首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The pleiotropic growth factor TGFβ(1) promotes many of the pathogenic mechanisms observed in lung fibrosis and airway remodeling, such as aberrant extracellular matrix deposition due to both fibroblast activation and fibroblast to myofibroblast differentiation. Serum amyloid P (SAP), a member of the pentraxin family of proteins inhibits bleomycin-induced lung fibrosis through an inhibition of pulmonary fibrocyte and pro-fibrotic alternative (M2) macrophage accumulation. It is unknown if SAP has effects downstream of TGFβ(1), a major mediator of pulmonary fibrosis. Using the lung specific TGFβ(1) transgenic mouse model, we determined that SAP inhibits all of the pathologies driven by TGFβ(1) including apoptosis, airway inflammation, pulmonary fibrocyte accumulation and collagen deposition, without affecting levels of TGFβ(1). To explore the role of monocyte derived cells in this model we used liposomal clodronate to deplete pulmonary macrophages. This led to pronounced anti-fibrotic effects that were independent of fibrocyte accumulation. Administration of SAP mirrored these effects and reduced both pulmonary M2 macrophages and increased chemokine IP10/CXCL10 expression in a SMAD 3-independent manner. Interestingly, SAP concentrations were reduced in the circulation of IPF patients and correlated with disease severity. Last, SAP directly inhibited M2 macrophage differentiation of monocytes obtained from these patients. These data suggest that the beneficial anti-fibrotic effects of SAP in TGFβ(1)-induced lung disease are via modulating monocyte responses.  相似文献   

2.
For both wound healing and the formation of a fibrotic lesion, circulating monocytes enter the tissue and differentiate into fibroblast-like cells called fibrocytes and pro-fibrotic M2a macrophages, which together with fibroblasts form scar tissue. Monocytes can also differentiate into classically activated M1 macrophages and alternatively activated M2 macrophages. The proteases thrombin, which is activated during blood clotting, and tryptase, which is released by activated mast cells, potentiate fibroblast proliferation and fibrocyte differentiation, but their effect on macrophages is unknown. Here we report that thrombin, tryptase, and the protease trypsin bias human macrophage differentiation towards a pro-fibrotic M2a phenotype expressing high levels of galectin-3 from unpolarized monocytes, or from M1 and M2 macrophages, and that these effects appear to operate through protease-activated receptors. These results suggest that proteases can initiate scar tissue formation by affecting fibroblasts, fibrocytes, and macrophages.  相似文献   

3.
Monocyte-derived, fibroblast-like cells called fibrocytes are associated with fibrotic lesions. The plasma protein serum amyloid P component (SAP; also known as pentraxin-2, PTX2) inhibits fibrocyte differentiation in vitro, and injections of SAP inhibit fibrosis in vivo. SAP is a member of the pentraxin family of proteins that includes C-reactive protein (CRP; PTX1) and pentraxin-3 (PTX3). All three pentraxins are associated with fibrosis, but only SAP and CRP have been studied for their effects on fibrocyte differentiation. We find that compared to SAP and CRP, PTX3 promotes human and murine fibrocyte differentiation. The effect of PTX3 is dependent on FcγRI. In competition studies, the fibrocyte-inhibitory activity of SAP is dominant over PTX3. Binding competition studies indicate that SAP and PTX3 bind human FcγRI at different sites. In murine models of lung fibrosis, PTX3 is present in fibrotic areas, and the PTX3 distribution is associated with collagen deposition. In lung tissue from pulmonary fibrosis patients, PTX3 has a widespread distribution, both in unaffected tissue and in fibrotic lesions, whereas SAP is restricted to areas adjacent to vessels, and absent from fibrotic areas. These data suggest that the relative levels of SAP and PTX3 present at sites of fibrosis may have a significant effect on the ability of monocytes to differentiate into fibrocytes.  相似文献   

4.
Radiation-induced lung fibrosis(RILF) is a common side effect of thoracic irradiation therapy and leads to high mortality rates after cancer treatment. Radiation injury induces inflammatory M1 macrophage polarization leading to radiation pneumonitis, the first stage of RILF progression. Fibrosis occurs due to the transition of M1 macrophages to the anti-inflammatory pro-fibrotic M2 phenotype, and the resulting imbalance of macrophage regulated inflammatory signaling. Non-coding RNA signaling has been shown to play a large role in the regulation of the M2 mediated signaling pathways that are associated with the development and progression of fibrosis. While many studies show the link between M2 macrophages and fibrosis, there are only a few that explore their distinct role and the regulation of their signaling by non-coding RNA in RILF. In this review we summarize the current body of knowledge describing the roles of M2 macrophages in RILF, with an emphasis on the expression and functions of non-coding RNAs.  相似文献   

5.
6.
Induction of apoptosis has been associated with a variety of exposures which result in inflammatory and fibrotic lung disorders. Macrophages are key regulatory cells in the lung; however, the role of apoptotic macrophages in those pulmonary disorders is not well characterized. In the present investigation, apoptotic macrophages were instilled into the lungs of rats to study directly the pulmonary responses to apoptotic cells. The effects of apoptotic macrophages on lung inflammation and fibrosis, as well as associated protein expression of TNF-alpha, TGF-beta, and matrix metalloproteinases (MMPs) were examined. Induction of macrophage apoptosis was carried out in vitro using a variety of known apoptosis inducers. Intratracheal administration of apoptotic macrophages (5 x 10(6) cells/rat) into the lung of rats caused an increase in pulmonary infiltration of macrophages and lung cell apoptosis 4 weeks after the treatment as indicated by terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) assay. In contrast, pulmonary instillation of saline or normal control macrophages had no effect. Histological analysis of lung sections showed collagen deposition and fibrotic lesions after apoptotic cell treatment but not in control groups. Immunohistochemical studies revealed increased expression of TNF-alpha, TGF-beta, MMP2, and MMP9 in the treatment group 4 weeks after the treatment. These results suggest a role for macrophage apoptosis in the initiation of these lung disorders. This study provides direct evidence that apoptotic macrophages can induce lung inflammation and fibrosis and that this induction may be associated with increased expression of TNF-alpha, TGF-beta, MMP2, and MMP9. Published 2002 Wiley-Liss, Inc.  相似文献   

7.
8.
IL-10 is most commonly recognized as an anti-inflammatory cytokine possessing immunosuppressive effects necessary for regulated resolution of proinflammation. However, its role in the development of fibrosis during inflammatory resolution has not been clear. Few prior studies have linked IL-10 with the inhibition of fibrosis principally on the basis of regulating inflammation thought to be driving fibroproliferation. In contrast, in a model of long-term overexpression of IL-10, we observed marked induction of lung fibrosis in mice. The total cell number retrieved by bronchoalveolar lavage (BAL) increased 10-fold in the IL-10 overexpression (IL-10 OE) mice, with significant infiltration of T and B lymphocytes and collagen-producing cells. The presence of increased fibrocytes, isolated from collagenase-digested lungs, was identified by flow cytometry using dual staining of CD45 and collagen 1. Quantitative PCR analysis on an array of chemokine/chemokine receptor genes showed that receptor CCR2 and its ligand, CCL2, were highly upregulated in IL-10 OE mice, suggesting that IL-10-induced fibrocyte recruitment was CCL2/CCR2 specific. Given the prior association of alternatively activated (M(2)) macrophages with development of fibrosis in other disease states, we also examined the effect of IL-10 OE on the M(2) macrophage axis. We observed significantly increased numbers of M(2) macrophages in both BAL and whole lung tissue from the IL-10 OE mice. Administration of rabbit anti-CCL2 antiserum to IL-10 OE mice for three consecutive weeks significantly decreased fibrosis as evidenced by lung hydroxyproline content, compared with mice that received preimmune rabbit serum. These results indicate that overexpression of IL-10 induces fibrosis, in part, by fibrocyte recruitment and M(2) macrophage activation, and likely in a CCL2/CCR2 axis.  相似文献   

9.
Macrophage differentiation and polarization is influenced by, and act on, many processes associated with autoimmunity. However, the molecular mechanisms underlying macrophage polarization in systemic lupus erythematosus (SLE) remain largely debated. We previously demonstrated that macrophage M2b polarization conferred by activated lymphocyte-derived (ALD)-DNA immunization could initiate and propagate murine lupus nephritis. Serum amyloid P component (SAP), a conserved acute-phase protein in mice, has been reported to bind to DNA and modulate immune responses. In this study, murine SAP was shown to promote macrophage-mediated ALD-DNA uptake through binding to ALD-DNA (SAP/ALD-DNA). Moreover, macrophage phenotypic switch from a proinflammatory M2b phenotype induced by ALD-DNA alone to an anti-inflammatory M2a phenotype stimulated with SAP/ALD-DNA were found because of PI3K/Akt-ERK signaling activation. Both in vivo SAP supplements and adoptive transfer of ex vivo programmed M2a macrophages induced by SAP/ALD-DNA into SLE mice could efficiently alleviate lupus nephritis. Importantly, increased IL-10 secretion, accompanied by anti-inflammatory effect exerted by M2a macrophages, was found to predominantly impede macrophage M2b polarization. Furthermore, neutralization of IL-10 notably reduced the suppressive effect of M2a macrophages. Our results demonstrate that binding of SAP to ALD-DNA could switch macrophage phenotypic polarization from proinflammatory M2b to anti-inflammatory M2a via PI3K/Akt-ERK signaling activation, thus exerting protective and therapeutic interventions on murine lupus nephritis. These data provide a possible molecular mechanism responsible for modulation of macrophage polarization in the context of lupus nephritis and open a new potential therapeutic avenue for SLE.  相似文献   

10.
Silicosis is an occupational lung disease with no effective treatment. We hypothesized that dasatinib, a tyrosine kinase inhibitor, might exhibit therapeutic efficacy in silica-induced pulmonary fibrosis. Silicosis was induced in C57BL/6 mice by a single intratracheal administration of silica particles, whereas the control group received saline. After 14 days, when the disease was already established, animals were randomly assigned to receive DMSO or dasatinib (1 mg/kg) by oral gavage, twice daily, for 14 days. On day 28, lung morphofunction, inflammation, and remodeling were investigated. RAW 264.7 cells (a macrophage cell line) were incubated with silica particles, followed by treatment or not with dasatinib, and evaluated for macrophage polarization. On day 28, dasatinib improved lung mechanics, increased M2 macrophage counts in lung parenchyma and granuloma, and was associated with reduction of fraction area of granuloma, fraction area of collapsed alveoli, protein levels of tumor necrosis factor-α, interleukin-1β, transforming growth factor-β, and reduced neutrophils, M1 macrophages, and collagen fiber content in lung tissue and granuloma in silicotic animals. Additionally, dasatinib reduced expression of iNOS and increased expression of arginase and metalloproteinase-9 in silicotic macrophages. Dasatinib was effective at inducing macrophage polarization toward the M2 phenotype and reducing lung inflammation and fibrosis, thus improving lung mechanics in a murine model of acute silicosis.  相似文献   

11.
Fibrosing alveolitis is a disease with inflammatory, proliferative, and fibrotic components. In different models, it has been shown that the cytokine interleukin-10 (IL-10) plays a conflicting role in inflammation-associated fibrotic processes, inasmuch as it is an anti-inflammatory cytokine but also a TH2 cytokine with inherent pro-fibrotic effects. IL-10 is produced primarily by inflammatory cells. In this report, we show in a rat model of radiation-induced fibrosing alveolitis that IL-10 is also produced by type I alveolar epithelial cells in both normal and fibrotic lungs. The total amount of IL-10 in the lung is increased after irradiation, but type I pneumoyctes contain less IL-10. The R3/1 permanent type I pneumocyte cell line also contains IL-10, which is reduced after irradiation. Whereas in the normal lung, the entire alveolar surface is covered by IL-10-producing pneumocytes, this continuity is interrupted in fibrotic lungs, because type I pneumocytes lack full differentiation and thus full spreading over the alveolar surface. The exposure of the IL-10-negative epithelial basal membrane may allow for an easier attachment of inflammatory cells such as alveolar macrophages. These cells have the potential to act in a pro-inflammatory way by tumor necrosis factor alpha and also in a pro-fibrotic way by activating TH2 cytokines.  相似文献   

12.
Chlamydia pneumoniae (CP) lung infection can induce chronic lung inflammation and is associated with not only acute asthma but also COPD exacerbations. However, in mouse models of CP infection, most studies have investigated specifically the acute phase of the infection and not the longer-term chronic changes in the lungs. We infected C57BL/6 mice with 5×105 CP intratracheally and monitored inflammation, cellular infiltrates and cytokine levels over time to investigate the chronic inflammatory lung changes. While bacteria numbers declined by day 28, macrophage numbers remained high through day 35. Immune cell clusters were detected as early as day 14 and persisted through day 35, and stained positive for B, T, and follicular dendritic cells, indicating these clusters were inducible bronchus associated lymphoid tissues (iBALTs). Classically activated inflammatory M1 macrophages were the predominant subtype early on while alternatively activated M2 macrophages increased later during infection. Adoptive transfer of M1 but not M2 macrophages intratracheally 1 week after infection resulted in greater lung inflammation, severe fibrosis, and increased numbers of iBALTS 35 days after infection. In summary, we show that CP lung infection in mice induces chronic inflammatory changes including iBALT formations as well as fibrosis. These observations suggest that the M1 macrophages, which are part of the normal response to clear acute C. pneumoniae lung infection, result in an enhanced acute response when present in excess numbers, with greater inflammation, tissue injury, and severe fibrosis.  相似文献   

13.
A characteristic of dysregulated wound healing in IPF is fibroblastic-mediated damage to lung epithelial cells within fibroblastic foci. In these foci, TGF-β and other growth factors activate fibroblasts that secrete growth factors and matrix regulatory proteins, which activate a fibrotic cascade. Our studies and those of others have revealed that Akt is activated in IPF fibroblasts and it mediates the activation by TGF-β of pro-fibrotic pathways. Recent studies show that mTORC2, a component of the mTOR pathway, mediates the activation of Akt. In this study we set out to determine if blocking mTORC2 with MLN0128, an active site dual mTOR inhibitor, which blocks both mTORC1 and mTORC2, inhibits lung fibrosis. We examined the effect of MLN0128 on TGF-β-mediated induction of stromal proteins in IPF lung fibroblasts; also, we looked at its effect on TGF-β-mediated epithelial injury using a Transwell co-culture system. Additionally, we assessed MLN0128 in the murine bleomycin lung model. We found that TGF-β induces the Rictor component of mTORC2 in IPF lung fibroblasts, which led to Akt activation, and that MLN0128 exhibited potent anti-fibrotic activity in vitro and in vivo. Also, we observed that Rictor induction is Akt-mediated. MLN0128 displays multiple anti-fibrotic and lung epithelial-protective activities; it (1) inhibited the expression of pro-fibrotic matrix-regulatory proteins in TGF-β-stimulated IPF fibroblasts; (2) inhibited fibrosis in a murine bleomycin lung model; and (3) protected lung epithelial cells from injury caused by TGF-β-stimulated IPF fibroblasts. Our findings support a role for mTORC2 in the pathogenesis of lung fibrosis and for the potential of active site mTOR inhibitors in the treatment of IPF and other fibrotic lung diseases.  相似文献   

14.
The potential for amniotic fluid stem cell (AFSC) treatment to inhibit the progression of fibrotic lung injury has not been described. We have previously demonstrated that AFSC can attenuate both acute and chronic-fibrotic kidney injury through modification of the cytokine environment. Fibrotic lung injury, such as in Idiopathic Pulmonary Fibrosis (IPF), is mediated through pro-fibrotic and pro-inflammatory cytokine activity. Thus, we hypothesized that AFSC treatment might inhibit the progression of bleomycin-induced pulmonary fibrosis through cytokine modulation. In particular, we aimed to investigate the effect of AFSC treatment on the modulation of the pro-fibrotic cytokine CCL2, which is increased in human IPF patients and is correlated with poor prognoses, advanced disease states and worse fibrotic outcomes. The impacts of intravenous murine AFSC given at acute (day 0) or chronic (day 14) intervention time-points after bleomycin injury were analyzed at either day 3 or day 28 post-injury. Murine AFSC treatment at either day 0 or day 14 post-bleomycin injury significantly inhibited collagen deposition and preserved pulmonary function. CCL2 expression increased in bleomycin-injured bronchoalveolar lavage (BAL), but significantly decreased following AFSC treatment at either day 0 or at day 14. AFSC were observed to localize within fibrotic lesions in the lung, showing preferential targeting of AFSC to the area of fibrosis. We also observed that MMP-2 was transiently increased in BAL following AFSC treatment. Increased MMP-2 activity was further associated with cleavage of CCL2, rendering it a putative antagonist for CCL2/CCR2 signaling, which we surmise is a potential mechanism for CCL2 reduction in BAL following AFSC treatment. Based on this data, we concluded that AFSC have the potential to inhibit the development or progression of fibrosis in a bleomycin injury model during both acute and chronic remodeling events.  相似文献   

15.
Extracellular matrix deposition and tissue scarring characterize the process of fibrosis. Transforming growth factor beta (TGFβ) and Insulin-like growth factor binding protein-3 (IGFBP-3) have been implicated in the pathogenesis of fibrosis in various tissues by inducing mesenchymal cell proliferation and extracellular matrix deposition. We identified Syndecan-2 (SDC2) as a gene induced by TGFβ in an IGFBP-3-dependent manner. TGFβ induction of SDC2 mRNA and protein required IGFBP-3. IGFBP-3 independently induced production of SDC2 in primary fibroblasts. Using an ex-vivo model of human skin in organ culture expressing IGFBP-3, we demonstrate that IGFBP-3 induces SDC2 ex vivo in human tissue. We also identified Mitogen-activated protein kinase-interacting kinase (Mknk2) as a gene induced by IGFBP-3. IGFBP-3 triggered Mknk2 phosphorylation resulting in its activation. Mknk2 independently induced SDC2 in human skin. Since IGFBP-3 is over-expressed in fibrotic tissues, we examined SDC2 levels in skin and lung tissues of patients with systemic sclerosis (SSc) and lung tissues of patients with idiopathic pulmonary fibrosis (IPF). SDC2 levels were increased in fibrotic dermal and lung tissues of patients with SSc and in lung tissues of patients with IPF. This is the first report describing elevated levels of SDC2 in fibrosis. Increased SDC2 expression is due, at least in part, to the activity of two pro-fibrotic factors, TGFβ and IGFBP-3.  相似文献   

16.
We have demonstrated that ATP‐sensitive potassium (KATP) channel agonists attenuated fibrosis; however, the mechanism remained unclear. Since RhoA has been identified as a mediator of cardiac fibrosis, we sought to determine whether the anti‐fibrotic effects of KATP channel agonists were mediated via regulating macrophage phenotype and fibroblast differentiation by a RhoA/RhoA‐kinase‐dependent pathway. Wistar male rats after induction of myocardial infarction were randomized to either vehicle, nicorandil, an antagonist of KATP channel glibenclamide, an antagonist of ROCK fasudil, or a combination of nicorandil and glibenclamide or fasudil and glibenclamide starting 24 hrs after infarction. There were similar infarct sizes among the infarcted groups. At day 3 after infarction, post‐infarction was associated with increased RhoA/ROCK activation, which can be inhibited by administering nicorandil. Nicorandil significantly increased myocardial IL‐10 levels and the percentage of regulatory M2 macrophages assessed by immunohistochemical staining, Western blot, and RT‐PCR compared with vehicle. An IL‐10 receptor antibody increased myofibroblast infiltration compared with nicorandil alone. At day 28 after infarction, nicorandil was associated with attenuated cardiac fibrosis. These effects of nicorandil were functionally translated in improved echocardiographically derived cardiac performance. Fasudil showed similarly increased expression of M2 macrophages as nicorandil. The beneficial effects of nicorandil on fibroblast differentiation were blocked by adding glibenclamide. However, glibenclamide cannot abolish the attenuated fibrosis of fasudil, implying that RhoA/RhoA‐kinase is a downstream effector of KATP channel activation. Nicorandil polarized macrophages into M2 phenotype by inhibiting RhoA/RhoA‐kinase pathway, which leads to attenuated myofibroblast‐induced cardiac fibrosis after myocardial infarction.  相似文献   

17.
18.
Necroptosis has emerged as a novel and crucial player in acute and chronic liver diseases. Necroptotic cells lead to the release of DAMPs including S100A9, followed by the development of necroinflammation. We previously have documented the beneficial hepatoprotection conferred by M2-like macrophages in acute-on-chronic liver failure (ACLF) in vitro and in vivo, namely, M2-like macrophages protect hepatocytes against apoptosis. Herein, we integrated necroptosis, S100A9, and necroinflammation into this hepatoprotection, and hypothesized M2-like macrophages exert a hepatoprotective effect through inhibiting necroptosis-S100A9-necroinflammation axis. To testify this hypothesis, control mice were pre-treated with necroptosis or S100A9 inhibitors followed by D-GalN/LPS challenge. The extent of liver injury and M1/M2 macrophage activation was assessed. Necroptosis signaling and S100A9 expression were analysed and compared in control and fibrotic mice with or without acute insult. To document the pivotal role of M2-like macrophages in necroptosis and S100A9 inhibition, loss-of-function and gain-of-function experiments were performed. In addition, necroinflammation and its dependence on necroptosis and S100A9 were analysed. Moreover, the inhibitory effects of M2-like macrophages on necroinflammation were investigated in vivo and in vitro. We found that: firstly, the inhibition of necroptosis signaling and S100A9 expression alleviated D-GalN/LPS-induced hepatic damage, which was accompanied by M2-like macrophage activation; secondly, fibrosis inhibited necroptosis signaling and S100A9 expression, which could be attributed to M2-like macrophage activation; thirdly, S100A9 may function as a downstream player of necroptosis signaling; fourthly, fibrosis suppressed necroptosis- and S100A9-dependent necroinflammation; and finally, M2-like macrophages inhibited NLRP3 inflammasome activation and resultant necroinflammation via IL-10. Therefore, M2-like macrophages exert a beneficial hepatoprotection by inhibiting necroptosis-S100A9-necroinflammation axis in ACLF. Our findings provide novel insight for treating ACLF patients by specially targeting this signaling axis.Subject terms: Cell death and immune response, Liver fibrosis  相似文献   

19.

Background

Idiopathic pulmonary fibrosis (IPF) is a devastating disease characterized by the histopathological pattern of usual interstitial pneumonia and is associated with a high mortality rate. Recently, lung resident mesenchymal stem cells (LR-MSCs) have been identified as an important contributor to myofibroblast activation in pulmonary fibrosis. Macrophages are also believed to play a critical role in pulmonary fibrosis. However, the underlying connections between LR-MSCs and macrophages in the pathogenesis of pulmonary fibrosis are still elusive.

Methods

In this study, we investigated the interaction between LR-MSCs and macrophages using a bleomycin-induced mouse pulmonary fibrosis model and a coculture system.

Results

Here, we show that blocking pulmonary macrophage infiltration attenuated bleomycin-induced pulmonary fibrosis. In addition, as determined by flow cytometry, we discovered that the recruited macrophages in fibrotic lungs of bleomycin-treated mice were mainly M2 macrophages. In particular, we found that M2, rather than M1 macrophages, promoted myofibroblast differentiation of LR-MSCs. Moreover, we demonstrated that suppression of the Wnt/β-catenin signaling pathway could attenuate myofibroblast differentiation of LR-MSCs induced by M2 macrophages and bleomycin-induced pulmonary fibrosis. Tissue samples from IPF patients confirmed the infiltration of M2 macrophages and activation of Wnt/β-catenin signaling pathway.

Conclusion

In summary, this study furthered our understanding of the pulmonary fibrosis pathogenesis and highlighted M2 macrophages as a critical target for treating pulmonary fibrosis.
  相似文献   

20.
Macrophage G2A and CD36 lipid receptors are thought to mediate efferocytosis following tissue injury and thereby prevent excessive inflammation that could compromise tissue repair. To test this, we subjected mice lacking G2A or CD36 receptor to bleomycin-induced lung injury and measured efferocytosis, inflammation, and fibrosis. Loss of CD36 (but not G2A) delayed clearance of apoptotic alveolar cells (mean 78% increase in apoptotic cells 7 days postinjury), potentiated inflammation (mean 56% increase in lung neutrophils and 75% increase in lung KC levels 7 days postinjury, 51% increase in lung macrophages 14 days postinjury), and reduced lung fibrosis (mean 41% and 29% reduction 14 and 21 days postinjury, respectively). Reduced fibrosis in CD36−/− mice was associated with lower levels of profibrotic TH2 cytokines (IL-9, IL-13, IL-4), decreased expression of the M2 macrophage marker Arginase-1, and reduced interstitial myofibroblasts. G2A, on the other hand, was required for optimal clearance of apoptotic neutrophils during zymosan-induced peritoneal inflammation (50.3% increase in apoptotic neutrophils and 30.6% increase in total neutrophils 24 h following zymosan administration in G2A−/− mice). Thus, CD36 is required for timely removal of apoptotic cells in the context of lung injury and modulates subsequent inflammatory and fibrotic processes relevant to fibrotic lung disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号