 ATPase is a putative component of the transport machinery responsible for directing the export of nucleoprotein particles (T complexes) across the Agrobacterium tumefaciens envelope to susceptible plant cells. Fractionation and membrane treatment studies showed that approximately 30% of VirB11 partitioned as soluble protein, whereas the remaining protein was only partially solubilized with urea from cytoplasmic membranes of wild-type strain A348 as well as a Ti-plasmidless strain expressing virB11 from an IncP replicon. Mutations in virB11 affecting protein function were mapped near the amino terminus (Q6L, P13L, and E25G), just upstream of a region encoding a Walker A nucleotide-binding site (F154H;L155M), and within the Walker A motif (P170L, K175Q, and delta GKT174-176). The K175Q and delta GKT174-176 mutant proteins partitioned almost exclusively with the cytoplasmic membrane, suggesting that an activity associated with nucleotide binding could modulate the affinity of VirB11 for the cytoplasmic membrane. The virB11F154H;L155M allele was transdominant over wild-type virB11 in a merodiploid assay, providing strong evidence that at least one form of VirB11 functions as a homo- or heteromultimer. An allele with a deletion of the first half of the gene, virB11 delta1-156, was transdominant in a merodiploid assay, indicating that the C-terminal half of VirB11 contains a protein interaction domain. Products of both virB11 delta1-156 and virB11 delta158-343, which synthesizes the N-terminal half of VirB11, associated tightly with the A. tumefaciens membrane, suggesting that both halves of VirB11 contain membrane interaction determinants.  相似文献   

15.
A Das  L B Anderson    Y H Xie 《Journal of bacteriology》1997,179(11):3404-3409
The Agrobacterium tumefaciens VirB proteins are postulated to form a transport pore for the transfer of T-DNA. Formation of the transport pore will involve interactions among the VirB proteins. A powerful genetic method to study protein-protein interaction is the yeast two-hybrid assay. To test whether this method can be used to study interactions among the VirB membrane proteins, we studied the interaction of VirB7 and VirB9 in yeast. We recently demonstrated that VirB7 and VirB9 form a protein complex linked by a disulfide bond between cysteine 24 of VirB7 and cysteine 262 of VirB9 (L. Anderson, A. Hertzel, and A. Das, Proc. Natl. Acad. Sci. USA 93:8889-8894, 1996). We now demonstrate that VirB7 and VirB9 interact in yeast, and this interaction does not require the cysteine residues essential for the disulfide linkage. By using defined segments in fusion constructions, we mapped the VirB7 interaction domain of VirB9 to residues 173 to 275. In tumor formation assays, both virB7C24S and virB9C262S expressed from a multicopy plasmid complemented the respective deletion mutation, indicating that the cysteine residues may not be essential for DNA transfer.  相似文献   

16.
The virB gene products of the Agrobacterium tumefaciens tumor-inducing (Ti) plasmid have been proposed to mediate T-DNA transport through the bacterial cell wall into plant cells. Previous genetic analysis of the approximately 9.5-kilobase-pair virB operon has been limited to transposon insertion mutagenesis. Due to the polarity of the transposon insertions, only the last gene in the operon, virB11, is known to provide an essential virulence function. We have now begun to assess the contribution of the other virB genes to virulence. First, several previously isolated Tn3-HoHo1 insertions in the 3' end of the virB operon were precisely mapped by nucleotide sequence analysis. Protein extracts from A. tumefaciens strains harboring these insertions on the Ti plasmid were subjected to immunostaining analysis with VirB4-, VirB10-, and VirB11-specific antisera to determine the effect of the insertion on virB gene expression. In this manner, avirulent mutants containing polar insertions in the virB9 and virB10 genes were identified. To carry out a complementation analysis with these virB mutants, expression vectors were constructed that allow cloned genes to be expressed from the virB promoter in A. tumefaciens. These plasmids were used to express combinations of the virB9, virB10, and virB11 genes in trans in the virB insertion mutants, thereby creating strains lacking only one of these three virB gene products. Virulence assays on Kalanchoe daigremontiana demonstrated that in addition to virB11, the virB9 and virB10 genes are required for tumorigenicity.  相似文献   

17.
TrwD, the VirB11 homologue in conjugative plasmid R388, is a member of the large secretion ATPase superfamily, which includes ATPases from bacterial type II and type IV secretion systems, type IV pilus, and archaeal flagellae assembly. Based on structural studies of the VirB11 homologues in Helicobacter pylori and Brucella suis and the archaeal type II secretion ATPase GspE, a unified mechanism for the secretion ATPase superfamily has been proposed. Here, we have found that the ATP turnover of TrwD is down-regulated by physiological concentrations of magnesium. This regulation is exerted by increasing the affinity for ADP, hence delaying product release. Circular dichroism and limited proteolysis analysis indicate that magnesium induces conformational changes in the protein that promote a more rigid, but less active, form of the enzyme. The results shown here provide new insights into the catalytic mechanism of the secretion ATPase superfamily.  相似文献   

18.
The eleven predicted gene products of the Agrobacterium tumefaciens virB operon are believed to form a transmembrane pore complex through which T-DNA export occurs. The VirB10 protein is required for virulence and is a component of an aggregate associated with the membrane fraction of A. tumefaciens. Removal of the putative membrane-spanning domain (amino acids 22 through 55) disrupts the membrane topology of VirB10 (J. E. Ward, E. M. Dale, E. W. Nester, and A. N. Binns, J. Bacteriol. 172:5200-5210, 1990). Deletion of the sequences encoding amino acids 22 to 55 abolishes the ability of plasmid-borne virB10 to complement a null mutation in the virB10 gene, suggesting that the proper topology of VirB10 in the membrane may indeed play a crucial role in T-DNA transfer to the plant cell. Western blot (immunoblot) analysis indicated that the observed loss of virulence could not be attributed to a decrease in the steady-state levels of the mutant VirB10 protein. Although the deletion of the single transmembrane domain would be expected to perturb membrane association, VirB10 delta 22-55 was found exclusively in the membrane fraction. Urea extraction studies suggested that this membrane localization might be the result of a peripheral membrane association; however, the mutant protein was found in both inner and outer membrane fractions separated by sucrose density gradient centrifugation. Both wild-type VirB10 and wild-type VirB9 were only partially removed from the membranes by extraction with 1% Triton X-100, while VirB5 and VirB8 were Triton X-100 soluble. VirB11 was stripped from the membranes by 6 M urea but not by a more mild salt extraction. The fractionation patterns of VirB9, VirB10, and VirB11 were not dependent on each other or on VirB8 or VirD4. The observed tight association of VirB9, VirB10, and VirB11 with the membrane fraction support the notion that these proteins may exist as components of multiprotein pore complexes, perhaps spanning both the inner and outer membranes of Agrobacterium cells.  相似文献   

19.
20.
Anaplasma phagocytophilum, an obligate intracellular bacterium, is the aetiologic agent of human granulocytic anaplasmosis (HGA). A. phagocytophilum virB/D operons encoding type IV secretion system are expressed in cell culture and in the blood of HGA patients. In the present study, their expression across the A. phagocytophilum intracellular developmental cycle was investigated. We found that mRNA levels of both virB9 and virB6 were upregulated during infection of human neutrophils in vitro. The antibody against the recombinant VirB9 protein was prepared and immunogold and immunofluorescence labelling were used to determine the VirB9 protein expression by individual organisms. Majority of A. phagocytophilum spontaneously released from the infected host cells poorly expressed VirB9. At 1 h post infection, VirB9 was not detectable on most bacteria associated with neutrophils. However, VirB9 was strongly expressed by A. phagocytophilum during proliferation in neutrophils. In contrast, with HL-60 cells, approximately 80% of A. phagocytophilum organisms associated at 1 h post infection expressed VirB9 protein and were colocalized with lysosome-associated membrane protein-1 (LAMP-1), whereas, VirB9-undetectable bacteria were not colocalized with LAMP-1. These results indicate developmental regulation of expression of components of type IV secretion system during A. phagocytophilum intracellular life cycle and suggest that bacterial developmental stages influence the nature of binding to the hosts and early avoidance of late endosome-lysosome pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号