首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

The global burden of disease has shifted from communicable diseases in children to chronic diseases in adults. This epidemiologic shift varies greatly by region, but in Europe, chronic conditions account for 86% of all deaths, 77% of the disease burden, and up to 80% of health care expenditures. A number of risk factors have been implicated in chronic diseases, such as exposure to infectious agents. A number of associations have been well established while others remain uncertain.

Methods and Findings

We assessed the body of evidence regarding the infectious aetiology of chronic diseases in the peer-reviewed literature over the last decade. Causality was assessed with three different criteria: First, the total number of associations documented in the literature between each infectious agent and chronic condition; second, the epidemiologic study design (quality of the study); third, evidence for the number of Hill''s criteria and Koch''s postulates that linked the pathogen with the chronic condition.We identified 3136 publications, of which 148 were included in the analysis. There were a total of 75 different infectious agents and 122 chronic conditions. The evidence was strong for five pathogens, based on study type, strength and number of associations; they accounted for 60% of the associations documented in the literature. They were human immunodeficiency virus, hepatitis C virus, Helicobacter pylori, hepatitis B virus, and Chlamydia pneumoniae and were collectively implicated in the aetiology of 37 different chronic conditions. Other pathogens examined were only associated with very few chronic conditions (≤3) and when applying the three different criteria of evidence the strength of the causality was weak.

Conclusions

Prevention and treatment of these five pathogens lend themselves as effective public health intervention entry points. By concentrating research efforts on these promising areas, the human, economic, and societal burden arising from chronic conditions can be reduced.  相似文献   

2.

Background

Rapid and accurate retrieval of whole genome sequences of human pathogens from disease vectors or animal reservoirs will enable fine-resolution studies of pathogen epidemiological and evolutionary dynamics. However, next generation sequencing technologies have not yet been fully harnessed for the study of vector-borne and zoonotic pathogens, due to the difficulty of obtaining high-quality pathogen sequence data directly from field specimens with a high ratio of host to pathogen DNA.

Results

We addressed this challenge by using custom probes for multiplexed hybrid capture to enrich for and sequence 30 Borrelia burgdorferi genomes from field samples of its arthropod vector. Hybrid capture enabled sequencing of nearly the complete genome (~99.5 %) of the Borrelia burgdorferi pathogen with 132-fold coverage, and identification of up to 12,291 single nucleotide polymorphisms per genome.

Conclusions

The proprosed culture-independent method enables efficient whole genome capture and sequencing of pathogens directly from arthropod vectors, thus making population genomic study of vector-borne and zoonotic infectious diseases economically feasible and scalable. Furthermore, given the similarities of invertebrate field specimens to other mixed DNA templates characterized by a high ratio of host to pathogen DNA, we discuss the potential applicabilty of hybrid capture for genomic study across diverse study systems.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1634-x) contains supplementary material, which is available to authorized users.  相似文献   

3.

Background

Evidence-based priority setting is increasingly important for rationally distributing scarce health resources and for guiding future health research. We sought to quantify the contribution of a wide range of infectious diseases to the overall infectious disease burden in a high-income setting.

Methodology/Principal Findings

We used health-adjusted life years (HALYs), a composite measure comprising premature mortality and reduced functioning due to disease, to estimate the burden of 51 infectious diseases and associated syndromes in Ontario using 2005–2007 data. Deaths were estimated from vital statistics data and disease incidence was estimated from reportable disease, healthcare utilization, and cancer registry data, supplemented by local modeling studies and national and international epidemiologic studies. The 51 infectious agents and associated syndromes accounted for 729 lost HALYs, 44.2 deaths, and 58,987 incident cases per 100,000 population annually. The most burdensome infectious agents were: hepatitis C virus, Streptococcus pneumoniae, Escherichia coli, human papillomavirus, hepatitis B virus, human immunodeficiency virus, Staphylococcus aureus, influenza virus, Clostridium difficile, and rhinovirus. The top five, ten, and 20 pathogens accounted for 46%, 67%, and 75% of the total infectious disease burden, respectively. Marked sex-specific differences in disease burden were observed for some pathogens. The main limitations of this study were the exclusion of certain infectious diseases due to data availability issues, not considering the impact of co-infections and co-morbidity, and the inability to assess the burden of milder infections that do not result in healthcare utilization.

Conclusions/Significance

Infectious diseases continue to cause a substantial health burden in high-income settings such as Ontario. Most of this burden is attributable to a relatively small number of infectious agents, for which many effective interventions have been previously identified. Therefore, these findings should be used to guide public health policy, planning, and research.  相似文献   

4.

Background

In natural populations, individuals are infected more often by several pathogens than by just one. In such a context, pathogens can interact. This interaction could modify the probability of infection by subsequent pathogens. Identifying when pathogen associations correspond to biological interactions is a challenge in cross-sectional studies where the sequence of infection cannot be demonstrated.

Methodology/Principal Findings

Here we modelled the probability of an individual being infected by one and then another pathogen, using a probabilistic model and maximum likelihood statistics. Our model was developed to apply to cross-sectional data, vector-borne and persistent pathogens, and to take into account confounding factors. Our modelling approach was more powerful than the commonly used Chi-square test of independence. Our model was applied to detect potential interaction between Borrelia afzelii and Bartonella spp. that infected a bank vole population at 11% and 57% respectively. No interaction was identified.

Conclusions/Significance

The modelling approach we proposed is powerful and can identify the direction of potential interaction. Such an approach can be adapted to other types of pathogens, such as non-persistents. The model can be used to identify when co-occurrence patterns correspond to pathogen interactions, which will contribute to understanding how organism communities are assembled and structured. In the long term, the model’s capacity to better identify pathogen interactions will improve understanding of infectious risk.  相似文献   

5.

Background

Understanding the relationship between diseases based on the underlying biological mechanisms is one of the greatest challenges in modern biology and medicine. Exploring disease-disease associations by using system-level biological data is expected to improve our current knowledge of disease relationships, which may lead to further improvements in disease diagnosis, prognosis and treatment.

Results

We took advantage of diverse biological data including disease-gene associations and a large-scale molecular network to gain novel insights into disease relationships. We analysed and compared four publicly available disease-gene association datasets, then applied three disease similarity measures, namely annotation-based measure, function-based measure and topology-based measure, to estimate the similarity scores between diseases. We systematically evaluated disease associations obtained by these measures against a statistical measure of comorbidity which was derived from a large number of medical patient records. Our results show that the correlation between our similarity measures and comorbidity scores is substantially higher than expected at random, confirming that our similarity measures are able to recover comorbidity associations. We also demonstrated that our predicted disease associations correlated with disease associations generated from genome-wide association studies significantly higher than expected at random. Furthermore, we evaluated our predicted disease associations via mining the literature on PubMed, and presented case studies to demonstrate how these novel disease associations can be used to enhance our current knowledge of disease relationships.

Conclusions

We present three similarity measures for predicting disease associations. The strong correlation between our predictions and known disease associations demonstrates the ability of our measures to provide novel insights into disease relationships.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-304) contains supplementary material, which is available to authorized users.  相似文献   

6.

Background

The use of sequencing technologies to investigate the microbiome of a sample can positively impact patient healthcare by providing therapeutic targets for personalized disease treatment. However, these samples contain genomic sequences from various sources that complicate the identification of pathogens.

Results

Here we present Clinical PathoScope, a pipeline to rapidly and accurately remove host contamination, isolate microbial reads, and identify potential disease-causing pathogens. We have accomplished three essential tasks in the development of Clinical PathoScope. First, we developed an optimized framework for pathogen identification using a computational subtraction methodology in concordance with read trimming and ambiguous read reassignment. Second, we have demonstrated the ability of our approach to identify multiple pathogens in a single clinical sample, accurately identify pathogens at the subspecies level, and determine the nearest phylogenetic neighbor of novel or highly mutated pathogens using real clinical sequencing data. Finally, we have shown that Clinical PathoScope outperforms previously published pathogen identification methods with regard to computational speed, sensitivity, and specificity.

Conclusions

Clinical PathoScope is the only pathogen identification method currently available that can identify multiple pathogens from mixed samples and distinguish between very closely related species and strains in samples with very few reads per pathogen. Furthermore, Clinical PathoScope does not rely on genome assembly and thus can more rapidly complete the analysis of a clinical sample when compared with current assembly-based methods. Clinical PathoScope is freely available at: http://sourceforge.net/projects/pathoscope/.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2105-15-262) contains supplementary material, which is available to authorized users.  相似文献   

7.

Background

Coral diseases are emerging as a serious threat to coral reefs worldwide. Of nine coral infectious diseases, whose pathogens have been characterized, six are caused by agents from the family Vibrionacae, raising questions as to their origin and role in coral disease aetiology.

Methodology/Principal Findings

Here we report on a Vibrio zinc-metalloprotease causing rapid photoinactivation of susceptible Symbiodinium endosymbionts followed by lesions in coral tissue. Symbiodinium photosystem II inactivation was diagnosed by an imaging pulse amplitude modulation fluorometer in two bioassays, performed by exposing Symbiodinium cells and coral juveniles to non-inhibited and EDTA-inhibited supernatants derived from coral white syndrome pathogens.

Conclusion/Significance

These findings demonstrate a common virulence factor from four phylogenetically related coral pathogens, suggesting that zinc-metalloproteases may play an important role in Vibrio pathogenicity in scleractinian corals.  相似文献   

8.

Background

Bats receive increasing attention in infectious disease studies, because of their well recognized status as reservoir species for various infectious agents. This is even more important, as bats with their capability of long distance dispersal and complex social structures are unique in the way microbes could be spread by these mammalian species. Nevertheless, infection studies in bats are predominantly limited to the identification of specific pathogens presenting a potential health threat to humans. But the impact of infectious agents on the individual host and their importance on bat mortality is largely unknown and has been neglected in most studies published to date.

Methodology/Principal Findings

Between 2002 and 2009, 486 deceased bats of 19 European species (family Vespertilionidae) were collected in different geographic regions in Germany. Most animals represented individual cases that have been incidentally found close to roosting sites or near human habitation in urban and urban-like environments. The bat carcasses were subjected to a post-mortem examination and investigated histo-pathologically, bacteriologically and virologically. Trauma and disease represented the most important causes of death in these bats. Comparative analysis of pathological findings and microbiological results show that microbial agents indeed have an impact on bats succumbing to infectious diseases, with fatal bacterial, viral and parasitic infections found in at least 12% of the bats investigated.

Conclusions/Significance

Our data demonstrate the importance of diseases and infectious agents as cause of death in European bat species. The clear seasonal and individual variations in disease prevalence and infection rates indicate that maternity colonies are more susceptible to infectious agents, underlining the possible important role of host physiology, immunity and roosting behavior as risk factors for infection of bats.  相似文献   

9.

Background

The flaviviruses causing tick-borne encephalitis (TBE) persist at low but consistent levels in tick populations, despite short infectious periods in their mammalian hosts and transmission periods constrained by distinctly seasonal tick life cycles. In addition to systemic and vertical transmission, cofeeding transmission has been proposed as an important route for the persistence of TBE-causing viruses. Because cofeeding transmission requires ticks to feed simultaneously, the timing of tick activity may be critical to pathogen persistence. Existing models of tick-borne diseases do not incorporate all transmission routes and tick seasonality. Our aim is to evaluate the influence of seasonality on the relative importance of different transmission routes by using a comprehensive mathematical model.

Methodology/Principal Findings

We developed a stage-structured population model that includes tick seasonality and evaluated the relative importance of the transmission routes for pathogens with short infectious periods, in particular Powassan virus (POWV) and the related “deer tick virus,” emergent encephalitis-causing flaviviruses in North America. We used the next generation matrix method to calculate the basic reproductive ratio and performed elasticity analyses. We confirmed that cofeeding transmission is critically important for such pathogens to persist in seasonal tick populations over the reasonable range of parameter values. At higher but still plausible rates of vertical transmission, our model suggests that vertical transmission can strongly enhance pathogen prevalence when it operates in combination with cofeeding transmission.

Conclusions/Significance

Our results demonstrate that the consistent prevalence of POWV observed in tick populations could be maintained by a combination of low vertical, intermediate cofeeding and high systemic transmission rates. When vertical transmission is weak, nymphal ticks support integral parts of the transmission cycle that are critical for maintaining the pathogen. We also extended the model to pathogens that cause chronic infections in hosts and found that cofeeding transmission could contribute to elevating prevalence even in these systems. Therefore, the common assumption that cofeeding transmission is not relevant in models of chronic host infection, such as Lyme disease, could lead to underestimating pathogen prevalence.  相似文献   

10.

Background

Currently, zoonoses account for 58% to 61% of all communicable diseases causing illness in humans globally and up to 75% of emerging human pathogens. Although the impact of zoonoses on animal health and public health in North America is significant, there has been no published research involving health professionals on the prioritization of zoonoses in this region.

Methodology/Principal Findings

We used conjoint analysis (CA), a well-established quantitative method in market research, to identify the relative importance of 21 key characteristics of zoonotic diseases for their prioritization in Canada and the US. Relative importance weights from the CA were used to develop a point-scoring system to derive a recommended list of zoonoses for prioritization in Canada and the US. Study participants with a background in epidemiology, public health, medical sciences, veterinary sciences and infectious disease research were recruited to complete the online survey (707 from Canada and 764 from the US). Hierarchical Bayes models were fitted to the survey data to derive CA-weighted scores for disease criteria. Scores were applied to 62 zoonotic diseases to rank diseases in order of priority.

Conclusions/Significance

We present the first zoonoses prioritization exercise involving health professionals in North America. Our previous study indicated individuals with no prior knowledge in infectious diseases were capable of producing meaningful results with acceptable model fits (79.4%). This study suggests health professionals with some knowledge in infectious diseases were capable of producing meaningful results with better-fitted models than the general public (83.7% and 84.2%). Despite more similarities in demographics and model fit between the combined public and combined professional groups, there was more uniformity across priority lists between the Canadian public and Canadian professionals and between the US public and US professionals. Our study suggests that CA can be used as a potential tool for the prioritization of zoonoses.  相似文献   

11.

Background

Lower respiratory tract infections continue to exact unacceptable worldwide mortality, often because the infecting pathogen cannot be identified. The respiratory epithelia provide protection from pneumonias through organism-specific generation of antimicrobial products, offering potential insight into the identity of infecting pathogens. This study assesses the capacity of the host gene expression response to infection to predict the presence and identity of lower respiratory pathogens without reliance on culture data.

Methods

Mice were inhalationally challenged with S. pneumoniae, P. aeruginosa, A. fumigatus or saline prior to whole genome gene expression microarray analysis of their pulmonary parenchyma. Characteristic gene expression patterns for each condition were identified, allowing the derivation of prediction rules for each pathogen. After confirming the predictive capacity of gene expression data in blinded challenges, a computerized algorithm was devised to predict the infectious conditions of subsequent subjects.

Results

We observed robust, pathogen-specific gene expression patterns as early as 2 h after infection. Use of an algorithmic decision tree revealed 94.4% diagnostic accuracy when discerning the presence of bacterial infection. The model subsequently differentiated between bacterial pathogens with 71.4% accuracy and between non-bacterial conditions with 70.0% accuracy, both far exceeding the expected diagnostic yield of standard culture-based bronchoscopy with bronchoalveolar lavage.

Conclusions

These data substantiate the specificity of the pulmonary innate immune response and support the feasibility of a gene expression-based clinical tool for pneumonia diagnosis.  相似文献   

12.
Lal A  Hales S  French N  Baker MG 《PloS one》2012,7(4):e31883

Background

Although seasonality is a defining characteristic of many infectious diseases, few studies have described and compared seasonal patterns across diseases globally, impeding our understanding of putative mechanisms. Here, we review seasonal patterns across five enteric zoonotic diseases: campylobacteriosis, salmonellosis, vero-cytotoxigenic Escherichia coli (VTEC), cryptosporidiosis and giardiasis in the context of two primary drivers of seasonality: (i) environmental effects on pathogen occurrence and pathogen-host associations and (ii) population characteristics/behaviour.

Methodology/Principal Findings

We systematically reviewed published literature from 1960–2010, resulting in the review of 86 studies across the five diseases. The Gini coefficient compared temporal variations in incidence across diseases and the monthly seasonality index characterised timing of seasonal peaks. Consistent seasonal patterns across transnational boundaries, albeit with regional variations was observed. The bacterial diseases all had a distinct summer peak, with identical Gini values for campylobacteriosis and salmonellosis (0.22) and a higher index for VTEC (Gini = 0.36). Cryptosporidiosis displayed a bi-modal peak with spring and summer highs and the most marked temporal variation (Gini = 0.39). Giardiasis showed a relatively small summer increase and was the least variable (Gini = 0.18).

Conclusions/Significance

Seasonal variation in enteric zoonotic diseases is ubiquitous, with regional variations highlighting complex environment-pathogen-host interactions. Results suggest that proximal environmental influences and host population dynamics, together with distal, longer-term climatic variability could have important direct and indirect consequences for future enteric disease risk. Additional understanding of the concerted influence of these factors on disease patterns may improve assessment and prediction of enteric disease burden in temperate, developed countries.  相似文献   

13.

Background

A generalized decline in populations of Old World avian scavengers is occurring on a global scale. The main cause of the observed crisis in continental populations of these birds should be looked for in the interaction between two factors - changes in livestock management, including the increased use of pharmaceutical products, and disease. Insular vertebrates seem to be especially susceptible to diseases induced by the arrival of exotic pathogens, a process often favored by human activities, and sedentary and highly dense insular scavengers populations may be thus especially exposed to infection by such pathogens. Here, we compare pathogen prevalence and immune response in insular and continental populations of the globally endangered Egyptian vulture under similar livestock management scenarios, but with different ecological and evolutionary perspectives.

Methods/Principal Findings

Adult, immature, and fledgling vultures from the Canary Islands and the Iberian Peninsula were sampled to determine a) the prevalence of seven pathogen taxa and b) their immunocompetence, as measured by monitoring techniques (white blood cells counts and immunoglobulins). In the Canarian population, pathogen prevalence was higher and, in addition, an association among pathogens was apparent, contrary to the situation detected in continental populations. Despite that, insular fledglings showed lower leukocyte profiles than continental birds and Canarian fledglings infected by Chlamydophila psittaci showed poorer cellular immune response.

Conclusions/Significance

A combination of environmental and ecological factors may contribute to explain the high susceptibility to infection found in insular vultures. The scenario described here may be similar in other insular systems where populations of carrion-eaters are in strong decline and are seriously threatened. Higher susceptibility to infection may be a further factor contributing decisively to the extinction of island scavengers in the present context of global change and increasing numbers of emerging infectious diseases.  相似文献   

14.

Background

Persistent pathogens have been proposed as risk factors for stroke; however, the evidence remains inconclusive. Mexican Americans have an increased risk of stroke especially at younger ages, as well as a higher prevalence of infections caused by several persistent pathogens.

Methodology/Principal

Findings Using data from the Sacramento Area Latino Study on Aging (n = 1621), the authors used discrete-time regression to examine associations between stroke risk and (1) immunoglobulin G antibody levels to Helicobacter pylori (H. pylori), Cytomegalovirus, Varicella Zoster Virus, Toxoplasma gondii and Herpes simplex virus 1, and (2) concurrent exposure to several pathogens (pathogen burden), defined as: (a) summed sero-positivity, (b) number of pathogens eliciting high antibody levels, and (c) average antibody level. Models were adjusted for socio-demographics and stroke risk factors. Antibody levels to H. pylori predicted incident stroke in fully adjusted models (Odds Ratio: 1.58; 95% Confidence Interval: 1.09, 2.28). No significant associations were found between stroke risk and antibody levels to the other four pathogens. No associations were found for pathogen burden and incident stroke in fully adjusted models.

Conclusions/Significance

Our results suggest that exposure to H. pylori may be a stroke risk factor in Mexican Americans and may contribute to ethnic differences in stroke risk given the increased prevalence of exposure to H. pylori in this population. Future studies are needed to confirm this association.  相似文献   

15.
Cable JM  Enquist BJ  Moses ME 《PloS one》2007,2(11):e1130

Background

Understanding the mechanisms that control rates of disease progression in humans and other species is an important area of research relevant to epidemiology and to translating studies in small laboratory animals to humans. Body size and metabolic rate influence a great number of biological rates and times. We hypothesize that body size and metabolic rate affect rates of pathogenesis, specifically the times between infection and first symptoms or death.

Methods and Principal Findings

We conducted a literature search to find estimates of the time from infection to first symptoms (tS) and to death (tD) for five pathogens infecting a variety of bird and mammal hosts. A broad sampling of diseases (1 bacterial, 1 prion, 3 viruses) indicates that pathogenesis is controlled by the scaling of host metabolism. We find that the time for symptoms to appear is a constant fraction of time to death in all but one disease. Our findings also predict that many population-level attributes of disease dynamics are likely to be expressed as dimensionless quantities that are independent of host body size.

Conclusions and Significance

Our results show that much variability in host pathogenesis can be described by simple power functions consistent with the scaling of host metabolic rate. Assessing how disease progression is controlled by geometric relationships will be important for future research. To our knowledge this is the first study to report the allometric scaling of host/pathogen interactions.  相似文献   

16.
Chen KC  Wang TY  Chan CH 《PloS one》2012,7(3):e34240

Background

AIDS is one of the most devastating diseases in human history. Decades of studies have revealed host factors required for HIV infection, indicating that HIV exploits host processes for its own purposes. HIV infection leads to AIDS as well as various comorbidities. The associations between HIV and human pathways and diseases may reveal non-obvious relationships between HIV and non-HIV-defining diseases.

Principal Findings

Human biological pathways were evaluated and statistically compared against the presence of HIV host factor related genes. All of the obtained scores comparing HIV targeted genes and biological pathways were ranked. Different rank results based on overlapping genes, recovered virus-host interactions, co-expressed genes, and common interactions in human protein-protein interaction networks were obtained. Correlations between rankings suggested that these measures yielded diverse rankings. Rank combination of these ranks led to a final ranking of HIV-associated pathways, which revealed that HIV is associated with immune cell-related pathways and several cancer-related pathways. The proposed method is also applicable to the evaluation of associations between other pathogens and human pathways and diseases.

Conclusions

Our results suggest that HIV infection shares common molecular mechanisms with certain signaling pathways and cancers. Interference in apoptosis pathways and the long-term suppression of immune system functions by HIV infection might contribute to tumorigenesis. Relationships between HIV infection and human pathways of disease may aid in the identification of common drug targets for viral infections and other diseases.  相似文献   

17.

Background

Healthcare-Associated Infections (HAIs) are one of the most frequent complications occurring in healthcare facilities. Contaminated environmental surfaces provide an important potential source for transmission of many healthcare-associated pathogens, thus indicating the need for new and sustainable strategies.

Aim

This study aims to evaluate the effect of a novel cleaning procedure based on the mechanism of biocontrol, on the presence and survival of several microorganisms responsible for HAIs (i.e. coliforms, Staphyloccus aureus, Clostridium difficile, and Candida albicans) on hard surfaces in a hospital setting.

Methods

The effect of microbial cleaning, containing spores of food grade Bacillus subtilis, Bacillus pumilus and Bacillus megaterium, in comparison with conventional cleaning protocols, was evaluated for 24 weeks in three independent hospitals (one in Belgium and two in Italy) and approximately 20000 microbial surface samples were collected.

Results

Microbial cleaning, as part of the daily cleaning protocol, resulted in a reduction of HAI-related pathogens by 50 to 89%. This effect was achieved after 3–4 weeks and the reduction in the pathogen load was stable over time. Moreover, by using microbial or conventional cleaning alternatively, we found that this effect was directly related to the new procedure, as indicated by the raise in CFU/m2 when microbial cleaning was replaced by the conventional procedure. Although many questions remain regarding the actual mechanisms involved, this study demonstrates that microbial cleaning is a more effective and sustainable alternative to chemical cleaning and non-specific disinfection in healthcare facilities.

Conclusions

This study indicates microbial cleaning as an effective strategy in continuously lowering the number of HAI-related microorganisms on surfaces. The first indications on the actual level of HAIs in the trial hospitals monitored on a continuous basis are very promising, and may pave the way for a novel and cost-effective strategy to counteract or (bio)control healthcare-associated pathogens.  相似文献   

18.

Background

Little is known about the causes of death in children in India after age five years. The objective of this study is to provide the first ever direct national and sub-national estimates of infectious disease mortality in Indian children aged 5 to 14 years.

Methods

A verbal autopsy based assessment of 3 855 deaths is children aged 5 to 14 years from a nationally representative survey of deaths occurring in 2001–03 in 1·1 million homes in India.

Results

Infectious diseases accounted for 58% of all deaths among children aged 5 to 14 years. About 18% of deaths were due to diarrheal diseases, 10% due to pneumonia, 8% due to central nervous system infections, 4% due to measles, and 12% due to other infectious diseases. Nationally, in 2005 about 59 000 and 34 000 children aged 5 to 14 years died from diarrheal diseases and pneumonia, corresponding to mortality of 24·1 and 13·9 per 100 000 respectively. Mortality was nearly 50% higher in girls than in boys for both diarrheal diseases and pneumonia.

Conclusions

Approximately 60% of all deaths in this age group are due to infectious diseases and nearly half of these deaths are due to diarrheal diseases and pneumonia. Mortality in this age group from infectious diseases, and diarrhea in particular, is much higher than previously estimated.  相似文献   

19.

Background

Cerebral malaria (CM) and severe malarial anemia (SMA) are the most serious life-threatening clinical syndromes of Plasmodium falciparum infection in childhood. Therefore it is important to understand the pathology underlying the development of CM and SMA, as opposed to uncomplicated malaria (UM). Different host responses to infection are likely to be reflected in plasma proteome-patterns that associate with clinical status and therefore provide indicators of the pathogenesis of these syndromes.

Methods and Findings

Plasma and comprehensive clinical data for discovery and validation cohorts were obtained as part of a prospective case-control study of severe childhood malaria at the main tertiary hospital of the city of Ibadan, an urban and densely populated holoendemic malaria area in Nigeria. A total of 946 children participated in this study. Plasma was subjected to high-throughput proteomic profiling. Statistical pattern-recognition methods were used to find proteome-patterns that defined disease groups. Plasma proteome-patterns accurately distinguished children with CM and with SMA from those with UM, and from healthy or severely ill malaria-negative children.

Conclusions

We report that an accurate definition of the major childhood malaria syndromes can be achieved using plasma proteome-patterns. Our proteomic data can be exploited to understand the pathogenesis of the different childhood severe malaria syndromes.  相似文献   

20.

Background

Infectious diseases have contributed to the decline and local extinction of several wildlife species, including African wild dogs (Lycaon pictus). Mitigating such disease threats is challenging, partly because uncertainty about disease dynamics makes it difficult to identify the best management approaches. Serious impacts on susceptible populations most frequently occur when generalist pathogens are maintained within populations of abundant (often domestic) “reservoir” hosts, and spill over into less abundant host species. If this is the case, disease control directed at the reservoir host might be most appropriate. However, pathogen transmission within threatened host populations may also be important, and may not be controllable by managing another host species.

Methodology/Principal Findings

We investigated interspecific and intraspecific transmission routes, by comparing African wild dogs'' exposure to six canine pathogens with behavioural measures of their opportunities for contact with domestic dogs and with other wild dogs. Domestic dog contact was associated with exposure to canine parvovirus, Ehrlichia canis, Neospora caninum and perhaps rabies virus, but not with exposure to canine distemper virus or canine coronavirus. Contact with other wild dogs appeared not to increase the risk of exposure to any of the pathogens.

Conclusions/Significance

These findings, combined with other data, suggest that management directed at domestic dogs might help to protect wild dog populations from rabies virus, but not from canine distemper virus. However, further analyses are needed to determine the management approaches – including no intervention – which are most appropriate for each pathogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号