首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 225 毫秒
1.
Abstract. 1. Larval rearing densities of Hemipyrellia ligurriens (Wiedemann) (Diptera: Calliphoridae) in standardized carrion were manipulated in order to investigate changes in life-history parameters in response to larval competition for food.
2. Competition was of the typical scramble type. Survivorship remained high at densities up to 32 larvae g liver-1 but decreased rapidly as larval density increased further.
3. Emergent adults were undersized with reduced fecundity and longevity. Variations in adult body size apparently reduced the effects of competition on larval mortality.
4. Females of dry weight corresponding to only 10.4% of the potential maximum emerged at the highest rearing densities of 128 larvae g liver-1. However, these females had a nearly four-fold increase in reproductive investment (per unit weight) when compared to the largest individuals.
5. The duration of larval development declined when competition was intense (i.e. at high larval densities).
6. The short adult life of H.ligurriens, combined with the unpredictability of larval habitat availability, may reduce the value of long-range dispersal so that females 'do better' by maintaining reproductive investment despite a concomitant decline in dispersal ability.  相似文献   

2.
Availability of adequate nutrition is among the most important factors affecting growth, development, and reproduction in animals. In holometabolous insects, diets and nutritional needs change between life stages, with larval storage, and adult feeding and reproduction being linked to one another. In several butterfly species, adult feeding is of fundamental importance to realize the full reproductive potential, primarily due to a prominent role of adult diet-derived carbohydrates. In contrast, the role of adult diet-derived amino acids is still under debate, despite the fact that butterflies were often found to preferentially feed on amino acid-rich substrates. Recently it was found that amino acids from adult income could compensate for adverse effects of larval food quality. In our study on the tropical butterfly Bicyclus anynana (Butler) (Lepidoptera: Nymphalidae), we used larval starvation to investigate corresponding effects on female reproductive output. Short periods of larval starvation prolonged development time and reduced larval survival, larval growth rate, pupal mass, and egg size. Regardless of the degree of larval starvation, access to amino acids in the adult diet increased egg size, whereas egg number remained largely unaffected. Thus, although there was some evidence for adult diet-derived amino acids being overall beneficial to reproduction, there was no indication that they can compensate for larval starvation.  相似文献   

3.
1. Maternal adult diet and body size influence the fecundity of a female and possibly the quality and the performance of her offspring via egg size or egg quality. In laboratory experiments, negative effects in the offspring generation have often been obscured by optimal rearing conditions.
2. To estimate these effects in the Yellow Dung Fly, Scathophaga stercoraria , how maternal body size and adult nutritional status affected her fecundity, longevity and egg size were first investigated.
3. Second, it was investigated how female age and adult nutritional experience, mediated through the effects of egg size or egg quality, influenced the performance of offspring at different larval densities.
4. Maternal size was less important than maternal adult feeding in increasing reproductive output. Without food restriction, large females had larger clutch sizes and higher oviposition rates, whereas under food restriction this advantage was reversed in favour of small females.
5. Offspring from mothers reared under nutritional stress experienced reduced fitness in terms of egg mortality and survival to adult emergence. If the offspring from low-quality eggs survived, the transmitted maternal food deficiency only affected adult male body size under stressful larval environments.
6. Smaller egg sizes due to maternal age only slightly affected the performance of the offspring under all larval conditions.  相似文献   

4.
Laboratory experiments were performed to quantify the combined effects of food abundance (low, high) and predation threat, imposed using a model fish (safe, risky) on fitness correlates (i.e. growth, time to emergence, adult body mass, fecundity, egg size) of the mayfly Baetis tricaudatus. These effects were determined by rearing larvae under different combinations of food abundance and predator threat. Fitness correlates were significantly affected by food abundance, predation threat or the interaction of these factors. High food abundance and the absence of predation threat significantly increased larval growth rates, adult body mass, fecundity, egg size, and decreased time to emergence. Long-term effects of predator threat and food abundance on fitness correlates of B. tricaudatus were compared to previously conducted short-term patch choice trials to test for concordance between short-term measures of patch choice and their potential longer-term fitness consequences. This comparison indicated that patches that were utilized the most were those that yielded the highest fitness benefits. These results suggest that behavioural costs of balancing mortality risk due to predation against food acquisition by B. tricaudatus can have strong fitness consequences.  相似文献   

5.
Food availability can vary widely for animals in nature and can have large effects on growth, reproduction and survival. While the consequences of food limitation for animals have been extensively studied, significant questions still remain including how ontogenetic variation in food availability contributes to lifetime reproductive success. We tested the effects of juvenile and adult food limitation on the lifetime reproductive success and lifespan of bridge spiders, Larinioides sclopetarius. Food availability was manipulated (low or high) over the entire juvenile and adult stage in a full‐factorial design and reproductive output and lifespan were measured. Juvenile and adult food limitation both reduced lifetime egg and hatchling production with effect sizes that were not significantly different from each other. Unlike some other arthropods, where juvenile food limitation reduces fecundity by reducing adult body size, body size was not affected by juvenile diet in bridge spiders. Clutch size was also significantly reduced by both juvenile and adult food limitation. The effect of adult diet on clutch size was stronger than that of juvenile diet. Juvenile and adult food limitation both extended total lifespan, and adult food limitation extended adult longevity (i.e. time from maturation to death). However, juvenile food limitation decreased adult longevity, in contrast to what would be predicted by dietary or caloric restriction. Compensatory feeding and growth are widely recognized mechanisms through which animals can ameliorate some of the negative effects of periods of food limitation. Yet our results combined with studies of a range of other species suggest that there may be lasting consequences of juvenile food limitation on lifetime reproductive success that cannot be compensated for by adult feeding in some species.  相似文献   

6.
1. This study investigated the effects of strong density dependence on larval growth, development, and survival of the mosquito Culex restuans (Theobald). It also tested the hypothesis that density reduction early in larval development could result in as many or more individuals surviving to adulthood (compensation or over‐compensation, respectively), or increased reproductive performance via rapid development and greater adult size. 2. In a field study of a natural population of C. restuans, the effects of a 75% lower density on percentage survivorship to adulthood, number of adults, development time, adult size, adult longevity, and size dependent fecundity were tested. 3. No evidence was found of compensation or over‐compensation in adult production, or of effects of lower density on percentage survivorship. Low density yielded significant increases in adult size, adult longevity, and size‐dependent fecundity, and a decrease in development time. 4. Estimated per‐capita population growth rate was significantly greater in the low‐density treatment than in the high‐density treatment. It is inferred that this difference was due to greater per‐capita resources, which increased female size and fecundity, and reduced development time. Greater per‐capita population growth could therefore result from early mortality of larvae, meaning that the hydra effect, which predicts greater equilibrium population with, as opposed to without, extrinsic mortality, may be possible for these mosquitoes.  相似文献   

7.
Despite a large body of knowledge about the evolution of life histories, we know little about how variable food availability during an individual's development affects its life history. We measured the effects of manipulating food levels during early and late larval development of the mosquito Aedes aegypti on its growth rate, life history and reproductive success. Switching from low to high food led to compensatory growth: individuals grew more rapidly during late larval development and emerged at a size close to that of mosquitoes consistently reared at high food. However, switching to high food had very little effect on longevity, and fecundity and reproductive success were considerably lower than in consistently well‐fed mosquitoes. Changing from high to low food led to adults with similar size as in consistently badly nourished mosquitoes, but even lower fecundity and reproductive success. A rapid response of growth to changing resources can thus have unexpected effects in later life and in lifetime reproductive success. More generally, our study emphasizes the importance of varying developmental conditions for the evolutionary pressures underlying life‐history evolution.  相似文献   

8.
Glyptotendipes paripes larvae were reared in wells of tissue culture plates, in groups of 2, 4, 8, 16, and 32 (representing densities of about 1,300, 2,600, 5,200, 10,400, and 20,800 larvae per m2, respectively). Larval groups were supplied with one of two concentrations (low or high) of food and larvae were individually observed to evaluate the effects of density on mortality, growth, development, behavior, and adult body size. Increased larval densities resulted in higher mortality, as well as slower larval growth and development. The distribution of developmental time became flatter at higher density, with a wider range of values, or even became bimodal. This was a consequence of the most rapidly developing individuals at higher densities emerging as adults sooner than the fastest developing individuals at lower densities, although overall mean developmental time was longer at higher densities. At higher densities, growth and development of smaller larvae were slowed, based on the relative difference in body length between competitors. When larger competitors emerged as adults or died, the growth of smaller larvae may have accelerated, resulting in increased variability of developmental times. The effect of larval density on adult body size was complex, with the largest body size found at the lowest density and a second peak of adult size at high-middle densities, with smaller adult body sizes found at low-middle, and high densities. Similarly, as with developmental time, the range of body size increased with increasing density. Examined food concentrations had no effect on larval mortality, but significantly affected developmental time, growth rate, and adult body size. At higher densities, larvae spent more time gathering food and were engaged in aggressive or antagonistic behaviors.  相似文献   

9.
When size‐dependent contests over resources influence reproductive success, the trade‐off between number and size of offspring depends on the frequency of contests. Under these circumstances, clutch size should decrease and offspring size should increase as contests become more frequent. We tested these predictions with the burying beetle Nicrophorus pustulatus through manipulation of rearing densities. Burying beetles reproduce on small vertebrate carcasses, a rare but high quality food source for the larvae. Large beetles are more likely to win contests over carcasses and gain exclusive access to a carcass. The winner of a contest kills eggs and larvae already present on a carcass. As a result of the rarity of carcasses, burying beetles are unlikely to breed more than once. As predicted, brood size of N. pustulatus decreased with increasing rearing density. Despite a negative correlation between brood size and larval mass, larval mass did not increase with increasing rearing density. This may be due to the special biology of N. pustulatus which can use snake eggs for reproduction. Potentially larger supply of resources and generally small population densities of N. pustulatus may weaken selection on body size and thus the correlation between brood size and larval mass. As size‐dependent constraints can limit reproductive phenotypes, we examined whether female size influenced reproductive phenotype. Small females produced larger broods with smaller, but more variable, offspring than large females. Mechanical constraints of egg size seem an unlikely explanation for the differences because burying beetles can compensate for small egg size through parental care. Energetic constraints may impact small females because body mass and brood size of small females decreased with increasing density. Yet, at all density levels small females produced larger, not smaller, broods than large females. The larger and more variable broods of small females seem to be in agreement with a bet‐hedging strategy.  相似文献   

10.
1. Effects of larval reserves and nutrients received as adults on fecundity and lifespan in female Danaus plexippus (the Monarch Butterfly) were measured to determine the relative importance of different sources of nutrients for reproduction and somatic maintenance.
2. Egg-laying lifespan was correlated with female size but not with the amount of male-derived nutrients or adult food concentration.
3. Lifetime fecundity was higher when females received a large first spermatophore, but was not affected by female size when lifespan was controlled or by adult food concentration.
4. At the end of their lives, females contained unlaid eggs and retained, on average, 88% of their initial mass. This proportion was unchanged in two years, although mean egg-laying lifespan varied from 22·5 to 28·7 days.
5. Egg mass decreased over the female lifespan, and was correlated with female size.
6. These results suggest that larval reserves are more important for somatic maintenance than adult income, but that the protein-rich nutrients received from males contribute to egg production. This supports theoretical predictions and empirical studies of other Lepidoptera showing that larval reserves are less likely to affect fecundity when the adult income can contribute substantially to egg production.  相似文献   

11.
The amount of food resources available to upper‐level consumers can show marked variations in time and space, potentially resulting in food limitation. The availability of food resources during reproduction is a key factor modulating variation in reproductive success and life‐history tradeoffs, including patterns of resource allocation to reproduction versus self‐maintenance, ultimately impacting on population dynamics. Food provisioning experiments constitute a popular approach to assess the importance of food limitation for vertebrate reproduction. In this study of a mesopredatory avian species, the lesser kestrel Falco naumanni, we provided extra food to breeding individuals from egg laying to early nestling rearing. Extra food did not significantly affect adult body condition or oxidative status. However, it increased the allocation of resources to flight feathers moult and induced females to lay heavier eggs. Concomitantly, it alleviated the costs of laying heavier eggs for females in poor body condition, and reduced their chances of nest desertion (implying complete reproductive failure). Extra food provisioning improved early nestling growth (body mass and feather development). Moreover, extra food significantly reduced the negative effects of ectoparasites on nestling body mass, while fostering forearm (a flight apparatus trait) growth among highly parasitized nestlings. Our results indicate that lesser kestrels invested the extra food mainly to improve current reproduction, suggesting that population growth in this species can be limited by food availability during the breeding season. In addition, extra food provisioning reduced the costs of the moult–breeding overlap and affected early growth tradeoffs by mitigating detrimental ectoparasite effects on growth and enhancing development of the flight apparatus with high levels of parasitism. Importantly, our findings suggest that maternal condition is a major trait modulating the benefits of extra food to reproduction, whereby such benefits mostly accrue to low‐quality females with poor body condition.  相似文献   

12.
Within-species variation in animal body size predicts major differences in life history, for example, in reproductive development, fecundity, and even longevity. Purely from an energetic perspective, large size could entail larger energy reserves, fuelling different life functions, such as reproduction and survival (the “energy reserve” hypothesis). Conversely, larger body size could demand more energy for maintenance, and larger individuals might do worse in reproduction and survival under resource shortage (the “energy demand” hypothesis). Disentangling these alternative hypotheses is difficult because large size often correlates with better resource availability during growth, which could mask direct effects of body size on fitness traits. Here, we used experimental body size manipulation in the freshwater cnidarian Hydra oligactis, coupled with manipulation of resource (food) availability to separate direct effects of body size from resource availability on fitness traits (sexual development time, fecundity, and survival). We found significant interaction between body size and food availability in sexual development time in both males and females, such that large individuals responded less strongly to variation in resource availability. These results are consistent with an energy reserve effect of large size in Hydra. Surprisingly, the response was different in males and females: small and starved females delayed their reproduction, while small and starved males developed reproductive organs faster. In case of fecundity and survival, both size and food availability had significant effects, but we detected no interaction between them. Our observations suggest that in Hydra, small individuals are sensitive to fluctuations in resource availability, but these small individuals are able to adjust their reproductive development to maintain fitness.  相似文献   

13.
The zoophytophagous feeding habits of larvae and adults of the rove beetle, Philonthus quisquiliarius (Gyllenhal) (Coleoptera: Staphylinidae), are reported for the first time. This study evaluates the effects of different feeding regimes on its growth and reproductive performance (i.e., larval growth, adult weight gain, consumption, fecundity and fertility) and digestive physiology. Larvae presented similar growth rates when fed on living animal or on green plant material for 48h. However, higher consumption rates and lower efficiencies of conversion of digested matter to body mass were obtained when leaves were consumed. Adults presented also positive weight gains regardless of the food consumed (plant or animal material). Interestingly, the highest weight gain rate and efficiency of digestion resulted when adults fed on a rearing diet containing nutrients from both animals and plants. Moreover, we have found negative effects upon P. quisquiliarius fecundity and fertility when supplemental plant nutrients were removed from the optimum rearing diet. Physiological adaptations to allow trophic switching between predation and phytophagy have been found, such as the higher ratio of α-amylase activity to protease activity to deal with the inverted protein-carbohydrate ratio of plant versus animal tissues. Furthermore, this species has an arsenal of digestive proteases whose activity is affected by the type of diet ingested. All together, our results suggest that P. quisquiliarius needs certain nutrients, which are obtained only from plant material. This knowledge will help to understand the complex trophic interactions that occur in agroecosystems.  相似文献   

14.
1. We used a laboratory experiment to determine effects of a predator (other than straightforward prey consumption) and food availability, during the larval stage, on adult size, age at emergence and fecundity of Chironomus tentans. 2. Predator presence and decreased food availability resulted in reduced adult emergence. 3. Predator presence and food availability resulted in smaller size and greater age at emergence of male and female chironomids. There were no significant interactions between effects of predator presence and food availability. 4. Predator presence had no significant effect on fecundity. 5. Smaller size and greater age at emergence can have important implications for adult survival, size and age at first reproduction and, thus, intrinsic rate of population growth.  相似文献   

15.
Boggs CL  Freeman KD 《Oecologia》2005,144(3):353-361
Allocation of larval food resources affects adult morphology and fitness in holometabolous insects. Here we explore the effects on adult morphology and female fitness of larval semi-starvation in the butterfly Speyeria mormonia. Using a split-brood design, food intake was reduced by approximately half during the last half of the last larval instar. Body mass and forewing length of resulting adults were smaller than those of control animals. Feeding treatment significantly altered the allometric relationship between mass and wing length for females but not males, such that body mass increased more steeply with wing length in stressed insects as compared to control insects. This may result in changes in female flight performance and cost. With regard to adult life history traits, male feeding treatment or mating number had no effect on female fecundity or survival, in agreement with expectations for this species. Potential fecundity decreased with decreasing body mass and relative fat content, but there was no independent effect of larval feeding treatment. Realized fecundity decreased with decreasing adult survival, and was not affected by body mass or larval feeding treatment. Adult survival was lower in insects subjected to larval semi-starvation, with no effect of body mass. In contrast, previous laboratory studies on adult nectar restriction showed that adult survival was not affected by such stress, whereas fecundity was reduced in direct 11 proportion to the reduction of adult food. We thus see a direct impact of larval dietary restriction on survival, whereas fecundity is affected by adult dietary restriction, a pattern reminiscent of a survival/reproduction trade-off, but across a developmental boundary. The data, in combination with previous work, thus provide a picture of the intra-specific response of a suite of traits to ecological stress.  相似文献   

16.
【目的】本研究旨在了解桑螟Diaphania pyloalis幼虫不同饲养密度对其生长发育和繁殖的影响。【方法】本研究测定了室内同一条件下5个幼虫密度(130, 650, 1 300, 1 950和2 600头/m2)下桑螟生长发育和繁殖指标,包括发育历期、幼虫存活率、化蛹率、成虫羽化率、蛹重、产卵期、单雌产卵量等。【结果】幼虫密度对桑螟的生长发育和繁殖均产生不同程度影响,幼虫密度偏低或偏高都不利于桑螟生长发育和繁殖。其中以1 300和1 950头/m2 2种幼虫密度下的桑螟幼虫生长发育和成虫繁殖状态均最佳且两密度下各项指标无明显差异,1 300头/m2密度下,桑螟的幼虫历期、蛹历期和成虫历期分别为11.32, 6.33和5.31 d; 1 950头/m2密度下,桑螟的幼虫历期、蛹历期和成虫历期分别为11.50, 6.00和5.47 d。1 300头/m2幼虫密度下,桑螟化蛹率、成虫羽化率和幼虫存活率分别为86.67%, 100%和86.67%, 1 950头/m2<...  相似文献   

17.
Field studies were conducted to clarify whether variation in food availability among habitats influences population density, and whether population density has a negative effect on foraging success in the orb-web spider, Nephila clavata. Lifetime food consumption per individual (i.e., foraging success) strongly correlated with mean body size of adult females and mean fecundity in populations. Also, there was a positive correlation between foraging success and population density. Since foraging success reflected potential prey availability in the habitat, food resource appeared to be a limiting factor for populations in this spider. Mean fecundity per individual correlated with population density of the following year, suggesting that decreased reproduction is a major component of food limitation on population density. Consistent defferences in mean body size between particular sites were observed over years, while such difference was less obvious in density. Thus, ranking of food abundance among habitats seems to be predictable between years. A field experiment revealed that an artificial increase in population density had no negative effect on the feeding rate of individuals, suggesting that intraspecific competition for food is not important in this species.  相似文献   

18.
High population density and nutrition restriction can lead to phase variation in morphology and development, and subsequently induce changes in the reaction norms of adult flight in migrant insects. However, response of migratory propensity to such stress in Endopterygote insects, especially in several species of Lepidoptera, remains unclear. In this study, larval and adult developmental responses to crowding and food stress were investigated in the migratory moth, Cnaphalocrocis medinalis (Guenée). A high larval rearing density significantly reduced pupal mass, survival rate and female fecundity. Larvae developed rapidly under crowding conditions, and time to pupation was 2 days earlier than individuals reared alone. By contrast, short‐term starvation and associated compensatory growth prolonged larval duration by 3–4 days and pupal duration by 1–2 days. It also reduced the pupal mass, but showed no detectable effects on female reproductive performance. Both sexes had similar development strategies; however, females seemed to be more sensitive to crowding and food shortage than males. A positive effect was expected if such stress factors acted as cues that triggering a behavioural or physiological shift to a distinct migratory phase. To the contrary, we found no proof that crowding and starvation caused maturation delay in female reproductive development. All treatments did not significantly increase female pre‐oviposition period. Therefore, we concluded that life developmental responses to crowding and food shortage in this species were different. Adult migration propensity was not enhanced under such stress conditions during the larval phase.  相似文献   

19.
Environmental influences on the gametic investment of yellow dung fly males   总被引:2,自引:2,他引:0  
The energetic investment per spermatozoon and in spermatogenesis is central to a male's reproductive strategy. Relatively little, however, is known about environmental influences on variation in male allocation decisions and associated trade-offs. Plasticity in sperm length and testis size in response to variable food and temperature conditions either before or after adult eclosion was investigated in Scathophaga stercoraria, a classic model organism for sperm competition. Both measures showed interesting and clear environmental effects and also a heritable component. Testis length, and thus presumably sperm production, showed a hypoallometric (b < 1), but non-linear increase with body size, indicating that the allometric relationship changed with size. Like body size, testis length decreased with increasing developmental temperatures, but also showed a complex cubic relationship with adult temperatures. In contrast, sperm length increased or showed a negative quadratic relationship with increasing temperatures. The increase of within-male variation in sperm length with increasing developmental temperature and decreasing adult food indicates that some of our treatments were stressful. Nevertheless, there was no evidence of a trade-off between testis size and sperm length. The missing effect of adult or larval food availability on testis and sperm length, despite strong effects of larval food on body size, suggests that investment into reproduction is less sensitive to food restriction than investment into growth.  相似文献   

20.
Abstract 1. How populations respond to environmental change depends, in part, on the connection between environmental variance during early life stages and its effect on subsequent life‐history traits. For example, environmental variation during the larval stage can influence the life histories of organisms with complex life cycles by altering the amount of time spent in each stage of the life cycle as well as by altering allocation to life‐history traits during metamorphosis. 2. The effects of larval energetic resources on developmental timing, adult mass, fecundity, mating success, and allocation to adult body structures (thorax, abdomen, wings) were examined in an aquatic caddisfly (Agrypnia deflata Milne, Trichoptera: Phryganeidae). Larval energetic reserves were manipulated by removing larval cases just prior to pupation. In the first experiment, cases of all individuals were removed just prior to pupation; experimental individuals were required to build a new case whereas control individuals were allowed to re‐enter their case without building. In the second experiment, energy differences were maximised between the two treatments by supplementing the larval diet of the control group and removing cases and not supplementing the diet of the experimental group. 3. Male and female development time, adult mass, and female fecundity were not influenced by case removal or diet supplementation. In contrast, allocation to adult body parts indicated a trade‐off between abdominal and thoracic mass among case‐removal females, suggesting that, under larval resource stress, females adjust resource allocation during metamorphosis to alleviate potential negative impacts on clutch size. In addition, latency to copulation increased when cases were removed, indicating larval resource stress could influence male mating success. 4. This study suggests that, under larval energetic stress, the negative impacts on female reproduction might be mitigated by re‐allocating resources during metamorphosis, whereas male allocation strategies might not be as flexible as female strategies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号