首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The tiovivo (tio) gene of Drosophila encodes a kinesin-related protein, KLP38B, that colocalizes with condensed chromatin during cell division. Wild-type function of the tio gene product KLP38B is required for normal chromosome segregation during mitosis. Mitotic cells in tio larval brains displayed circular mitotic figures, increased ploidy, and abnormal anaphase figures. KLP38B mRNA is maternally provided and expressed in cells about to undergo division. We propose that KLP38B, perhaps redundantly with other chromosome-associated microtubule motor proteins, contributes to interactions between chromosome arms and microtubules important for establishing bipolar attachment of chromosomes and assembly of stable bipolar spindles.  相似文献   

2.
Protein kinases play key roles in regulating human cell biology, but manifold substrates and functions make it difficult to understand mechanism. We tested whether we could dissect functions of a pleiotropic mitotic kinase, Polo-like kinase 1 (Plk1), via distinct thresholds of kinase activity. We accomplished this by titrating Plk1 activity in RPE1 human epithelial cells using chemical genetics and verifying results in additional lines. We found that distinct activity thresholds are required for known functions of Plk1 including (from low to high activity) bipolar spindle formation, timely mitotic entry, and formation of a cytokinesis cleavage furrow. Subtle losses in Plk1 activity impaired chromosome congression and produced severe anaphase dysfunction characterized by poor separation of chromosome masses. These two phenotypes were separable, suggesting that they stem from distinct phosphorylation events. Impaired chromosome segregation in anaphase was the most sensitive to modest loss in Plk1 activity. Mechanistically, it was associated with unpaired sister chromatids with stretched kinetochores, suggestive of merotelic attachments. The C-terminal Polo box domain of Plk1 was required for its anaphase function, although it was dispensable for forming a bipolar spindle. The ultimate effect of partial inhibition of Plk1 was the formation of micronuclei, an increase in tetraploid progeny, and senescence. These results demonstrate that different thresholds of Plk1 activity can elicit distinct phenotypes, illustrating a general method for separating pleiotropic functions of a protein kinase even when these are executed close in time.  相似文献   

3.
Sorting nexin 9 (SNX9) and clathrin heavy chain (CHC) each have roles in mitosis during metaphase. Since the two proteins directly interact for their other cellular function in endocytosis we investigated whether they also interact for metaphase and operate on the same pathway. We report that SNX9 and CHC functionally interact during metaphase in a specific molecular pathway that contributes to stabilization of mitotic spindle kinetochore (K)-fibres for chromosome alignment and segregation. This function is independent of their endocytic role. SNX9 residues in the clathrin-binding low complexity domain are required for CHC association and for targeting both CHC and transforming acidic coiled-coil protein 3 (TACC3) to the mitotic spindle. Mutation of these sites to serine increases the metaphase plate width, indicating inefficient chromosome congression. Therefore SNX9 and CHC function in the same molecular pathway for chromosome alignment and segregation, which is dependent on their direct association.  相似文献   

4.
Cdc7p-Dbf4p is a conserved protein kinase required for the initiation of DNA replication. The Dbf4p regulatory subunit binds Cdc7p and is essential for Cdc7p kinase activation, however, the N-terminal third of Dbf4p is dispensable for its essential replication activities. Here, we define a short N-terminal Dbf4p region that targets Cdc7p-Dbf4p kinase to Cdc5p, the single Polo kinase in budding yeast that regulates mitotic progression and cytokinesis. Dbf4p mediates an interaction with the Polo substrate-binding domain to inhibit its essential role during mitosis. Although Dbf4p does not inhibit Polo kinase activity, it nonetheless inhibits Polo-mediated activation of the mitotic exit network (MEN), presumably by altering Polo substrate targeting. In addition, although dbf4 mutants defective for interaction with Polo transit S-phase normally, they aberrantly segregate chromosomes following nuclear misorientation. Therefore, Cdc7p-Dbf4p prevents inappropriate exit from mitosis by inhibiting Polo kinase and functions in the spindle position checkpoint.  相似文献   

5.
6.
7.
8.
9.
The Hippo pathway controls organ size and tumorigenesis by inhibiting cell proliferation and promoting apoptosis. KIBRA was recently identified as a novel regulator of the Hippo pathway. Several of the components of the Hippo pathway are important regulators of mitosis-related cell cycle events. We recently reported that KIBRA is phosphorylated by the mitotic kinases Aurora-A and -B. However, the role KIBRA plays in mitosis has not been established. Here, we show that KIBRA activates the Aurora kinases and is required for full activation of Aurora kinases during mitosis. KIBRA also promotes the phosphorylation of large tumor suppressor 2 (Lats2) on Ser83 by activating Aurora-A, which controls Lats2 centrosome localization. However, Aurora-A is not required for KIBRA to associate with Lats2. We also found that Lats2 inhibits the Aurora-mediated phosphorylation of KIBRA on Ser539, probably via regulating protein phosphatase 1. Consistent with playing a role in mitosis, siRNA-mediated knockdown of KIBRA causes mitotic abnormalities, including defects of spindle and centrosome formation and chromosome misalignment. We propose that the KIBRA-Aurora-Lats2 protein complexes form a novel axis that regulates precise mitosis.  相似文献   

10.
11.
Amitozyn (Am) is a semi-synthetic drug produced by the alkylation of major celandine (Chelidonium majus L.) alkaloids with the organophosphorous compound N,N’N’-triethylenethiophosphoramide (ThioTEPA). We show here that the treatment of living cells with Am reversibly perturbs the microtubule cytoskeleton, provoking a dose-dependent cell arrest in the M phase. Am changed the dynamics of tubulin polymerization in vitro, promoted the appearance of aberrant mitotic phenotypes in HeLa cells and induced apoptosis by the activation of caspase-9, caspase-3 and PARP, without inducing DNA breaks. Am treatment of HeLa cells induced changes in the phosphorylation of the growth suppressor pRb that coincided with maximum mitotic index. The dose-dependent and reversible anti-proliferative effect of Am was observed in several transformed cell lines. Importantly, the drug was also efficient against multidrug-resistant, paclitaxel-resistant or p53-deficient cells. Our results thus open the way to further pre-clinical evaluation of Am.  相似文献   

12.
Mitogen-activated protein (MAP) kinases play distinct roles in a variety of cellular signaling pathways and are regulated through multiple mechanisms. In this study, a novel 61-kDa member of the MAP kinase family, termed extracellular signal-regulated kinase 7 (ERK7), has been cloned and characterized. Although it has the signature TEY activation motif of ERK1 and ERK2, ERK7 is not activated by extracellular stimuli that typically activate ERK1 and ERK2 or by common activators of c-Jun N-terminal kinase (JNK) and p38 kinase. Instead, ERK7 has appreciable constitutive activity in serum-starved cells that is dependent on the presence of its C-terminal domain. Interestingly, the C-terminal tail, not the kinase domain, of ERK7 regulates its nuclear localization and inhibition of growth. Taken together, these results elucidate a novel type of MAP kinase whereby interactions via its C-terminal tail, rather than extracellular signal-mediated activation cascades, regulate its activity, localization, and function.  相似文献   

13.
Although p38 activity is reported to be required as cells enter mitosis for proper spindle assembly and checkpoint function, its role during the division process remains controversial in lieu of direct data. We therefore conducted live cell studies to determine the effect on mitosis of inhibiting or depleting p38. We found that in the absence of p38 activity the duration of mitosis is prolonged by ∼40% in nontransformed human RPE-1, ∼80% in PtK2 (rat kangaroo), and ∼25% in mouse cells, and this prolongation leads to an elevated mitotic index. However, under this condition chromatid segregation and cytokinesis are normal. Using Mad2/YFP-expressing cells, we show the prolongation of mitosis in the absence of p38 activity is directly due to a delay in satisfying the mitotic checkpoint. Inhibiting p38 did not affect the rate of chromosome motion; however, it did lead to the formation of significantly (10%) longer metaphase spindles. From these data we conclude that normal p38 activity is required for the timely stable attachment of all kinetochores to spindle microtubules, but not for the fidelity of the mitotic process. We speculate that p38 activity promotes timely checkpoint satisfaction by indirectly influencing those motor proteins (e.g., Klp10, Klp67A) involved in regulating the dynamics of kinetochore microtubule ends.  相似文献   

14.
15.
16.

Background

Shwachman-Diamond Syndrome (SDS) is a hereditary disease caused by mutations in the SBDS gene. SDS is clinically characterized by pancreatic insufficiency, skeletal abnormalities and bone marrow dysfunction. The hematologic abnormalities include neutropenia, neutrophil chemotaxis defects, and an increased risk of developing Acute Myeloid Leukemia (AML). Although several studies have suggested that SBDS as a protein plays a role in ribosome processing/maturation, its impact on human neutrophil development and function remains to be clarified.

Methodology/Principal Findings

We observed that SBDS RNA and protein are expressed in the human myeloid leukemia PLB-985 cell line and in human hematopoietic progenitor cells by quantitative RT-PCR and Western blot analysis. SBDS expression is downregulated during neutrophil differentiation. Additionally, we observed that the differentiation and proliferation capacity of SDS-patient bone marrow hematopoietic progenitor cells in a liquid differentiation system was reduced as compared to control cultures. Immunofluorescence analysis showed that SBDS co-localizes with the mitotic spindle and in vitro binding studies reveal a direct interaction of SBDS with microtubules. In interphase cells a perinuclear enrichment of SBDS protein which co-localized with the microtubule organizing center (MTOC) was observed. Also, we observed that transiently expressed SDS patient-derived SBDS-K62 or SBDS-C84 mutant proteins could co-localize with the MTOC and mitotic spindle.

Conclusions/Significance

SBDS co-localizes with the mitotic spindle, suggesting a role for SBDS in the cell division process, which corresponds to the decreased proliferation capacity of SDS-patient bone marrow CD34+ hematopoietic progenitor cells in our culture system and also to the neutropenia in SDS patients. A role in chromosome missegregation has not been clarified, since similar spatial and time-dependent localization is observed when patient-derived SBDS mutant proteins are studied. Thus, the increased risk of myeloid malignancy in SDS remains unexplained.  相似文献   

17.
18.
The co-chaperone BAG3, in complex with the heat shock protein HSPB8, plays a role in protein quality control during mechanical strain. It is part of a multichaperone complex that senses damaged cytoskeletal proteins and orchestrates their seclusion and/or degradation by selective autophagy. Here we describe a novel role for the BAG3-HSPB8 complex in mitosis, a process involving profound changes in cell tension homeostasis. BAG3 is hyperphosphorylated at mitotic entry and localizes to centrosomal regions. BAG3 regulates, in an HSPB8-dependent manner, the timely congression of chromosomes to the metaphase plate by influencing the three-dimensional positioning of the mitotic spindle. Depletion of BAG3 caused defects in cell rounding at metaphase and dramatic blebbing of the cortex associated with abnormal spindle rotations. Similar defects were observed upon silencing of the autophagic receptor p62/SQSTM1 that contributes to BAG3-mediated selective autophagy pathway. Mitotic cells depleted of BAG3, HSPB8 or p62/SQSTM1 exhibited disorganized actin-rich retraction fibres, which are proposed to guide spindle orientation. Proper spindle positioning was rescued in BAG3-depleted cells upon addition of the lectin concanavalin A, which restores cortex rigidity. Together, our findings suggest the existence of a so-far unrecognized quality control mechanism involving BAG3, HSPB8 and p62/SQSTM1 for accurate remodelling of actin-based mitotic structures that guide spindle orientation.  相似文献   

19.
During a normal cell cycle, entry into S phase is dependent on completion of mitosis and subsequent activation of cyclin-dependent kinases (Cdks) in G1. These events are monitored by checkpoint pathways. Recent studies and data presented herein show that after treatment with microtubule inhibitors (MTIs), cells deficient in the Cdk inhibitor p21Waf1/Cip1 enter S phase with a ≥4N DNA content, a process known as endoreduplication, which results in polyploidy. To determine how p21 prevents MTI-induced endoreduplication, the G1/S and G2/M checkpoint pathways were examined in two isogenic cell systems: HCT116 p21+/+ and p21−/− cells and H1299 cells containing an inducible p21 expression vector (HIp21). Both HCT116 p21−/− cells and noninduced HIp21 cells endoreduplicated after MTI treatment. Analysis of G1-phase Cdk activities demonstrated that the induction of p21 inhibited endoreduplication through direct cyclin E/Cdk2 regulation. The kinetics of p21 inhibition of cyclin E/Cdk2 activity and binding to proliferating-cell nuclear antigen in HCT116 p21+/+ cells paralleled the onset of endoreduplication in HCT116 p21−/− cells. In contrast, loss of p21 did not lead to deregulated cyclin D1-dependent kinase activities, nor did p21 directly regulate cyclin B1/Cdc2 activity. Furthermore, we show that MTI-induced endoreduplication in p53-deficient HIp21 cells was due to levels of p21 protein below a threshold required for negative regulation of cyclin E/Cdk2, since ectopic expression of p21 restored cyclin E/Cdk2 regulation and prevented endoreduplication. Based on these findings, we propose that p21 plays an integral role in the checkpoint pathways that restrain normal cells from entering S phase after aberrant mitotic exit due to defects in microtubule dynamics.  相似文献   

20.
Through association with CDK1, cyclin B accumulation and destruction govern the G2/M/G1 transitions in eukaryotic cells. To identify CDK1 inactivation-dependent events during late mitosis, we expressed a nondestructible form of cyclin B (cyclin BΔ90) by microinjecting its mRNA into prometaphase normal rat kidney cells. The injection inhibited chromosome decondensation and nuclear envelope formation. Chromosome disjunction occurred normally, but anaphase-like movement persisted until the chromosomes reached the cell periphery, whereupon they often somersaulted and returned to the cell center. Injection of rhodamine-tubulin showed that this movement occurred in the absence of a central anaphase spindle. In 82% of cells cytokinesis was inhibited; the remainder split themselves into two parts in a process reminiscent of Dictyostelium cytofission. In all cells injected, F-actin and myosin II were diffusely localized with no detectable organization at the equator. Our results suggest that a primary effect of CDK1 inactivation is on spindle dynamics that regulate chromosome movement and cytokinesis. Prolonged CDK1 activity may prevent cytokinesis through inhibiting midzone microtubule formation, the behavior of proteins such as TD60, or through the phosphorylation of myosin II regulatory light chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号