首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial communities isolated from 17 of 20 samples of soils and waters with widely diverse geographical origins utilized T-2 toxin as a sole source of carbon and energy for growth. These isolates readily detoxified T-2 toxin as assessed by a Rhodotorula rubra bioassay. The major degradation pathway of T-2 toxin in the majority of isolates involved side chain cleavage of acetyl moieties to produce HT-2 toxin and T-2 triol. A minor degradation pathway of T-2 toxin that involved conversion to neosolaniol and thence to 4-deacetyl neosolaniol was also detected. Some bacterial communities had the capacity to further degrade the T-2 triol or 4-deacetyl neosolaniol to T-2 tetraol. Two communities, TS4 and KS10, degraded the trichothecene nucleus within 24 to 48 h. These bacterial communities comprised 9 distinct species each. Community KS10 contained 3 primary transformers which were able to cleave acetate from T-2 toxin but which could not assimilate the side chain products, whereas community TS4 contained 3 primary transformers which were able to grow on the cleavage products, acetate and isovalerate. A third community, AS1, was much simpler in structure and contained only two bacterial species, one of which transformed T-2 toxin to T-2 triol in monoculture. In all cases, the complete communities were more active against T-2 toxin in terms of rates of degradation than any single bacterial component. Cometabolic interactions between species is suggested as a significant factor in T-2 toxin degradation.  相似文献   

2.
Bacterial communities isolated from 17 of 20 samples of soils and waters with widely diverse geographical origins utilized T-2 toxin as a sole source of carbon and energy for growth. These isolates readily detoxified T-2 toxin as assessed by a Rhodotorula rubra bioassay. The major degradation pathway of T-2 toxin in the majority of isolates involved side chain cleavage of acetyl moieties to produce HT-2 toxin and T-2 triol. A minor degradation pathway of T-2 toxin that involved conversion to neosolaniol and thence to 4-deacetyl neosolaniol was also detected. Some bacterial communities had the capacity to further degrade the T-2 triol or 4-deacetyl neosolaniol to T-2 tetraol. Two communities, TS4 and KS10, degraded the trichothecene nucleus within 24 to 48 h. These bacterial communities comprised 9 distinct species each. Community KS10 contained 3 primary transformers which were able to cleave acetate from T-2 toxin but which could not assimilate the side chain products, whereas community TS4 contained 3 primary transformers which were able to grow on the cleavage products, acetate and isovalerate. A third community, AS1, was much simpler in structure and contained only two bacterial species, one of which transformed T-2 toxin to T-2 triol in monoculture. In all cases, the complete communities were more active against T-2 toxin in terms of rates of degradation than any single bacterial component. Cometabolic interactions between species is suggested as a significant factor in T-2 toxin degradation.  相似文献   

3.
We report the use of charge-shift electrophoresis to define the behavior of the trichothecene mycotoxin T-2 in aqueous solutions. We found that T-2 behaves in a hydrophobic manner and that this technique can be adapted for the separation of small hydrophobic molecules such as T-2 and cholesterol.  相似文献   

4.
In order to investigate further the mechanisms associated with growth inhibition of human breast cancer cells by progestins and nonsteroidal antiestrogens, their effect on c-myc gene expression in T-47D-5 and T-47D cells has been investigated. The c-myc mRNA levels were differentially regulated by the synthetic progestin, medroxyprogesterone acetate and the nonsteroidal antiestrogen, monohydroxytamoxifen, in both cell lines. Antiestrogen treatment caused a persistent decrease in c-myc mRNA levels while the progestin caused a more complex response. Initially c-myc mRNA levels increased approx. 2-fold, this was followed by a decrease and then partial recovery. The end result, however, of each of these treatments is decreased cell number.  相似文献   

5.
It is well recognized that estradiol (E2) is one of the most important hormones supporting the growth and evolution of breast cancer. Consequently, to block this hormone before it enters the cancer cell or in the cell itself, has been one of the main targets in recent years. In the present study we explored the effect of the progestin, nomegestrol acetate, on the estrone sulfatase and 17β-hydroxy-steroid dehydrogenase (17β-HSD) activities of MCF-7 and T-47D human breast cancer cells. Using physiological doses of estrone sulfate (E1S: 5 × 10−9 M), nomegestrol acetate blocked very significantly the conversion of E1S to E2. In the MCF-7 cells, using concentrations of 5 × 10−6 M and 5 × 10−5 M of nomegestrol acetate, the decrease of E1S to E2 was, respectively, −43% and −77%. The values were, respectively, −60% and −71% for the T-47D cells. Using E1S at 2 × 10−6 M and nomegestrol acetate at 10−5 M, a direct inhibitory effect on the enzyme of −36% and −18% was obtained with the cell homogenate of the MCF-7 and T-47D cells, respectively. In another series of studies, it was observed that after 24 h incubation of a physiological concentration of estrone (E1: 5 × 10−9 M) this estrogen is converted in a great proportion to E2. Nomegestrol acetate inhibits this transformation by −35% and −85% at 5 × 10−7 M and 5 × 10−5 M, respectively in T-47D cells; whereas in the MCF-7 cells the inhibitory effect is only significant, −48%, at 5 × 10−5 M concentration of nomegestrol acetate. It is concluded that nomegestrol acetate in the hormone-dependent MCF-7 and T-47D breast cancer cells significantly inhibits the estrone sulfatase and 17β-HSD activities which converts E1S to the biologically active estrogen estradiol. This inhibition provoked by this progestin on the enzymes involved in the biosynthesis of E2 can open new clinical possibilities in breast cancer therapy.  相似文献   

6.
Both transforming growth factor beta (TGF beta) and TGF alpha mRNA are expressed in human breast cancer cell lines. We have investigated the relationship of mRNA abundance for these growth modulators to the proliferation rate of a number of human breast cancer cell lines. Furthermore, we have investigated the relationship of regulation of TGF beta and TGF alpha mRNA to growth inhibition caused by progestins and nonsteroidal antiestrogens in T-47D human breast cancer cells. The abundance of TGF beta and TGF alpha mRNA in human breast cancer cell lines was not related directly to proliferation rate of the cells in culture or estrogen receptor positivity or negativity. The relationship of TGF beta and TGF alpha mRNA to growth inhibition caused by antiestrogens and progestins was investigated in T-47D human breast cancer cells. We observed that in T-47D human breast cancer cells the abundance of TGF beta mRNA is decreased in a time- and dose-dependent fashion by progestins but remains unaltered by nonsteroidal antiestrogens. Treatment of T-47D cells for 24 h with 10 nM medroxyprogesterone acetate (MPA) reduced the level of TGF beta mRNA to one third that present in untreated cells. The same treatment increased TGF alpha mRNA 3-fold above untreated controls in a time- and dose-dependent fashion and nonsteroidal antiestrogens caused a small decrease. The regulation of both TGF alpha and TGF beta mRNA was not directly related to inhibition of growth by progestins and antiestrogens in T-47D cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

7.
In growing cells of Saccharomyces cerevisiae and Saccharomyces carlsbergensis, T-2 toxin inhibits cell growth. We have examined the role of the yeast membranes in the uptake mechanism(s) of T-2 toxin. The effects of membrane-modulating agents, ethanol, cetyltrimethylammonium bromide, Triton X-100, and heat were studied; these agents were found to increase the sensitivity of the yeasts toward T-2 toxin. In the presence of 5% (vol/vol) ethanol, 2 micrograms of T-2 toxin per ml caused complete inhibition of growth. In the presence of 1 microgram of cetyltrimethylammonium bromide per ml, yeast cells became sensitive to T-2 toxin, starting with a concentration of 0.5 micrograms/ml. Triton X-100 at concentrations below 1% (vol/vol) sensitized the cells toward T-2 toxin, but at higher concentrations it protected the cells from T-2 toxin. Temperatures of incubation between 7 and 30 degrees C influenced the growth reduction caused by T-2 toxin. The greatest observed reduction of growth in T-2 toxin-treated cultures occurred at 30 degrees C. To further prove that the membrane influences the interaction of T-2 toxin with yeasts, we have studied a yeast mutant with a reduced plasma membrane permeability (G. H. Rank et al., Mol. Gen. Genet. 152:13-18, 1977). This yeast mutant proved to be resistant to T-2 toxin concentrations of up to 50 micrograms/ml. These results show that the membrane plays a significant role in the interaction of T-2 toxin with yeast cells.  相似文献   

8.
In growing cells of Saccharomyces cerevisiae and Saccharomyces carlsbergensis, T-2 toxin inhibits cell growth. We have examined the role of the yeast membranes in the uptake mechanism(s) of T-2 toxin. The effects of membrane-modulating agents, ethanol, cetyltrimethylammonium bromide, Triton X-100, and heat were studied; these agents were found to increase the sensitivity of the yeasts toward T-2 toxin. In the presence of 5% (vol/vol) ethanol, 2 micrograms of T-2 toxin per ml caused complete inhibition of growth. In the presence of 1 microgram of cetyltrimethylammonium bromide per ml, yeast cells became sensitive to T-2 toxin, starting with a concentration of 0.5 micrograms/ml. Triton X-100 at concentrations below 1% (vol/vol) sensitized the cells toward T-2 toxin, but at higher concentrations it protected the cells from T-2 toxin. Temperatures of incubation between 7 and 30 degrees C influenced the growth reduction caused by T-2 toxin. The greatest observed reduction of growth in T-2 toxin-treated cultures occurred at 30 degrees C. To further prove that the membrane influences the interaction of T-2 toxin with yeasts, we have studied a yeast mutant with a reduced plasma membrane permeability (G. H. Rank et al., Mol. Gen. Genet. 152:13-18, 1977). This yeast mutant proved to be resistant to T-2 toxin concentrations of up to 50 micrograms/ml. These results show that the membrane plays a significant role in the interaction of T-2 toxin with yeast cells.  相似文献   

9.
Pseudomonas putida T-57 was isolated from an activated sludge sample after enrichment on mineral salts basal medium with toluene as a sole source of carbon. P. putida T-57 utilizes n-butanol, toluene, styrene, m-xylene, ethylbenzene, n-hexane, and propylbenzene as growth substrates. The strain was able to grow on toluene when liquid toluene was added to mineral salts basal medium at 10-90% (v/v), and was tolerant to organic solvents whose log P(ow) (1-octanol/water partition coefficient) was higher than 2.5. Enzymatic and genetic analysis revealed that P. putida T-57 used the toluene dioxygenase pathway to catabolize toluene. A cis-toluene dihydrodiol dehydrogenase gene (todD) mutant of T-57 was constructed using a gene replacement technique. The todD mutant accumulated o-cresol (maximum 1.7 g/L in the aqueous phase) when cultivated in minimal salts basal medium supplemented with 3% (v/v) toluene and 7% (v/v) 1-octanol. Thus, T-57 is thought to be a good candidate host strain for bioconversion of hydrophobic substrates in two-phase (organic-aqueous) systems.  相似文献   

10.
The fungus Fusarium sporotrichioides, capable of producing T-2 toxin (T-2), was grown on irradiated corn kernels remoistened to 22% and kept in atmospheres of different CO2-O2 combinations. The production of T-2 was totally inhibited under 60% CO2-20% O2, whereas only trace amounts were detected when the gas combination was 40% CO2-5% O2. Under all other combinations tested, the amount of T-2 produced was reduced by 25 to 50% as compared with the control. Fungal growth was not inhibited by any of the gas mixtures examined, and the growth rate (measured by direct plating, dilution method, and CO2 production) was almost identical to that in grains kept under air. It is concluded that although F. sporotrichioides is tolerant to high CO2 levels, T-2 formation on corn can be inhibited by CO2 concentrations less than that required to inhibit fungal growth.  相似文献   

11.
The fungus Fusarium sporotrichioides, capable of producing T-2 toxin (T-2), was grown on irradiated corn kernels remoistened to 22% and kept in atmospheres of different CO2-O2 combinations. The production of T-2 was totally inhibited under 60% CO2-20% O2, whereas only trace amounts were detected when the gas combination was 40% CO2-5% O2. Under all other combinations tested, the amount of T-2 produced was reduced by 25 to 50% as compared with the control. Fungal growth was not inhibited by any of the gas mixtures examined, and the growth rate (measured by direct plating, dilution method, and CO2 production) was almost identical to that in grains kept under air. It is concluded that although F. sporotrichioides is tolerant to high CO2 levels, T-2 formation on corn can be inhibited by CO2 concentrations less than that required to inhibit fungal growth.  相似文献   

12.
A methane-oxidizing bacterium capable of nitrogen fixation was isolated from soil taken from an area which leaked methane gas. Strain T-1 was a catalase and oxidase-positive, gram-negative straight rod-shaped strictly aerobic bacterium which formed lipid cysts and type II intracytoplasmic membranes. The organism was a microaerophilic nitrogen-fixing methanotroph. Strain T-1 is considered to be classified intoMethylocystis. The organism evolved hydrogen gas when grown in the nitrogen-free medium of atmospheric oxygen concentrations of 1.5% or more. Below this level, however, hydrogen gas was not evolved. In addition to methanol, formaldehyde and formate, ethanol, acetate and hydrogen gas served as oxidizable substrates for the acetylene reduction test. H2-stimulated nitrogenase activity was limited in a very narrow range of oxygen concentration and not detected at 2% O2. With acetate as the substrate, however, about an 80% of the maximum acetylene reduction activity was detected at 2% O2. These results suggest that strain T-1 is capable of recycling the hydrogen gas evolved during nitrogen fixation under low partial pressures of O2.  相似文献   

13.
以初始体重为(7.90±0.07)g的大菱鲆为实验对象,鱼粉、豆粕、玉米蛋白粉和谷朊粉为主要蛋白质来源,鱼油为主要脂肪源,在此基础配方中分别添加0、1%、2%牛磺酸,0.5%蛋氨酸及0.5%半胱氨酸(分别命名为T-0、T-1、T-2、M-0.5和C-0.5),配制5种等氮等脂的配合饲料,在室内流水养殖系统进行为期10周的养殖实验,目的是研究饲料中含有高比例植物蛋白时牛磺酸、蛋氨酸和半胱氨酸对大菱鲆幼鱼生长及牛磺酸转运载体(TauT)mRNA表达的影响。结果表明,与对照组相比,T-1、T-2组大菱鲆幼鱼的特定生长率(SGR)和饲料效率(FE)提高(P < 0.05),内脏指数(VSI)降低(P < 0.05);M-0.5组大菱鲆幼鱼SGR和FE较对照组提高(P>0.05),VSI低于对照组(P < 0.05),肥满度(CF)高于对照组(P < 0.05);C-0.5组SGR较对照组降低(P < 0.05),但FE、VSI和CF与对照组差异不显著(P>0.05);T-1、T-2组大菱鲆幼鱼肝脏、脑和眼中TauT mRNA相对表达量低于对照组(P < 0.05),且随着饲料中牛磺酸含量的增加大菱鲆幼鱼肝脏、脑和眼中TauT mRNA相对表达量降低(P < 0.05);M-0.5组大菱鲆幼鱼肝脏、脑和眼中TauT mRNA相对表达量高于T-0、T-1、T-2组(P < 0.05);C-0.5组大菱鲆幼鱼肝脏、脑和眼中TauT mRNA相对表达量高于T-0、T-1、T-2组(P < 0.05),但与M-0.5组相比差异不显著(P>0.05)。综合分析表明,在实验条件下,饲料中牛磺酸含量为0.48%、1.06%时能够提高大菱鲆幼鱼的生长性能;大菱鲆幼鱼体内TauT mRNA表达可能受饲料中牛磺酸、蛋氨酸和半胱氨酸等含硫氨基酸的影响。  相似文献   

14.
A sensitive method for the simultaneous determination of T-2 toxin, HT-2 toxin, neosolaniol, T-2 triol, and T-2 tetraol in layer feed using high-performance liquid chromatography coupled to triple quadrupole mass spectrometry in the positive ionization mode (LC-ESI-MS/MS) is described. Two fast and easy clean-up methods—with BondElut Mycotoxin and MycoSep 227 columns, respectively—were tested. The separation of the toxins was conducted on a Pursuit XRs Ultra 2.8 HPLC column using 0.13 mM ammonium acetate as eluent A and methanol as eluent B. Detection of the mycotoxins was carried out in the multiple reaction monitoring (MRM) mode using ammonium adducts as precursor ions. Quantification of all analytes was performed with d3-T-2 toxin as an internal standard. The clean-up method with MycoSep 227 columns gave slightly better results for layer feed compared to the method using BondElut Mycotoxin columns (MycoSep 227: recovery between 50 and 63 %, BondElut Mycotoxin: recovery between 32 and 67 %) and was therefore chosen as the final method. The limits of detection ranged between 0.9 and 7.5 ng/g depending on the mycotoxin. The method was developed for the analysis of layer feed used at carry-over experiments with T-2 toxin in laying hens. For carry-over experiments, it is necessary that the method includes not only T-2 toxin but also the potential metabolites in animal tissues HT-2 toxin, neosolaniol, T-2 triol, and T-2 tetraol which could naturally occur in cereals used as feed stuff as well.  相似文献   

15.
T-2 toxin metabolism by ruminal bacteria and its effect on their growth   总被引:3,自引:0,他引:3  
The effect of T-2 toxin on the growth rates of different bacteria was used as a measure of its toxicity. Toxin levels of 10 micrograms/ml did not decrease the growth rate of Selenomonas ruminantium and Anaerovibrio lipolytica, whereas the growth rate of Butyrivibrio fibrisolvens was uninhibited at toxin levels as high as 1 mg/ml. There was, however, a noticeable increase in the growth rate of B. fibrisolvens CE46 and CE51 and S. ruminantium in the presence of low concentrations (10 micrograms/ml) of T-2 toxin, which may indicate the assimilation of the toxin as an energy source by these bacteria. Three tributyrin-hydrolyzing bacterial isolates did not grow at all in the presence of T-2 toxin (10 micrograms/ml). The growth rate of a fourth tributyrin-hydrolyzing bacterial isolate was unaffected. B. fibrisolvens CE51 degraded T-2 toxin to HT-2 toxin (22%), T-2 triol (3%), and neosolaniol (10%), whereas A. lipolytica and S. ruminantium degraded the toxin to HT-2 toxin (22 and 18%, respectively) and T-2 triol (7 and 10%, respectively) only. These results have been explained in terms of the presence of two different toxin-hydrolyzing enzyme systems. Studies with B. fibrisolvens showed the presence of a T-2 toxin-degrading enzyme fraction in a bacterial membrane preparation. This fraction had an approximate molecular weight of 65,000 and showed esterase activity (395.6 mumol of p-nitrophenol formed per min per mg of protein with p-nitrophenylacetate as the substrate.  相似文献   

16.
The effect of T-2 toxin on the growth rates of different bacteria was used as a measure of its toxicity. Toxin levels of 10 micrograms/ml did not decrease the growth rate of Selenomonas ruminantium and Anaerovibrio lipolytica, whereas the growth rate of Butyrivibrio fibrisolvens was uninhibited at toxin levels as high as 1 mg/ml. There was, however, a noticeable increase in the growth rate of B. fibrisolvens CE46 and CE51 and S. ruminantium in the presence of low concentrations (10 micrograms/ml) of T-2 toxin, which may indicate the assimilation of the toxin as an energy source by these bacteria. Three tributyrin-hydrolyzing bacterial isolates did not grow at all in the presence of T-2 toxin (10 micrograms/ml). The growth rate of a fourth tributyrin-hydrolyzing bacterial isolate was unaffected. B. fibrisolvens CE51 degraded T-2 toxin to HT-2 toxin (22%), T-2 triol (3%), and neosolaniol (10%), whereas A. lipolytica and S. ruminantium degraded the toxin to HT-2 toxin (22 and 18%, respectively) and T-2 triol (7 and 10%, respectively) only. These results have been explained in terms of the presence of two different toxin-hydrolyzing enzyme systems. Studies with B. fibrisolvens showed the presence of a T-2 toxin-degrading enzyme fraction in a bacterial membrane preparation. This fraction had an approximate molecular weight of 65,000 and showed esterase activity (395.6 mumol of p-nitrophenol formed per min per mg of protein with p-nitrophenylacetate as the substrate.  相似文献   

17.
Cell cultures allow rapid kinetic labeling experiments that can provide information on precursor-product relationships and intermediate pools. T-87 suspension cells are increasingly used in Arabidopsis (Arabidopsis thaliana) research, but there are no reports describing their lipid composition or biosynthesis. To facilitate application of T-87 cells for analysis of glycerolipid metabolism, including tests of gene functions, we determined composition and accumulation of lipids of light- and dark-grown cultures. Fatty acid synthesis in T-87 cells was 7- to 8-fold higher than in leaves. Similar to other plant tissues, phosphatidylcholine (PC) and phosphatidylethanolamine were major phospholipids, but galactolipid levels were 3- to 4-fold lower than Arabidopsis leaves. Triacylglycerol represented 10% of total acyl chains, a greater percentage than in most nonseed tissues. The initial steps in T-87 cell lipid assembly were evaluated by pulse labeling cultures with [(14)C]acetate and [(14)C]glycerol. [(14)C]acetate was very rapidly incorporated into PC, preferentially at sn-2 and without an apparent precursor-product relationship to diacylglycerol (DAG). By contrast, [(14)C]glycerol most rapidly labeled DAG. These results indicate that acyl editing of PC is the major pathway for initial incorporation of fatty acids into glycerolipids of cells derived from a 16:3 plant. A very short lag time (5.4 s) for [(14)C]acetate labeling of PC implied channeled incorporation of acyl chains without mixing with the bulk acyl-CoA pool. Subcellular fractionation of pea (Pisum sativum) leaf protoplasts indicated that 30% of lysophosphatidylcholine acyltransferase activity colocalized with chloroplasts. Together, these data support a model in which PC participates in trafficking of newly synthesized acyl chains from plastids to the endoplasmic reticulum.  相似文献   

18.
Several synthetic polymers (hydroxyethyl starch, sodium carboxymethyl cellulose, polyvinylpyrrolidone) markedly improved the growth of three human lymphocyte cell lines [Roswell Park Memorial Institute (RPMI) 1348, 1788, and 8098]. Growth was stimulated when each of these polymers was added to RPMI 1640 medium supplemented with only 2% fetal bovine serum. Dextran T-40, T-70, and T-110 varied in their effect on the growth of these cell lines. Dextran T-250 and Haemaccel did not improve cell yields when partially substituted for the serum. The successful partial substitution of polymers for serum was specific for individual cell lines.  相似文献   

19.
Thiazole-4-carboxamide adenine dinucleotide (TAD) analogues T-2'-MeAD (1) and T-3'-MeAD (2) containing, respectively, a methyl group at the ribose 2'-C-, and 3'-C-position of the adenosine moiety, were prepared as potential selective human inosine monophosphate dehydrogenase (IMPDH) type II inhibitors. The synthesis of heterodinucleotides was carried out by CDI-catalyzed coupling reaction of unprotected 2'-C-methyl- or 3'-C-methyl-adenosine 5'-monophosphate with 2',3'-O-isopropylidene-tiazofurin 5'-monophosphate, and then deisopropylidenation. Biological evaluation of dinucleotides 1 and 2 as inhibitors of recombinant human IMPDH type I and type II resulted in a good activity. Inhibition of both isoenzymes by T-2'-MeAD and T-3'-MeAD was noncompetitive with respect to NAD substrate. Binding of T-3'-MeAD was comparable to that of parent compound TAD, while T-2'-MeAD proved to be a weaker inhibitor. However, no significant difference was found in inhibition of the IMPDH isoenzymes. T-2'-MeAD and T-3'-MeAD were found to inhibit the growth of K562 cells (IC(50) 30.7 and 65.0muM, respectively).  相似文献   

20.
Rats were treated with zinc chloride and with nickel acetate 2 weeks prior to immunization withE. coli bacteriophageT-1; antibody titers to bacteriophageT-1 were reduced 500–2600-fold in metal-treated rats compared to titers found in untreated control animals. Examination of the effect of metal treatment on lymphocyte blastogenesis revealed a significant reduction in the number of blast cells in the spleens of metal-treated rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号