首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Murine noroviruses (MNV) are closely related to the human noroviruses (HuNoV), which cause the majority of nonbacterial gastroenteritis. Unlike HuNoV, MNV grow in culture and in a small-animal model that represents a tractable model to study norovirus biology. To begin a detailed investigation of molecular events that occur during norovirus binding to cells, the crystallographic structure of the murine norovirus 1 (MNV-1) capsid protein protruding (P) domain has been determined. Crystallization of the bacterially expressed protein yielded two different crystal forms (Protein Data Bank identifiers [PDB ID], 3LQ6 and 3LQE). Comparison of the structures indicated a large degree of structural mobility in loops on the surface of the P2 subdomain. Specifically, the A′-B′ and E′-F′ loops were found in open and closed conformations. These regions of high mobility include the known escape mutation site for the neutralizing antibody A6.2 and an attenuation mutation site, which arose after serial passaging in culture and led to a loss in lethality in STAT1−/− mice, respectively. Modeling of a Fab fragment and crystal structures of the P dimer into the cryoelectron microscopy three-dimensional (3D) image reconstruction of the A6.2/MNV-1 complex indicated that the closed conformation is most likely bound to the Fab fragment and that the antibody contact is localized to the A′-B′ and E′-F′ loops. Therefore, we hypothesize that these loop regions and the flexibility of the P domains play important roles during MNV-1 binding to the cell surface.Murine noroviruses (MNV) are members of the family Caliciviridae, which contains small icosahedral viruses with positive-sense, single-stranded RNA genomes (18). MNV is related to human noroviruses (HuNoV), which cause most of the sporadic cases and outbreaks of infectious nonbacterial gastroenteritis worldwide in people of all ages (4, 15, 28, 36, 38, 64). However, noroviruses are an understudied group of viruses due to the previous lack of a tissue culture system and small-animal model. Since its discovery in 2003 (23), MNV has become an increasingly important model to study norovirus biology (66). The availability of a small-animal model, cell culture, and reverse-genetics system, combined with many shared characteristics of human and murine noroviruses, allows detailed studies of norovirus biology (7, 23, 63, 65, 66).The norovirus genome is organized into 3 major open reading frames (ORFs), which encode the nonstructural polyprotein (∼200 kDa) and the major (VP1; ∼58-kDa) and minor (VP2; ∼20-kDa) capsid proteins (18). Recently, a putative ORF-4 was identified in MNV, but the existence of that product and its function remain unknown (60). Norovirus capsids are formed from 180 copies of VP1 arranged with T=3 icosahedral symmetry (9, 25, 46-48). Each capsid protein is divided into an N-terminal arm (N), a shell (S), and a C-terminal protruding (P) domain, with the last two domains connected by a short hinge. VP1 self-assembles into virus-like particles (VLPs) in baculovirus, mammalian, and plant expression systems (21, 22, 50, 57, 67). The S domain forms a smooth shell around the viral genome but is unable to bind to receptors (3, 55). The P domain dimerizes, forming arch-like structures on the capsid surface, and is subdivided into P1 (the stem of the arch) and P2 (the top of the arch) subdomains. The sequence of the P2 subdomain is the least conserved, followed by the P1 and S domains with the highest degree of conservation. While the S domain of Norwalk virus (NV) is required in order to form VLPs in a baculovirus expression system, the P domains contribute to stability by intermolecular interactions (3, 24). The homodimeric interactions of the HuNoV P domain, observed by crystallographic studies of VLPs, is retained when the protein region is expressed in a bacterial expression system (55). In addition, the norovirus P domain, specifically the P2 subdomain, contains the sites for antigenicity, immune-driven evolution, and cell binding (13a, 20, 25, 32, 41, 51, 56). For MNV-1, the Fab fragment of the neutralizing antibody A6.2 binds to the outermost tip of the P2 subdomain and is thought to prevent infection by blocking capsid-receptor interaction (25).Early steps in the norovirus life cycle are determinants of norovirus tropism (19) and thereby determine the outcome of a viral infection. While the tropism of HuNoV remains unknown, MNV-1 has a tropism for murine macrophages and dendritic cells in vitro and in vivo (62, 65). Recent studies from our laboratory demonstrated that MNV-1 binds to sialic acid on murine macrophages, in particular on the ganglioside GD1a (58). It subsequently enters murine macrophages and dendritic cells in a pH-independent manner (43). To better understand MNV-cell surface binding, we expressed, purified, and determined the high-resolution structure of the MNV-1 P domain at 2.0-Å resolution. Here, we show that, similar to HuNoV P domains (10, 55), recombinant MNV-1 P domains can be expressed and fold in a biologically correct manner. This was shown by the ability of the recombinant MNV-1 P domain to bind murine macrophages, to competitively inhibit MNV-1 infection, and to be recognized by the neutralizing antibody A6.2, which interferes with macrophage binding. Expressed P domain yielded different crystal forms with significant structural differences in the outermost loops of the P2 subdomains. Overall, the MNV-1 P-domain crystal structures show tertiary structures similar to those of HuNoV P domains, with the greatest structural variation in the polypeptide loops on the outer surface of the P domain corresponding to the mobile regions among the various crystal forms. In particular, one of these loops, E′-F′, was observed in “open” and “closed” conformations. Modeling of a Fab fragment and the crystal structures of the P domain into the cryoelectron microscopy three-dimensional (3D) reconstruction of the Fab/MNV-1 complex indicated that the “closed” conformation is the form likely being bound by the neutralizing antibody A6.2. Two sequences located in the A′-B′ and E′-F′ loops were identified as epitopes for A6.2. Biological support for the in silico modeling data comes from a recombinant MNV-1 in which amino acids of the Norwalk virus E′-F′ loop replaced those of MNV-1 and that was no longer neutralized by A6.2. We hypothesize that flexibility in the E′-F′ loop is important for virus-cell interaction and that A6.2 might sterically block viral binding to the cell surface and/or prevent structural changes in the viral capsid required during receptor interaction. In addition, a channel at the interphase of the P dimer was identified that is stabilized by an “ionic lock” (i.e., a bridge formed by two sets of opposing arginine and glutamic acid residues). We hypothesize that the ionic lock may act as a trigger for structural changes important during infection, possibly at the level of host cell entry. Together, these data identify several potential movements within the MNV-1 P domain, which points to the flexibility of the MNV-1 capsid.  相似文献   

2.
Recently, we reported the discovery and characterization of Tulane virus (TV), a novel rhesus calicivirus (CV) (T. Farkas, K. Sestak, C. Wei, and X. Jiang, J. Virol. 82:5408-5416, 2008). TV grows well in tissue culture, and it represents a new genus within Caliciviridae, with the proposed name of Recovirus. We also reported a high prevalence of CV antibodies in macaques of the Tulane National Primate Research Center (TNPRC) colony, including anti-norovirus (NoV), anti-sapovirus (SaV), and anti-TV (T. Farkas, J. Dufour, X. Jiang, and K. Sestak, J. Gen. Virol. 91:734-738, 2010). To broaden our knowledge about CV infections in captive nonhuman primates (NHP), 500 rhesus macaque stool samples collected from breeding colony TNPRC macaques were tested for CVs. Fifty-seven (11%) samples contained recovirus isolates. In addition, one NoV was detected. Phylogenetic analysis classified the recovirus isolates into two genogroups and at least four genetic types. The rhesus NoV isolate was closely related to GII human NoVs. TV-neutralizing antibodies were detected in 88% of serum samples obtained from primate caretakers. Binding and plaque reduction assays revealed the involvement of type A and B histo-blood group antigens (HBGA) in TV infection. Taken together, these findings indicate the zoonotic potential of primate CVs. The discovery of a genetically diverse and prevalent group of primate CVs and remarkable similarities between rhesus enteric CVs and human NoVs opens new possibilities for research involving in vitro and in vivo models of human NoV gastroenteritis.Caliciviruses (CV) are important human and animal pathogens, causing a wide variety of diseases in their respective hosts. The family Caliciviridae consists of five established genera (Norovirus, Sapovirus, Lagovirus, Vesivirus, and Nebovirus). Recently, two new calicivirus genera have been proposed, represented by the Tulane virus (Recovirus) and the St. Valerien-like viruses (Valovirus) (11-13, 24, 36, 37, 39).NoVs are recognized as the leading cause of epidemics of gastroenteritis (GE), causing 80 to 90% of nonbacterial GE outbreaks and more than 50% of all food-related GE outbreaks (7, 8, 29). They are also an important cause of sporadic GE in both children and adults. Based on phylogenetic analysis, NoVs are divided into five genogroups and more than 30 genetic clusters or genotypes (9, 46). This high genetic and, likely, antigenic variation, combined with the lack of a tissue culture or animal model, represent major obstacles for NoV research.NoVs with close genetic and antigenic relatedness to human NoVs have been isolated from various animal species (6, 28, 33, 41). This not only provided opportunities for using some of these viruses as surrogates for human NoV research (44) but also raised the concern of the possible zoonotic nature of CV gastroenteritis.Based on results of in vitro binding assays, volunteer challenge studies, and the analysis of NoV outbreaks, it was proposed that histo-blood group antigens (HBGA), including the ABO, Lewis, and secretor-type HBGAs, function as the NoV receptors (17, 19, 20, 27, 32). The involvement of other host factors in NoV replication and susceptibility to infection also has been implicated (14, 43).Previously, we reported the isolation and characterization of a novel CV (Tulane virus; TV) from stool samples of juvenile rhesus macaques (11). TV represents a newly proposed genus (Recovirus) within Caliciviridae that phylogenetically shares a common origin with NoVs; however, TV can be grown in tissue culture (11). We also reported a high prevalence of anti-NoV, anti-SaV binding, and anti-TV-neutralizing (VN) antibodies in colony macaques, suggesting that CV infections are frequent in captive nonhuman primates (NHP) (10). The few NoV challenge studies conducted also suggest that NHPs are susceptible to NoV infection. Chimpanzees inoculated with the Norwalk virus developed seroresponses and virus shedding but without the manifestation of clinical disease (45). Subekti et al. reported the development of clinical illness characterized by diarrhea, dehydration, vomiting, and virus shedding in newborn pigtail macaques inoculated with the Toronto virus (40). In a study conducted by Rockx et al., one of the three rhesus macaques infected with Norwalk virus developed virus-specific IgM and IgG responses and shed the virus for 19 days postinoculation (38). To date, however, direct evidence of natural NoV or SaV infection in NHPs is missing. Moreover, the prevalence and genetic diversity of recoviruses have yet to be studied.In this study, we undertook the molecular detection and genetic analysis of CVs circulating in colony macaques and examined the role of HBGAs in recovirus infection.  相似文献   

3.
Although noroviruses cause the vast majority of nonbacterial gastroenteritis in humans, little is known about their life cycle, including viral entry. Murine norovirus (MNV) is the only norovirus to date that efficiently infects cells in culture. To elucidate the productive route of infection for MNV-1 into murine macrophages, we used a neutral red (NR) infectious center assay and pharmacological inhibitors in combination with dominant-negative (DN) and small interfering RNA (siRNA) constructs to show that clathrin- and caveolin-mediated endocytosis did not play a role in entry. In addition, we showed that phagocytosis or macropinocytosis, flotillin-1, and GRAF1 are not required for the major route of MNV-1 uptake. However, MNV-1 genome release occurred within 1 h, and endocytosis was significantly inhibited by the cholesterol-sequestering drugs nystatin and methyl-β-cyclodextrin, the dynamin-specific inhibitor dynasore, and the dominant-negative dynamin II mutant K44A. Therefore, we conclude that the productive route of MNV-1 entry into murine macrophages is rapid and requires host cholesterol and dynamin II.Murine noroviruses (MNV) are closely related to human noroviruses (HuNoV), the causative agent of most outbreaks of infectious nonbacterial gastroenteritis worldwide in people of all ages (4, 8, 19, 31, 43, 46, 83). Although a major public health concern, noroviruses have been an understudied group of viruses due to the lack of a tissue culture system and small animal model. Since the discovery of MNV-1 in 2003 (27), reverse genetics systems (10, 81), a cell culture model (84), and a small animal model (27) have provided the tools necessary for detailed study of noroviruses.One largely unexplored aspect of norovirus biology is the early events during viral infection that are essential during viral pathogenesis. One of these early events is the attachment of the virus particle to the host. Attachment is mediated by the protruding domain of the MNV-1 capsid (29, 30, 73). For at least three strains (MNV-1, WU-11, and S99), the attachment receptor on the cell surface of murine macrophages is terminal sialic acids, including those found on the ganglioside GD1a (72). The use of carbohydrate receptors for cell attachment is shared with HuNoV, which utilize mostly histo-blood group antigens (HBGA) (18, 34, 70, 71). These carbohydrates are present in body fluids (saliva, breast milk, and intestinal contents) and on the surface of red blood cells and intestinal epithelial cells (33). Some HuNoV strains also bind to sialic acid or heparan sulfate (60, 69). However, despite evidence that for HuNoV HBGA are a genetic susceptibility marker (35), the presence of attachment receptors is not sufficient for a productive infection for either HuNoV (24) or MNV-1 (72). Although the cellular tropism of HuNoV is unknown, MNV infects murine macrophages and dendritic cells in vitro and in vivo (80, 84). Following attachment, MNV-1 infection of murine macrophages and dendritic cells can proceed in the presence of the endosome acidification inhibitor chloroquine or bafilomycin A1, suggesting that MNV-1 entry occurs independently of endosomal pH (54). However, the cellular pathway(s) utilized by MNV-1 during entry remains unclear.Viruses are obligate intracellular pathogens that hijack cellular processes to deliver their genome into cells. The most commonly used endocytic pathway during virus entry is clathrin-mediated endocytosis (41). Clathrin-coated vesicles form at the plasma membrane, pinch off by the action of the small GTPase dynamin II, and deliver their contents to early endosomes (12). For example, vesicular stomatitis virus (VSV) enters cells in this manner (66). However, viruses can also use several clathrin-independent pathways to enter cells, some of which require cholesterol-rich microdomains (i.e., lipid rafts) in the plasma membrane (56). The best studied of these is mediated by caveolin and was initially elucidated through studies of simian virus 40 (SV40) entry (1). SV40 uptake occurs via caveolin-containing vesicles that are released from the plasma membrane in a dynamin II-dependent manner and later fuse with pH-neutral caveosomes (28, 48, 53). Although caveolin-mediated endocytosis is a well-characterized form of cholesterol-dependent endocytosis, other entry mechanisms exist that are clathrin and caveolin independent (5, 14, 55, 57-59, 64, 78). In addition, macropinocytosis and/or phagocytosis can also play a role in viral entry (11, 13, 21, 36, 40, 42, 44, 45). However, the requirement for dynamin II in these processes is not fully understood.Viral entry has been addressed primarily by pharmacologic inhibitor studies, immunofluorescence and electron microscopy, transfections of dominant-negative (DN) constructs, and more recently by small interfering RNA (siRNA) knockdown. Each of these approaches has some limitations; thus, a combination of approaches is needed to elucidate the mechanism of viral entry into host cells. For example, using electron and fluorescence microscopy, which require a high particle number, does not allow the differentiation of infectious and noninfectious particles. Alternatively, the use of pharmacological inhibitors can result in off-target effects, including cytotoxicity. A recent approach used the photoreactive dye neutral red (NR) in an infectious focus assay to determine the mechanism of poliovirus entry (6). Cells were infected in the dark in the presence of neutral red, and virus particles passively incorporated the dye. Upon exposure to light, the neutral red dye cross-linked the viral genome to the viral capsid, thus inactivating the virus. Infectious foci were counted several days later. This assay was performed in the presence of various pharmacologic inhibitors of endocytosis. When an inhibitor blocked a productive route of infection, the number of infectious foci was significantly less than that for an untreated control. Major advantages of this technique over traditional assays are the ability to treat cells with pharmacologic inhibitors only during the viral entry process, the reduction of cytotoxicity, and the ability to infect with a low multiplicity of infection (MOI). Furthermore, infectious virus that is prohibited from uncoating is inactivated by illumination. Therefore, only virus particles leading to a productive infection in the presence or absence of the various inhibitors are measured. We successfully adapted this assay for use with MNV-1. Together with the use of pharmacological inhibitors, DN constructs, and siRNA knockdown, we demonstrate that the major MNV-1 entry pathway into murine macrophages resulting in a productive infection occurred by endocytosis and not phagocytosis or macropinocytosis in a manner that was clathrin and caveolin 1, flotillin 1, and GRAF1 independent but required dynamin II and cholesterol.  相似文献   

4.
5.
Norovirus GII/4 is a leading cause of acute viral gastroenteritis in humans. We examined here how the GII/4 virus evolves to generate and sustain new epidemics in humans, using 199 near-full-length GII/4 genome sequences and 11 genome segment clones from human stool specimens collected at 19 sites in Japan between May 2006 and February 2009. Phylogenetic studies demonstrated outbreaks of 7 monophyletic GII/4 subtypes, among which a single subtype, termed 2006b, had continually predominated. Phylogenetic-tree, bootscanning-plot, and informative-site analyses revealed that 4 of the 7 GII/4 subtypes were mosaics of recently prevalent GII/4 subtypes and 1 was made up of the GII/4 and GII/12 genotypes. Notably, single putative recombination breakpoints with the highest statistical significance were constantly located around the border of open reading frame 1 (ORF1) and ORF2 (P ≤ 0.000001), suggesting outgrowth of specific recombinant viruses in the outbreaks. The GII/4 subtypes had many unique amino acids at the time of their outbreaks, especially in the N-term, 3A-like, and capsid proteins. Unique amino acids in the capsids were preferentially positioned on the outer surface loops of the protruding P2 domain and more abundant in the dominant subtypes. These findings suggest that intersubtype genome recombination at the ORF1/2 boundary region is a common mechanism that realizes independent and concurrent changes on the virion surface and in viral replication proteins for the persistence of norovirus GII/4 in human populations.Norovirus (NoV) is a nonenveloped RNA virus that belongs to the family Caliciviridae and can cause acute gastroenteritis in humans. The NoV genome is a single-stranded, positive-sense, polyadenylated RNA that encodes three open reading frames, ORF1, ORF2, and ORF3 (68). ORF1 encodes a long polypeptide (∼200 kDa) that is cleaved in the cells by the viral proteinase (3Cpro) into six proteins (4). These proteins function in NoV replication in host cells (19). ORF2 encodes a viral capsid protein, VP1. The capsid gene evolved at a rate of 4.3 × 10−3 nucleotide substitutions/site/year (7), which is comparable to the substitution rates of the envelope and capsid genes of human immunodeficiency virus (30). The capsid protein of NoV consists of a shell (S) and two protruding (P) domains: P1 and P2 (47). The S domain is relatively conserved within the same genetic lineages of NoVs (38) and is responsible for the assembly of VP1 (6). The P1 subdomain is also relatively conserved (38) and has a role in enhancing the stability of virus particles (6). The P2 domain is positioned at the most exposed surface of the virus particle (47) and forms binding clefts for putative infection receptors, such as human histo-blood group antigens (HBGA) (8, 13, 14, 60). The P2 domain also contains epitopes for neutralizing antibodies (27, 33) and is consistently highly variable even within the same genetic lineage of NoVs (38). ORF3 encodes a VP2 protein that is suggested to be a minor structural component of virus particles (18) and to be responsible for the expression and stabilization of VP1 (5).Thus far, the NoVs found in nature are classified into five genogroups (GI to GV) and multiple genotypes on the basis of the phylogeny of capsid sequences (71). Among them, genogroup II genotype 4 (GII/4), which was present in humans in the mid-1970s (7), is now the leading cause of NoV-associated acute gastroenteritis in humans (54). The GII/4 is further subclassifiable into phylogenetically distinct subtypes (32, 38, 53). Notably, the emergence and spread of a new GII/4 subtype with multiple amino acid substitutions on the capsid surface are often associated with greater magnitudes of NoV epidemics (53, 54). In 2006 and 2007, a GII/4 subtype, termed 2006b, prevailed globally over preexisting GII/4 subtypes in association with increased numbers of nonbacterial acute gastroenteritis cases in many countries, including Japan (32, 38, 53). The 2006b subtype has multiple unique amino acid substitutions that occur most preferentially in the protruding subdomain of the capsid, the P2 subdomain (32, 38, 53). Together with information on human population immunity against NoV GII/4 subtypes (12, 32), it has been postulated that the accumulation of P2 mutations gives rise to antigenic drift and plays a key role in new epidemics of NoV GII/4 in humans (32, 38, 53).Genetic recombination is common in RNA viruses (67). In NoV, recombination was first suggested by the phylogenetic analysis of an NoV genome segment clone: a discordant branching order was noted with the trees of the 3Dpol and capsid coding regions (21). Subsequently, many studies have reported the phylogenetic discordance using sequences from various epidemic sites in different study periods (1, 10, 11, 16, 17, 22, 25, 40, 41, 44-46, 49, 51, 57, 63, 64, 66). These results suggest that genome recombination frequently occurs among distinct lineages of NoV variants in vivo. However, the studies were done primarily with direct sequencing data of the short genome portion, and information on the cloned genome segment or full-length genome sequences is very limited (21, 25). Therefore, we lack an overview of the structural and temporal dynamics of viral genomes during NoV epidemics, and it remains unclear whether NoV mosaicism plays a role in these events.To clarify these issues, we collected 199 near-full-length genome sequences of GII/4 from NoV outbreaks over three recent years in Japan, divided them into monophyletic subtypes, analyzed the temporal and geographical distribution of the subtypes, collected phylogenetic evidence for the viral genome mosaicism of the subtypes, identified putative recombination breakpoints in the genomes, and isolated mosaic genome segments from the stool specimens. We also performed computer-assisted sequence and structural analyses with the identified subtypes to address the relationship between the numbers of P2 domain mutations at the times of the outbreaks and the magnitudes of the epidemics. The obtained data suggest that intersubtype genome recombination at the ORF1/2 boundary region is common in the new GII/4 outbreaks and promotes the effective acquisition of mutation sets of heterogeneous capsid surface and viral replication proteins.  相似文献   

6.
7.
8.
Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple α/β-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water content to spore resistance to germicidal 254-nm and simulated environmental UV exposure (280 to 400 nm, 290 to 400 nm, and 320 to 400 nm). Spores of strains carrying mutations in sspA, sspB, and both sspA and sspB (lacking the major SASP-α and/or SASP-β) were significantly more sensitive to 254-nm and all polychromatic UV exposures, whereas the UV resistance of spores of the sspE strain (lacking SASP-γ) was essentially identical to that of the wild type. Spores of the dacB-defective strain were as resistant to 254-nm UV-C radiation as wild-type spores. However, spores of the dacB strain were significantly more sensitive than wild-type spores to environmental UV treatments of >280 nm. Air-dried spores of the dacB mutant strain had a significantly higher water content than air-dried wild-type spores. Our results indicate that α/β-type SASP and decreased spore core water content play an essential role in spore resistance to environmentally relevant UV wavelengths whereas SASP-γ does not.Spores of Bacillus spp. are highly resistant to inactivation by different physical stresses, such as toxic chemicals and biocidal agents, desiccation, pressure and temperature extremes, and high fluences of UV or ionizing radiation (reviewed in references 33, 34, and 48). Under stressful environmental conditions, cells of Bacillus spp. produce endospores that can stay dormant for extended periods. The reason for the high resistance of bacterial spores to environmental extremes lies in the structure of the spore. Spores possess thick layers of highly cross-linked coat proteins, a modified peptidoglycan spore cortex, a low core water content, and abundant intracellular constituents, such as the calcium chelate of dipicolinic acid and α/β-type small, acid-soluble spore proteins (α/β-type SASP), the last two of which protect spore DNA (6, 42, 46, 48, 52). DNA damage accumulated during spore dormancy is also efficiently repaired during spore germination (33, 47, 48). UV-induced DNA photoproducts are repaired by spore photoproduct lyase and nucleotide excision repair, DNA double-strand breaks (DSB) by nonhomologous end joining, and oxidative stress-induced apurinic/apyrimidinic (AP) sites by AP endonucleases and base excision repair (15, 26-29, 34, 43, 53, 57).Monochromatic 254-nm UV radiation has been used as an efficient and cost-effective means of disinfecting surfaces, building air, and drinking water supplies (31). Commonly used test organisms for inactivation studies are bacterial spores, usually spores of Bacillus subtilis, due to their high degree of resistance to various sporicidal treatments, reproducible inactivation response, and safety (1, 8, 19, 31, 48). Depending on the Bacillus species analyzed, spores are 10 to 50 times more resistant than growing cells to 254-nm UV radiation. In addition, most of the laboratory studies of spore inactivation and radiation biology have been performed using monochromatic 254-nm UV radiation (33, 34). Although 254-nm UV-C radiation is a convenient germicidal treatment and relevant to disinfection procedures, results obtained by using 254-nm UV-C are not truly representative of results obtained using UV wavelengths that endospores encounter in their natural environments (34, 42, 50, 51, 59). However, sunlight reaching the Earth''s surface is not monochromatic 254-nm radiation but a mixture of UV, visible, and infrared radiation, with the UV portion spanning approximately 290 to 400 nm (33, 34, 36). Thus, our knowledge of spore UV resistance has been constructed largely using a wavelength of UV radiation not normally reaching the Earth''s surface, even though ample evidence exists that both DNA photochemistry and microbial responses to UV are strongly wavelength dependent (2, 30, 33, 36).Of recent interest in our laboratories has been the exploration of factors that confer on B. subtilis spores resistance to environmentally relevant extreme conditions, particularly solar UV radiation and extreme desiccation (23, 28, 30, 34 36, 48, 52). It has been reported that α/β-type SASP but not SASP-γ play a major role in spore resistance to 254-nm UV-C radiation (20, 21) and to wet heat, dry heat, and oxidizing agents (48). In contrast, increased spore water content was reported to affect B. subtilis spore resistance to moist heat and hydrogen peroxide but not to 254-nm UV-C (12, 40, 48). However, the possible roles of SASP-α, -β, and -γ and core water content in spore resistance to environmentally relevant solar UV wavelengths have not been explored. Therefore, in this study, we have used B. subtilis strains carrying mutations in the sspA, sspB, sspE, sspA and sspB, or dacB gene to investigate the contributions of SASP and increased core water content to the resistance of B. subtilis spores to 254-nm UV-C and environmentally relevant polychromatic UV radiation encountered on Earth''s surface.  相似文献   

9.
10.
Recently, methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP) have been increasingly isolated from veterinarians and companion animals. With a view to preventing the spread of MRSA and MRSP, we evaluated the occurrence and molecular characteristics of each in a veterinary college. MRSA and MRSP were isolated from nasal samples from veterinarians, staff members, and veterinary students affiliated with a veterinary hospital. Using stepwise logistic regression, we identified two factors associated with MRSA carriage: (i) contact with an identified animal MRSA case (odds ratio [OR], 6.9; 95% confidence interval [95% CI], 2.2 to 21.6) and (ii) being an employee (OR, 6.2; 95% CI, 2.0 to 19.4). The majority of MRSA isolates obtained from individuals affiliated with the veterinary hospital and dog patients harbored spa type t002 and a type II staphylococcal cassette chromosome mec (SCCmec), similar to the hospital-acquired MRSA isolates in Japan. MRSA isolates harboring spa type t008 and a type IV SCCmec were obtained from one veterinarian on three different sampling occasions and also from dog patients. MRSA carriers can also be a source of MRSA infection in animals. The majority of MRSP isolates (85.2%) carried hybrid SCCmec type II-III, and almost all the remaining MRSP isolates (11.1%) carried SCCmec type V. MRSA and MRSP were also isolated from environmental samples collected from the veterinary hospital (5.1% and 6.4%, respectively). The application of certain disinfection procedures is important for the prevention of nosocomial infection, and MRSA and MRSP infection control strategies should be adopted in veterinary medical practice.Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial infections in human hospitals. The prevalence of hospital-acquired MRSA (HA-MRSA) infection among inpatients in intensive care units (ICUs) continues to increase steadily in Japan. Recently, cases of community-acquired MRSA (CA-MRSA) have been documented in persons without an established risk factor for HA-MRSA infection (14, 32, 36, 49).There has also been an increase in the number of reports of the isolation of MRSA from veterinarians and companion animals (5, 21, 23-26, 28, 31, 34, 38, 44, 50, 51, 53). Values reported for the prevalence of MRSA among veterinary staff include 17.9% in the United Kingdom (21), 10% in Japan (38), 3.9% in Scotland (13), and 3.0% in Denmark (28). Loeffler et al. reported that the prevalence of MRSA among dog patients and healthy dogs owned by veterinary staff members was 8.9% (21). In Japan, an MRSA isolate was detected in only one inpatient dog (3.8%) and could not be detected in any of 31 outpatient dogs (38). In the United States, MRSA isolates were detected in both dog (0.1%) and cat (0.1%) patients (31). The prevalence of MRSA among healthy dogs has been reported to be 0.7% (5). Hanselman et al. suggested that MRSA colonization may be an occupational risk for large-animal veterinarians (12). Recently, Burstiner et al. reported that the frequency of MRSA colonization among companion-animal veterinary personnel was equal to the frequency among large-animal veterinary personnel (6).In addition, other methicillin-resistant coagulase-positive staphylococci (MRCPS), such as methicillin-resistant Staphylococcus pseudintermedius (MRSP) and methicillin-resistant Staphylococcus schleiferi (MRSS), isolated from dogs, cats, and a veterinarian have been reported (11, 31, 38, 40, 52). MRSP isolates have also been detected among inpatient dogs (46.2%) and outpatient dogs (19.4%) in a Japanese veterinary teaching hospital (38). In Canada, however, MRSP and MRSS isolates were detected in only 2.1% and 0.5% of dog patients, respectively (11).Methicillin-resistant staphylococci produce penicillin-binding protein 2′, which reduces their affinity for β-lactam antibiotics. This protein is encoded by the mecA gene (48), which is carried on the staphylococcal cassette chromosome mec (SCCmec). SCCmec is a mobile genetic element characterized by the combination of the mec and ccr complexes (16), and it is classified into subtypes according to differences in the junkyard regions (43). SCCmec typing can be used as a molecular tool (22, 27, 30, 33, 36, 55) for examining the molecular epidemiology of methicillin-resistant staphylococci.In this study, we investigated the occurrence and characteristics of MRCPS isolates in a veterinary hospital in order to establish the transmission route of MRCPS in a veterinary hospital and with a view to preventing the spread of MRCPS infection. In addition, we evaluated the factors associated with MRCPS. Further, as Heller et al. have reported the distribution of MRSA within veterinary hospital environments and suggested the necessity to review cleaning protocols of hospital environments (13), we also attempted to isolate MRCPS from environmental samples collected in a veterinary hospital for an evaluation of MRSA transmission cycle though environmental surfaces in the veterinary hospital.  相似文献   

11.
12.
Phenoxyalkanoic acid (PAA) herbicides are widely used in agriculture. Biotic degradation of such herbicides occurs in soils and is initiated by α-ketoglutarate- and Fe2+-dependent dioxygenases encoded by tfdA-like genes (i.e., tfdA and tfdAα). Novel primers and quantitative kinetic PCR (qPCR) assays were developed to analyze the diversity and abundance of tfdA-like genes in soil. Five primer sets targeting tfdA-like genes were designed and evaluated. Primer sets 3 to 5 specifically amplified tfdA-like genes from soil, and a total of 437 sequences were retrieved. Coverages of gene libraries were 62 to 100%, up to 122 genotypes were detected, and up to 389 genotypes were predicted to occur in the gene libraries as indicated by the richness estimator Chao1. Phylogenetic analysis of in silico-translated tfdA-like genes indicated that soil tfdA-like genes were related to those of group 2 and 3 Bradyrhizobium spp., Sphingomonas spp., and uncultured soil bacteria. Soil-derived tfdA-like genes were assigned to 11 clusters, 4 of which were composed of novel sequences from this study, indicating that soil harbors novel and diverse tfdA-like genes. Correlation analysis of 16S rRNA and tfdA-like gene similarity indicated that any two bacteria with D > 20% of group 2 tfdA-like gene-derived protein sequences belong to different species. Thus, data indicate that the soil analyzed harbors at least 48 novel bacterial species containing group 2 tfdA-like genes. Novel qPCR assays were established to quantify such new tfdA-like genes. Copy numbers of tfdA-like genes were 1.0 × 106 to 65 × 106 per gram (dry weight) soil in four different soils, indicating that hitherto-unknown, diverse tfdA-like genes are abundant in soils.Phenoxyalkanoic acid (PAA) herbicides such as MCPA (4-chloro-2-methyl-phenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) are widely used to control broad-leaf weeds in agricultural as well as nonagricultural areas (19, 77). Degradation occurs primarily under oxic conditions in soil, and microorganisms play a key role in the degradation of such herbicides in soil (62, 64). Although relatively rapidly degraded in soil (32, 45), both MCPA and 2,4-D are potential groundwater contaminants (10, 56, 70), accentuating the importance of bacterial PAA herbicide-degrading bacteria in soils (e.g., references 3, 5, 6, 20, 41, 59, and 78).Degradation can occur cometabolically or be associated with energy conservation (15, 54). The first step in the degradation of 2,4-D and MCPA is initiated by the product of cadAB or tfdA-like genes (29, 30, 35, 67), which constitutes an α-ketoglutarate (α-KG)- and Fe2+-dependent dioxygenase. TfdA removes the acetate side chain of 2,4-D and MCPA to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, and glyoxylate while oxidizing α-ketoglutarate to CO2 and succinate (16, 17).Organisms capable of PAA herbicide degradation are phylogenetically diverse and belong to the Alpha-, Beta-, and Gammproteobacteria and the Bacteroidetes/Chlorobi group (e.g., references 2, 14, 29-34, 39, 60, 68, and 71). These bacteria harbor tfdA-like genes (i.e., tfdA or tfdAα) and are categorized into three groups on an evolutionary and physiological basis (34). The first group consists of beta- and gammaproteobacteria and can be further divided into three distinct classes based on their tfdA genes (30, 46). Class I tfdA genes are closely related to those of Cupriavidus necator JMP134 (formerly Ralstonia eutropha). Class II tfdA genes consist of those of Burkholderia sp. strain RASC and a few strains that are 76% identical to class I tfdA genes. Class III tfdA genes are 77% identical to class I and 80% identical to class II tfdA genes and linked to MCPA degradation in soil (3). The second group consists of alphaproteobacteria, which are closely related to Bradyrhizobium spp. with tfdAα genes having 60% identity to tfdA of group 1 (18, 29, 34). The third group also harbors the tfdAα genes and consists of Sphingomonas spp. within the alphaproteobacteria (30).Diverse PAA herbicide degraders of all three groups were identified in soil by cultivation-dependent studies (32, 34, 41, 78). Besides CadAB, TfdA and certain TfdAα proteins catalyze the conversion of PAA herbicides (29, 30, 35). All groups of tfdA-like genes are potentially linked to the degradation of PAA herbicides, although alternative primary functions of group 2 and 3 TfdAs have been proposed (30, 35). However, recent cultivation-independent studies focused on 16S rRNA genes or solely on group 1 tfdA sequences in soil (e.g., references 3-5, 13, and 41). Whether group 2 and 3 tfdA-like genes are also quantitatively linked to the degradation of PAA herbicides in soils is unknown. Thus, tools to target a broad range of tfdA-like genes are needed to resolve such an issue. Primers used to assess the diversity of tfdA-like sequences used in previous studies were based on the alignment of approximately 50% or less of available sequences to date (3, 20, 29, 32, 39, 47, 58, 73). Primers specifically targeting all major groups of tfdA-like genes to assess and quantify a broad diversity of potential PAA degraders in soil are unavailable. Thus, the objectives of this study were (i) to develop primers specific for all three groups of tfdA-like genes, (ii) to establish quantitative kinetic PCR (qPCR) assays based on such primers for different soil samples, and (iii) to assess the diversity and abundance of tfdA-like genes in soil.  相似文献   

13.
Various genotypes of norovirus (NoV) (genogroup I genotype 1 [GI.1], -2, -4, -5, -8, -11, -12, and -14; GII.3, -4, -6, -7, -10, -13, -14, and -15), and sapovirus (SaV) (GI.1 and GI.2, GII.1, and GIV.1) were detected from raw sewage from April 2006 to March 2008, while limited numbers of genotypes of NoV (GI.8, GII.4, GII.6, and GII.13) and SaV (GII.3 and GIV.1) and of NoV (GII.4, GII.7, and GII.13) were detected from clinical cases and healthy children, respectively. During the winter 2006 to 2008, a large number of sporadic gastroenteritis outbreaks and many outbreaks caused by NoV GII.4 occurred among inhabitants in Toyama, Japan. The copy number of genomes of NoV GII detected from raw sewage changed in relation to the number of outbreaks. NoV strains of the same genotypes observed in both raw sewage and human specimens belonged to the same cluster by phylogenetic analysis and had almost identical nucleotide sequences among each genotype. These data suggest that NoVs and SaVs detected from raw sewage reflect the viruses circulating in the community, irrespective of symptoms, and that subclinical infections of NoV are common in Japan. Combined surveys of raw sewage with those of clinical cases help us to understand the relationship between infection of these viruses and gastroenteritis.Norovirus (NoV) and sapovirus (SaV), members of the Caliciviridae family, are considered to be a major cause of acute gastroenteritis in humans. Both NoV and SaV infect humans via the fecal-oral route and cause family or community-wide outbreaks, mainly in the winter season. NoVs are shed in feces at a level of 105 to 109 virus particles per gram during the symptomatic phase (32, 37), and viruses are continuously shed from patients after cessation of the symptoms (28, 37, 40). In addition, recent reports showed relatively high levels of shedding of the viruses from asymptomatic individuals (7, 8, 32, 37).NoVs and SaVs show high diversity in their genomes (5, 9). According to such a genetic diversity, they are classified into several genogroups (genogroup I [GI], GII, and GIV for human NoV and GI, GII, GIV, GV for human SaV) and further divided into many genotypes (NoV GI genotypes 1 to 14 [GI.1-14] and GII.1-17 and SaV GI.1-5, GII.1-6, GIV.1, and GV.1) (10, 17, 18). In 2006 to 2007, NoV GII.4 caused a large number of outbreaks of acute gastroenteritis worldwide (1, 11, 35, 43, 45). However, the other genotypes of NoV and SaV may infect humans asymptomatically and persist in the environment.Raw sewage could contain enteric viruses shed from affected people, and therefore, detectable viruses in raw sewage would reflect the actual state of the circulating viruses in the area. We previously reported that polioviruses in raw sewage and river water were isolated at the same time as oral vaccination in babies, and these isolates were derived from vaccine strains (13, 30). We also showed that the nucleotide sequences of echovirus type 13 isolated from river water were closely related to those from patients with aseptic meningitis during the outbreak in 2002 (14). For NoVs and SaVs, many epidemiological surveys have been conducted to determine the prevalence and virological properties of these viruses (42). Previous reports have shown that the nucleotide sequences of NoV strains from stools of outbreaks in nursing homes and from sewage were identical for an individual outbreak (26), and NoVs detected from gastroenteritis patients, domestic sewage, river water, and cultivated oysters in the area were related to each other (44). However, less is known about infection of the viruses with minor genotypes that are silently circulating in the population.In this study, we investigated NoVs and SaVs in raw sewage from 2006 to 2008 in Japan and compared the results with the viruses detected from clinical cases as well as healthy individuals to show the comprehensive prevalence of these viruses in the community.  相似文献   

14.
15.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

16.
Human norovirus (NoV) has been studied extensively as an important cause of gastroenteritis outbreaks worldwide. While oysters are a primary vehicle for infection, few studies have examined the wider distribution of NoV in the estuarine environment. Active shellfish-harvesting areas in Georgia were examined for the prevalence, genotype diversity, and concentrations of NoV in a variety of estuarine sample types over the course of 1 year. Of the 225 samples (9 oyster, 72 water, 72 63- to 200-μm plankton, and 72 >200-μm plankton) collected from 12 stations across two estuaries, 21 samples (9.3%) tested positive for NoV. By sample type, 55.0% (5/9) of oysters, 8.3% (6/72) of water samples, 11.1% (8/72) of 63- to 200-μm plankton samples, and 2.8% (2/72) of >200-μm plankton samples were positive for human NoV. The two NoV-positive >200-μm plankton samples, which contained mainly zooplankton, had the greatest quantity of NoV genomes (3.5 × 1013 and 1.7 × 1015 genomes g−1) of any sample tested. The majority, 90.5% (19/21), of the samples tested positive for genogroup I NoV, and only 9.5% (2/21) of the samples tested positive for genogroup II. The high concentrations of NoV in plankton samples compared to water and oyster samples were unexpected and provide new insights into the presence and distribution of human NoV in the water environment.Human norovirus (NoV) is the leading cause of nonbacterial gastroenteritis worldwide (3). The Centers for Disease Control and Prevention (CDC) estimate that 23 million cases of acute gastroenteritis due to NoV occur each year, with symptoms including acute-onset vomiting, watery nonbloody diarrhea with abdominal cramps, and nausea (35). NoV outbreaks are pervasive for many reasons, but particularly because the virus is highly contagious and environmentally hardy (7). Additionally, infected individuals can excrete millions of viral particles in feces, leading to large numbers in sewage (16). Without proper removal or inactivation during wastewater treatment, the viruses can be released into recreational and shellfish-harvesting water bodies. Complete inactivation of NoV during sewage treatment is rare, and even in areas with proper wastewater treatment, contamination of oyster beds has been reported (5, 16, 17, 32, 38). Because bivalve molluscan shellfish are believed to act as filters for viruses and other microbes and because NoV is extremely infectious (as little as one viral particle is required for disease), the disease risk for consumption of raw oysters is high (27, 33, 40).Human NoV genogroup I (GI) and GII have been detected in oyster samples harvested from bays and estuaries worldwide (5, 10, 20). Ueki et al. (42) detected NoV in both shellfish and the surrounding river water in Japan and concluded that NoV contamination was most likely due to sewage and treated wastewater input into the river; however, no study has yet been able to characterize how NoV may be naturally distributed in an estuarine system, including in water, adhered to particles (including plankton), and in shellfish. The limitations are due in part to a lack of adequate detection methods specifically adapted to different environmental-sample types (8). Using a newly developed detection and quantification protocol (21), this study aimed to examine the distribution of NoV genogroups across a range of sample types within an estuarine system with the goal of better characterizing possible circulation of viruses between water, plankton, and oysters.  相似文献   

17.
18.
19.
20.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号