首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Triolein particles stabilized by a phosphatidylcholine monolayer were used to study the lipoprotein lipase (LpL) reaction. They were prepared in two different sizes and with triolein and phosphatidylcholine in the molar ratios of 0.9-1.2 : 1 (small particles) and 8-17 : 1 (large particles). The rate of hydrolysis by LpL of phosphatidylcholine on the surface of both lipid particles was only 1/20 as much as that of triolein, even if it was activated to the maximum by apolipoprotein C-II (apoC-II). Thus, the phospholipase activity of LpL was low enough to measure the initial rate of hydrolysis of triolein without causing a gross change of the surface of the lipid particle. When the hydrolysis of triolein by LpL was monitored, fatty acid was released at a constant rate until all of the triolein molecules were hydrolyzed. The enzyme required 220 +/- 17 and 66 +/- 9 nM apoC-II for its half-maximal activity (Km (apoC-II] with small and large particles as a substrate (1.15 mM triolein for small and 2.13 mM triolein for large particles), respectively, using various concentrations of LpL. The Km(apoC-II) values for these two substrates became similar when LpL activity was analyzed with respect to the density of apoC-II on the phosphatidylcholine monolayer at the surface of the particles (bound apoC-II/phosphatidylcholine). The concentration of substrate particles did not affect the Km(apoC-II) values. The presence of an adequate amount of apoC-II increased the maximal activity of LpL (Vmax(triolein)) from 0.48 +/- 0.21 to 6.81 +/- 0.45 and from 0.32 +/- 0.04 to 7.13 +/- 0.64 mmol/h/mg with a slight decrease in the apparent Michaelis constant (Km(triolein)) for small (from 90 to 54 microM triolein) and large (from 1.00 to 0.65 mM triolein) particles, respectively. Although the apparent Km for triolein in large particles was about ten times greater than that in small particles, the values became similar when they were corrected for the concentration of phosphatidylcholine (50-100 microM phosphatidylcholine), which corresponded to the surface area of the substrate particles. It was suggested that bound apoC-II molecules were transferred relatively slowly to other lipid particles while LpL molecules moved rapidly among the lipid particles.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
The phospholipase A1 activity of lipoprotein lipase (LpL) was determined with monomolecular phospholipid films. Rates of phospholipid hydrolysis were dependent on apolipoprotein C-II (the activator protein for LpL) phospholipid fatty acyl composition, and lipid-packing density. In sphingomyelin: cholesterol (2:1, molar) monolayers containing 5 mol % disaturated phosphatidylcholines (PC) and at a surface pressure of 22 mNm-1, rates of LpL hydrolysis of diC14:0PC, diC16:0PC, and diC18:0PC were 74, 207, and 65 nmol h-1 mg LpL-1, respectively. At 22 mNm-1, phospholipids containing unsaturated fatty acyl chains were hydrolyzed at rates 5-10 times greater than saturated lipids. At higher lipid packing densities, the difference in hydrolysis rates between saturated and unsaturated lipids was less apparent. Comparison of molecular areas indicate no simple dependency between the rate of LpL catalysis and phospholipid fatty acyl chain length and saturation/unsaturation.  相似文献   

3.
Apolipoprotein C-II (apoC-II) is an exchangeable plasma apolipoprotein and an endogenous activator of lipoprotein lipase (LpL). Genetic deficiencies of apoC-II and overexpression of apoC-II in transgenic mice are both associated with severe hyperlipidemia, indicating a complex role for apoC-II in the regulation of blood lipid levels. ApoC-II exerts no effect on the activity of LpL for soluble substrates, suggesting that activation occurs via the formation of a lipid-bound complex. We have synthesized a peptide corresponding to amino acid residues 39-62 of mature human apoC-II. This peptide does not bind to model lipid surfaces but retains the ability to activate LpL. Conjugation of the fluorophore 7-nitrobenz-2-oxa-1,3-diazole (NBD) to the N-terminal alpha-amino group of apoC-II39-62 facilitated determination of the affinity of the peptide for LpL using fluorescence anisotropy measurements. The dissociation constant describing this interaction was 0.23 microM, and was unchanged when LpL was lipid-bound. Competitive binding studies showed that apoC-II39-62 and full-length apoC-II exhibited the same affinity for LpL in aqueous solution, whereas the affinity for full-length apoC-II was increased at least 1 order of magnitude in the presence of lipid. We suggest that while the binding of apoC-II to the lipid surface promotes the formation of a high-affinity complex of apoC-II and LpL, activation occurs via direct helix-helix interactions between apoC-II39-62 and the loop covering the active site of LpL.  相似文献   

4.
The lipoprotein lipase-catalyzed hydrolysis of diacylphosphatidylcholines (PC) in mixed micelles of Triton X-100/PC was studied as a function of temperature in the presence and absence of apolipoprotein C-II (apo-C-II), the activator protein for lipoprotein lipase. Dilauroyl-, dimyristoyl-, dipalmitoyl-, and distearoyl-phosphatidylcholine (di-C12-PC, di-C14-PC, di-C16-PC, and di-C18-PC, respectively) were used as substrates. No systematic relationship between substrate fatty acyl chain length and either the rates of the activation energies for hydrolysis in the presence or absence of apo-C-II was observed. However, there was a linear relationship between fatty acyl chain length and both the logarithm of the activation factor (the ratio of enzyme activity with apo-C-II to that without apo-C-II) and the difference in activation energy in the presence and absence of apo-C-II. These relationships were not the result of an alteration in the physical form of the substrate, since a mixture of di-C14-PC and di-C16-PC gave activation factors for each PC which were the same as those obtained for each individual lipid. From the temperature dependence of the activation factor, thermodynamic functions of the apo-C-II-induced change in the reaction pathway were calculated. The free energy of activation decreased linearly with increasing chain length as the result of a linear increase in activation entropy which more than offset the unfavorable increase in activation enthalpy. We propose that the apo-C-II-mediated increase in the rate of the lipoprotein lipase-catalyzed hydrolysis of phosphatidylcholine is associated with transfer of a fatty acyl chain of the substrate or product to a more hydrophobic environment within the transition state complex.  相似文献   

5.
To elucidate the mechanism by which apolipoprotein C-II (apoC-II) enhances the activity of lipoprotein lipase (LpL), discoidal phospholipid complexes were prepared with apoC-III and di[(14)C]palmitoyl phosphatidylcholine (DPPC) and containing various amounts of apoC-II. The rate of DPPC hydrolysis catalyzed by purified bovine milk LpL was determined on the isolated complexes. The rate of hydrolysis was optimal at pH 8.0. Analysis of enzyme kinetic data over a range of phospholipid concentrations revealed that the major effect of apoC-II was to increase the maximal velocity (V(max)) some 50-fold with a limited effect on the Michaelis constant (K(m)). V(max) of the apoC-III complex containing no apoC-II was 9.2 nmol/min per mg LpL vs. 482 nmol/min per mg LpL for the complex containing only apoC-II. The effect of apoC-II on enzyme kinetic parameters for LpL-catalyzed hydrolysis of DPPC complexes was compared to that on the parameters for hydrolysis of DPPC and trioleoylglycerol incorporated into guinea pig very low density lipoproteins (VLDL(p)) which lack the equivalent of human apoC-II. Tri[(3)H]oleoylglycerol-labeled VLDL(p) were obtained by perfusion of guinea pig liver with [(3)H]oleic acid. Di[(14)C]palmitoyl phosphatidylcholine was incorporated into the VLDL(p) by incubation of VLDL(p) with sonicated vesicles of di[(14)C]palmitoyl phosphatidylcholine and purified bovine liver phosphatidylcholine exchange protein. The rates of LpL-catalyzed hydrolysis of trioleoylglycerol and DPPC were determined at pH 7.4 and 8.5 in the presence and absence of apoC-II. In the presence of apoC-II, the V(max) for DPPC hydrolysis in guinea pig VLDL(p) increased at both pH 7.4 and pH 8.5 (2.4- and 3.2-fold, respectively); the value of K(m) did not change at either pH (0.23 mm). On the other hand, the kinetic value of K(m) for triacylglycerol hydrolysis in the presence of apoC-II decreased at both pH 7.4 (3.05 vs. 0.54 mm) and pH 8.5 (2.73 vs. 0.62 mm). These kinetic studies suggest that apoC-II enhances phospholipid hydrolysis by LpL in apoC-III-DPPC discoidal complexes and VLDL(p) mainly by increasing the V(max) of the enzyme for the substrates, whereas the activator protein primarily causes a decrease in the apparent K(m) for triacylglycerol hydrolysis.-Shirai, K., T. J. Fitzharris, M. Shinomiya, H. G. Muntz, J. A. K. Harmony, R. L. Jackson and D. M. Quinn. Lipoprotein lipase-catalyzed hydrolysis of phosphatidylcholine of guinea pig very low density lipoproteins and discoidal complexes of phospholipid and apolipoprotein: effect of apolipoprotein C-II on the catalytic mechanism.  相似文献   

6.
The effect of apolipoprotein C-II (apoC-II) and a synthetic fragment of apoC-II corresponding to residues 56-79 on the lipoprotein lipase (LpL) catalyzed hydrolysis of trioleoylglycerol in a monolayer of egg phosphatidylcholine and of dipalmitoylphosphatidylcholine vesicles was examined. Synthetic peptide 56-79, which does not associate with lipid, did not activate LpL at surface pressures greater than 30 mN/m; apoC-II is active up to 34 mN/m. However, acylation of the NH2-terminus of peptide 56-79 with palmitoyl chloride gave nearly identical LpL activating properties as compared to apoC-II. We conclude that at high surface pressures the lipid-binding region of apoC-II (residues 44-55) plays an essential role in LpL activation.  相似文献   

7.
《Bioorganic chemistry》1987,15(2):141-151
Apolipoprotein C-II (apoC-II), a protein of 79 amino acid residues present in very low density lipoproteins, enhances the lipoprotein lipase (LpL)-catalyzed hydrolysis of triacylglycerols transported in plasma triglyceride-rich lipoproteins. To elucidate the structure-activity relationship of this activator protein, the complete amino acid sequence of apoC-II has been synthesized by the solid-phase method with Boc-amino acid derivatives and phenylacetamidomethyl resin. The crude peptide was purified to homogeneity in 10% yield by a combination of ion-exchange and preparative high-performance liquid chromatography (HPLC). The purified peptide had the expected amino-terminal sequence and amino acid composition. Synthetic and native apoC-II were indistinguishable by cochromatography on analytical HPLC, peptide mapping of tryptic digest, radioimmunoassay, and activation of LpL with both artificial and lipoprotein substrates.  相似文献   

8.
Mixed acyl chain phosphatidylcholine molecules in Triton N-101 micelles were employed as substrates for lipoprotein lipase to test which substrate acyl chain has the greatest effect on activation of the enzyme by apolipoprotein C-II. The phospholipase A1 activity of lipoprotein lipase was measured by pH-stat. The activation factor (lipoprotein lipase activity plus apolipoprotein C-II/activity minus apolipoprotein C-II) increased monotonically with apolipoprotein C-II concentration up to 1 microM apolipoprotein C-II at an enzyme concentration of 0.01 microM. The maximal activation factor for phosphatidylcholine substrate molecules with sn-2 acyl chain lengths of 14 averages 14.8. By contrast, for sn-2 acyl chain lengths of 16 the activation factor was 29.2. Varying the sn-1 acyl chain length had no significant effect on the activation factor. The chain-length dependence of the activation factor is similar with the apolipoprotein C-II peptide fragment comprising residues 56-79, which does not include the lipid-binding region of apolipoprotein C-II. These data are consistent with a model for activation of lipoprotein lipase in which residues 56-79 bind to lipoprotein lipase and alter the interaction of the sn-2 acyl chain of the phosphatidylcholine (PC) substrate or the lysoPC product within the activated state complex.  相似文献   

9.
Lipoprotein lipase (LpL) activity is enhanced by apolipoprotein C-II (apoC-II), a 79 amino acid residue peptide. The minimal apoC-II sequence required for activation of LpL resides between residues 56-79. To determine the possible role of an acyl-apoC-II intermediate involving Ser61 in enzyme catalysis, a synthetic peptide of apoC-II containing residues 56-79 was synthesized and compared to the corresponding peptide with serine at position 61 being substituted with glycine. With two different LpL assay systems, both peptides enhanced enzyme activity. Since glycine does not contain a hydroxyl group, these results rule out the possibility that an acyl-apoC-II intermediate with Ser61 is required for enzyme activation.  相似文献   

10.
L R McLean  R L Jackson 《Biochemistry》1985,24(15):4196-4201
The interaction of lipoprotein lipase (LpL) and its activator protein, apolipoprotein C-II (apoC-II), with a nonhydrolyzable phosphatidylcholine, 1,2-ditetradecyl-rac-glycero-3-phosphocholine (C14-ether-PC), was studied by fluorescence spectroscopy. A complex of 320 molecules of C14-ether-PC per LpL was isolated by density gradient ultracentrifugation in KBr. The intrinsic tryptophan fluorescence emission spectrum of LpL was shifted from 336 nm in the absence of lipid to 330 nm in the LpL-lipid complex; the shift was associated with a 40% increase in fluorescence intensity. Addition of C14-ether-PC vesicles to apoC-II caused a 2.5-fold increase in intrinsic tryptophan fluorescence and a shift in emission maximum from 340 to 317 nm. LpL and apoC-II/C14-ether-PC stoichiometries and binding constants were determined by measuring the increase in the intrinsic tryptophan fluorescence as a function of lipid and protein concentrations; for LpL the rate and magnitude of the fluorescence increases were relatively independent of temperature in the range 4-37 degrees C. A stoichiometry of 270 PC per LpL for the LpL-lipid complex compares favorably with the value obtained in the isolated complex. The dissociation constant (Kd) of the complex is 4.3 X 10(-8) M. For apoC-II, the stoichiometry of the complex is 18 PC per apoprotein, and the Kd is 3.0 X 10(-6) M. These data suggest that LpL binds more strongly than apoC-II to phosphatidylcholine interfaces.  相似文献   

11.
The activity of two purified lysolecithin-hydrolyzing enzymes on homologous series of synthetic lecithins containing two identical fatty acyl chains and of 1-acyl-lysolecithins has been measured as a function of substrate concentration. In general, enzymatic activity toward lecithins decreased with increasing chain length. Maximal hydrolysis rates for the lysolecithin series were measured with 1-dodecanoyllysolecithin. In this series increased affinities for substrates with increasing acyl-chain length was noticed. In the substrate concentration versus enzymatic velocity curves no breaks were observed at the critical micelle concentration of the various substrates. The initial site of attack during hydrolysis of short-chain lecithins was determined using 1-octanoyl-2pentanoyl-lecithin, 1-hexanoyl-2-hexyllecithin and 1 -hexyl-2-hexanoyllecithin. Both enzymes exhibited a pronounced preference for hydrolysis of the acyl ester bond at the 1-position. Especially the enzyme from beef pancreas seems to be suitable for the enzymatic preparation of 2-acyl lysolecithins from the corresponding short-chain lecithins.  相似文献   

12.
Functional similarities between colipase and apolipoprotein C-II (apoC-II) in activating lipases suggest that apoC-II may, like colipase, preferentially interact with interfaces containing the substrates and products of lipolysis. To test this hypothesis, the binding of a peptide comprising residues of the cofactor implicated in lipid binding, apolipoprotein C-II(13-56), and, to a lesser extent, apoC-II, to monomolecular lipid films was characterized. The lipids used were a diacylphosphatidylcholine, a diacylglycerol, and a fatty acid. The peptide had an affinity for the argon-buffer interface and for all lipids consistent with a dissociation constant of <10 nM. Changes in surface pressure accompanying peptide binding were comparable to those reported for native apoC-II and indicate peptide miscibility with each of the lipids tested. The capacity of the surfaces to accommodate the peptide decreased with increasing lipid concentration in the interface, indicating competition between lipid and peptide for interfacial occupancy. At a lipid acyl chain density of 470 pmol/cm2, or 35 A2 per acyl chain, a lower limit of peptide adsorption was reached with all lipids. The limiting level of adsorption to phosphatidylcholine was only 1 pmol/cm2 compared with 6;-7 pmol/cm2 for fatty acid and diacylglycerol. Similar results were obtained with apoC-II.The difference in the extent of protein adsorption to lipid classes suggests that the distribution of apoC-II among lipoproteins will depend on their lipid composition and surface pressure.  相似文献   

13.
The fatty acid alcohol ester-synthesizing activity of lipoprotein lipase (LPL) was characterized using bovine milk LPL. Synthesizing activities were determined in an aqueous medium using oleic acid or trioleylglycerol as the acyl donor and equimolar amounts of long-chain alcohols as the acyl acceptor. When oleic acid and hexadecanol emulsified with gum arabic were incubated with LPL, palmityl oleate was synthesized, in a time- and dose-dependent manner. Apo-very low density lipoprotein (apoVLDL) stimulated LPL-catalyzed palmityl oleate synthesis. The apparent equilibrium ratio of fatty acid alcohol ester/oleic acid was estimated using a high concentration of LPL and a long (20 h) incubation period. The equilibrium ratio was affected by the incubation pH and the alcohol chain length. When the incubation pH was below pH 7.0 and long chain fatty acyl alcohols were used as substrates, the fatty acid alcohol ester/free fatty acid equilibrium ratio favored ester formation, with an apparent equilibrium ratio of fatty acid alcohol ester/fatty acid of about 0.9/0.1. The equilibrium ratio decreased sharply at alkaline pH (above pH 8.0). The ratio also decreased when fatty alcohols with acyl chains shorter than dodecanol were used. When a trioleoylglycerol/fatty acyl alcohol emulsion was incubated with LPL, fatty acid alcohol esters were synthesized in a dose- and time-dependent fashion. Fatty acid alcohol esters were easily synthesized from trioleoylglycerol when fatty alcohols with acyl chains longer than dodecanol were used, but synthesis was decreased with fatty alcohols with acyl chain lengths shorter than decanol, and little synthesizing activity was detected with shorter-chain fatty alcohols such as butanol or ethanol.  相似文献   

14.
To separate the interfacial and catalytic reactions of lecithin cholesterol acyltransferase (LCAT), we carried out the first investigation of its reaction with water-soluble substrates. We used a continuous spectrophotometric assay for the hydrolysis of p-nitrophenyl esters of fatty acids to determine the chain length specificity of the enzyme and its modulation by anions and apolipoproteins in solution. By chemical modification of amino acid residues, we demonstrated that the active site serine and histidine residues participate in both the esterase and acyltransferase reactions but that cysteine residues are not involved in the esterase reaction. The kinetics of the LCAT reaction were measured for p-nitrophenyl esters of fatty acids having up to six (C-6) carbons in length. With increasing acyl chain lengths the optimal reaction rates occurred for the C-5 ester and Km and Vmax values decreased progressively, while the specificity constant, kcat/Km, increased. The same series of substrates and longer chain esters, up to C-16, were also reacted with LCAT in the presence of Triton X-100 in order to determine the general trends for the reaction rates as a function of chain length. The observed trends for the reaction rates and kinetic constants were attributed to an increasing binding affinity for the longer acyl chains in a large hydrophobic cavity, with a concomitant restriction in the motions of the substrates and a decreased probability for the correct positioning of the ester bond for hydrolysis, resulting in a decreased substrate turnover. Since the kinetics of the interfacial reactions of LCAT are very sensitive to the presence of anions and apolipoproteins, in particular apoA-I, we investigated the effects of these modulators on the reactions of LCAT in solution. Unlike the interfacial reactions, the hydrolysis of the p-nitrophenyl esters was not affected by 0.1 M concentrations of anions nor by water-soluble apolipoproteins (apoA-I, apoA-II, and apoCs). Thus the regulation of the activity of LCAT is mediated largely by the interfaces on which it acts.  相似文献   

15.
This study was designed to describe changes in plasma fatty acyl moieties during a 2-h endurance exercise. Sixteen endurance-trained subjects cycled 2 h at 55% of maximal power output and capillary blood was sampled every 15 min. Fourier-transform infrared (FT-IR) spectrometry was used to determine correlated changes between plasma fatty acyl moieties (FAM) structural characteristics and metabolic parameters (oxygen consumption, respiratory exchange ratio, glucose, lactate, TG, glycerol, and albumin). Opposite changes were found between carbohydrate and fatty acid metabolism during the second hour of exercise, i.e., a decrease of glucose and lactate concentrations while albumin, FAM, and TG increased. For fatty acid metabolism, FAM and TG did not showed the same pattern of changes at the end of exercise, i.e., TG remained constant after 90 min while FAM continued to increase. This late FAM concentration increase was correlated to the changes in albumin concentration and the nu C=C-H/nu(as) CH3 and nu(as) CH2/nu(as) CH3 ratios. These ratios clearly showed that FAM unsaturation increased while chain length decreased. It was hypothesized that PUFA from TG adipose lipolysis ketone bodies (beta-hydroxybutyric acid) from liver may have been released in higher amounts as glycogen stores became depleted after 90 min of exercise.  相似文献   

16.
The fluorescent phospholipid 1-acyl-2-[6-[(7-nitro-2,1,3benzoxadiazol-4-yl)amino]-caproyl]phosphatidylcholine (C6-NBD-PC) was used as a substrate for porcine pancreatic phospholipase A2 (PA2) and bovine milk lipoprotein lipase (LpL). Hydrolysis of C6-NBD-PC by either enzyme resulted in a greater than 50-fold fluorescence enhancement with no shift in the emission maximum at 540 nm; Ca++ was required for PA2 catalysis. Identification of the products of hydrolysis showed cleavage at the sn-1 and sn-2 positions for LpL and PA2, respectively. For PA2, but not for LpL, there was a marked enhancement of enzyme catalysis at lipid concentrations above the critical micellar concentration of the lipid. Furthermore, apolipoprotein C-II, the activator protein of LpL for long-chain fatty acyl substrates, did not enhance the rate of catalysis of the water-soluble fluorescent phospholipid for either enzyme.  相似文献   

17.
The significance of the lipid matrix in the reaction of liposomal antigen, antibody and complement (Ag-Ab-C) was analyzed using purified anti-glactocerebroside antibody and synthetic lipids and the following results were obtained. 1. For the optimal Ag-Ab-C reaction it was necesary that galactocerebroside (galxCMH) and lecithin molecules were well dispersed by virtue of cholesterol (Chol) and that the molar ratio of cholesterol to the sum of galactocerebroside and lecithin was more than one. 2. The Ag-Ab-C reactivity changed depending upon the chain length of lecithin, and the maximal reaction was observed in the case of dilauroylphosphatidylcholine. When the fatty acyl chain of lecithin was either shorter or longer than that of dilaurosylphosphatidylcholine, the reactivity was reduced. 3. The Ag-Ab-C reactivity was increased by elongation of the fatty acyl chain of galactocerebroside and an abrupt change was found to be around the carbon number 8 to 10 of the fatty acyl chain. 4. The Ag-Ab-C reactivity was elevated by the increase in unsaturation of fatty acyl moiety. 5. There is a tendency that an increase in the charge of the lipid matrix leads to the reduction of the Ag-Ab-C reactivity. 6. The results suggest that the physicochemical properties of lipids and especially the lipid-lipid interaction in the hydrophobic region of the lipid matrix play an important role in the Ag-Ab-C reaction.  相似文献   

18.
The human plasma apoproteins apoA-I and apoC-I enhanced the activity of partially purified lecithin: cholesterol acyltransferase five to tenfold with chemically defined phosphatidylcholine:cholesterol single bilayer vesicles as substrates. By contrast, apoproteins apoA-II, apoC-II, and apoC-III did not give any enhancement of enzyme activity. The activation by apoA-I and apoC-I differed, depending upon the nature of the hydrocarbon chains of phosphatidylcholine acyl donor. ApoA-I was most effective with a phosphatidylcholine containing an unsaturated fatty acyl chain. ApoC-I activated LCAT to the same extent with both saturated and unsaturated phosphatidylcholine substrates. Two of the four peptides obtained by cyanogen bromide cleavage of apoA-I retained some ability to activate LCAT. The efficacy of each of these peptides was approximately 25% that of the whole protein. Cyanogen bromide fragments of apoC-I were inactive. The apoproteins from HDL, HDL2, and HDL3, at low protein concentrations, were equally effective as activators of LCATand less effective than apoA-I. Higher concentrations of apoHDL, apoHDL2, and apoHDL3 inhibited LCAT activity. ApoC and apoA-II were both found to inhibit the activation of LCAT by apoA-I. The inhibition of LCAT by higher concentrations of apoHDL was not correlated with the aopA-II and apoC content.  相似文献   

19.
A method was described where the hydrolysis of triolein to fatty acids and glycerol by lipoprotein lipase (LpL) was continuously monitored by titration of the liberated protons in a pH-stat automatic titrator. The method gave results comparable to those obtained by a conventional assay, and was also found to be applicable to the study of crude and partially purified enzyme preparations from both cow milk and rat adipose tissue. In agreement with earlier results obtained by other methods, the first product of hydrolysis was identified as 1,2-(2,3-)diglyceride, which was further converted to 2- or 1-monoglyceride. A good comparison between the titration and conventional methods was also obtained when peptides from human serum very low density lipoproteins (VLDL) were tested either as activators or inhibitors of LpL. Thus, the method appears suitable also for a systematic investigation of the role of substrates, activator(s) and inhibitors on LpL activity in vitro.  相似文献   

20.
Lipase-catalyzed synthesis of fatty acid sugar esters through direct esterification was performed in 2-methyl 2-butanol as solvent. Fructose and saturated fatty acids were used as substrates and the reaction was catalyzed by immobilized Candida antarctica lipase. The effect of the initial fructose/acyl donor molar ratio and the carbon-chain length of the acyl donor as well as their reciprocal interactions on the reaction performance were investigated. For this purpose, an experimental design taking into account variations of the molar ratio (from 1:1 to 1:5) and the carbon-chain length of the fatty acid (from C8 to C18) was employed. Statistical analysis of the data indicated that the two factors as well as their interactions had significant effects on the sugar esters synthesis. The obtained results showed that whatever the molar ratio used, the highest concentration (73 g l−1), fructose and fatty acid conversion yields (100% and 80%, respectively) and initial reaction rate (40 g l−1 h−1) were reached when using the C18 fatty acid as acyl donor. Low molar ratios gave the best fatty acid conversion yields and initial reaction rates, whereas the best total sugar ester concentrations and fructose conversion yields were obtained for high molar ratios.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号