共查询到20条相似文献,搜索用时 12 毫秒
1.
Matthew Solomonson Pitter F. Huesgen Gregory A. Wasney Nobuhiko Watanabe Robert J. Gruninger Gerd Prehna Christopher M. Overall Natalie C. J. Strynadka 《The Journal of biological chemistry》2013,288(24):17782-17790
Mycobacteria use specialized type VII (ESX) secretion systems to export proteins across their complex cell walls. Mycobacterium tuberculosis encodes five nonredundant ESX secretion systems, with ESX-1 being particularly important to disease progression. All ESX loci encode extracellular membrane-bound proteases called mycosins (MycP) that are essential to secretion and have been shown to be involved in processing of type VII-exported proteins. Here, we report the first x-ray crystallographic structure of MycP1(24–407) to 1.86 Å, defining a subtilisin-like fold with a unique N-terminal extension previously proposed to function as a propeptide for regulation of enzyme activity. The structure reveals that this N-terminal extension shows no structural similarity to previously characterized protease propeptides and instead wraps intimately around the catalytic domain where, tethered by a disulfide bond, it forms additional interactions with a unique extended loop that protrudes from the catalytic core. We also show MycP1 cleaves the ESX-1 secreted protein EspB from both M. tuberculosis and Mycobacterium smegmatis at a homologous cut site in vitro. 相似文献
2.
3.
Stephen?C. Murray Baiba?K. Gillard Steven?J. Ludtke Henry?J. Pownall 《Biophysical journal》2016,110(4):810-816
Early forms of high-density lipoproteins (HDL), nascent HDL, are formed by the interaction of apolipoprotein AI with macrophage and hepatic ATP-binding cassette transporter member 1. Various plasma activities convert nascent to mature HDL, comprising phosphatidylcholine (PC) and cholesterol, which are selectively removed by hepatic receptors. This process is important in reducing the cholesterol burden of arterial wall macrophages, an important cell type in all stages of atherosclerosis. Interaction of apolipoprotein AI with dimyristoyl (DM)PC forms reconstituted (r)HDL, which is a good model of nascent HDL. rHDL have been used as an antiathersclerosis therapy that enhances reverse cholesterol transport in humans and animal models. Thus, identification of the structure of rHDL would inform about that of nascent HDL and how rHDL improves reverse cholesterol transport in an atheroprotective way. Early studies of rHDL suggested a discoidal structure, which included pairs of antiparallel helices of apolipoprotein AI circumscribing a phospholipid bilayer. Another rHDL model based on small angle neutron scattering supported a double superhelical structure. Herein, we report a cryo-electron microscopy-based model of a large rHDL formed spontaneously from apolipoprotein AI, cholesterol, and excess DMPC and isolated to near homogeneity. After reconstruction we obtained an rHDL structure comprising DMPC, cholesterol, and apolipoprotein AI (423:74:1 mol/mol) forming a discoidal particle 360 Å in diameter and 45 Å thick; these dimensions are consistent with the stoichiometry of the particles. Given that cryo-electron microscopy directly observes projections of individual rHDL particles in different orientations, we can unambiguously state that rHDL particles are protein bounded discoidal bilayers. 相似文献
4.
5.
《Journal of molecular biology》2023,435(18):168211
Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) is a multifunctional RNA-binding protein that is associated with neurodegenerative diseases, such as amyotrophic lateral sclerosis and multisystem proteinopathy. In this study, we have used cryo-electron microscopy to investigate the three-dimensional structure of amyloid fibrils from full-length hnRNPA1 protein. We find that the fibril core is formed by a 45-residue segment of the prion-like low-complexity domain of the protein, whereas the remaining parts of the protein (275 residues) form a fuzzy coat around the fibril core. The fibril consists of two fibril protein stacks that are arranged into a pseudo-21 screw symmetry. The ordered core harbors several of the positions that are known to be affected by disease-associated mutations, but does not encompass the most aggregation-prone segments of the protein. These data indicate that the structures of amyloid fibrils from full-length proteins may be more complex than anticipated by current theories on protein misfolding. 相似文献
6.
Brian Callahan Kiet Nguyen Alissa Collins Kayla Valdes Michael Caplow David K. Crossman Adrie J. C. Steyn Leslie Eisele Keith M. Derbyshire 《Journal of bacteriology》2010,192(1):326-335
Mycobacterium tuberculosis EsxA and EsxB proteins are founding members of the WXG100 (WXG) protein family, characterized by their small size (∼100 amino acids) and conserved WXG amino acid motif. M. tuberculosis contains 11 tandem pairs of WXG genes; each gene pair is thought to be coexpressed to form a heterodimer. The precise role of these proteins in the biology of M. tuberculosis is unknown, but several of the heterodimers are secreted, which is important for virulence. However, WXG proteins are not simply virulence factors, since nonpathogenic mycobacteria also express and secrete these proteins. Here we show that three WXG heterodimers have structures and properties similar to those of the M. tuberculosis EsxBA (MtbEsxBA) heterodimer, regardless of their host species and apparent biological function. Biophysical studies indicate that the WXG proteins from M. tuberculosis (EsxG and EsxH), Mycobacterium smegmatis (EsxA and EsxB), and Corynebacterium diphtheriae (EsxA and EsxB) are heterodimers and fold into a predominately α-helical structure. An in vivo protein-protein interaction assay was modified to identify proteins that interact specifically with the native WXG100 heterodimer. MtbEsxA and MtbEsxB were fused into a single polypeptide, MtbEsxBA, to create a biomimetic bait for the native heterodimer. The MtbEsxBA bait showed specific association with several esx-1-encoded proteins and EspA, a virulence protein secreted by ESX-1. The MtbEsxBA fusion peptide was also utilized to identify residues in both EsxA and EsxB that are important for establishing protein interactions with Rv3871 and EspA. Together, the results are consistent with a model in which WXG proteins perform similar biological roles in virulent and nonvirulent species.The WXG100 (WXG; pfam06013) proteins are a class of effector molecules found in gram-positive bacteria (26). WXG proteins are characterized by their small size (∼ 100 amino acids [aa]) and the presence of a WXG motif, or its structural equivalent, near the midpoint of their primary sequence (26). Bioinformatic analyses have shown that one WXG gene is frequently positioned near, or directly adjacent to, a second, related, WXG gene (14). The gene pairs characterized thus far encode proteins that associate to form 1:1 complexes (20, 31). The WXG proteins were once thought to be restricted to the mycobacteria, but homologues have now been detected in species of Bacillus, Listeria, Streptomyces, and Corynebacterium, among others, and the Pfam server lists >89 distinct WXG-encoding species and strains (10).The identification of WXG proteins encoded by the pathogens Mycobacterium tuberculosis (15, 17, 19, 36), Mycobacterium marinum (13), and Staphylococcus aureus (5) has created significant interest in the proteins'' biological activity. Nevertheless, these proteins are not a priori virulence factors (39), since organisms expressing WXG proteins are not necessarily capable of causing disease. In addition to pathogenesis, the WXG proteins are associated with processes as disparate as zinc homeostasis (24) and conjugal gene transfer (9, 11). A model for the mechanism(s) of action of these proteins that includes an explanation for their apparent functional versatility is at present lacking. One reason for this ambiguity may be the near-absence of studies comparing virulence-associated and non-virulence-associated WXG proteins, which is a goal of this study.The M. tuberculosis secreted virulence factors EsxA (also called ESAT-6, or Rv3875) and EsxB (CFP-10; Rv3874) are the founding members of the WXG family, and M. tuberculosis derivatives defective in EsxA and EsxB are attenuated (17, 19, 36). The results of biochemical and structural studies indicate that EsxA and EsxB form a tightly associated heterodimer, EsxAB (25, 30, 31). The M. tuberculosis genome contains 23 WXG genes, named esxA to esxW, and the majority of these are expressed as tandem pairs (26). Of the pairs, five, including esxA and esxB, are contained within larger, highly conserved genetic loci, called esx-1 to esx-5 (Fig. (Fig.1).1). These loci have been the focus of much research, since mutants of esx-1 are attenuated, and esx-3 and esx-5 are necessary for in vitro growth of M. tuberculosis and M. marinum (1, 2, 32-34). The esx loci are proposed to encode secretory apparatuses dedicated to the secretion of their cognate WXG proteins (1).Open in a separate windowFIG. 1.Genetic map of the esx-1 loci of M. tuberculosis and M. smegmatis. The M. tuberculosis esx-1 genes discussed in the text are indicated by white arrows, as are their M. smegmatis homologues. The M. tuberculosis map also shows the Rv3884 and Rv3885 genes, which are part of the adjacent esx-2 locus. pRD1-2F9 is the cosmid that was used to create an esx-1-specific prey library. pRD1-2F9 includes the Rv3860 to Rv3885 genes, thus encompassing the entire esx-1 locus and part of esx-2. The four genes below the M. smegmatis map include defective insertion sequences (ISs) inserted into MSMEG_0075.Although the majority of genes required for the secretion of the EsxAB heterodimer are encoded from within esx-1, additional non-esx-1 genes are necessary for secretion. In particular, one M. tuberculosis locus, esp, encodes three proteins essential for EsxAB secretion (12, 23). The first gene of the operon encodes a protein, EspA, that is cosecreted with EsxAB via the ESX-1 apparatus (12). Although no direct physical evidence has been presented, the inference from the interdependent cosecretion of the three proteins is that they likely form a complex, which is secreted by the ESX-1 apparatus. In this paper we provide the first genetic evidence that these three proteins interact.The lack of a genetic assay for the study of ESX-1 activity in M. tuberculosis has hindered the identification of all of the protein components of the apparatus and all of the substrates that it secretes. However, the fast-growing, nonpathogenic organism Mycobacterium smegmatis has a conserved esx-1 locus that is essential for DNA transfer, and we have exploited this requirement for genetic studies (9). These analyses have shown that the M. smegmatis ESX-1 apparatus is functionally related to that of M. tuberculosis (11) and that M. smegmatis encodes non-esx-1 genes necessary for the secretion of the EsxAB heterodimer, including orthologues of EspA (9).Here we have examined whether the secondary and quaternary structures of M. tuberculosis EsxA and EsxB are prototypical for other, functionally distinct and evolutionarily distant members of the WXG family (Fig. (Fig.2A).2A). Comparisons were made to homologues encoded by M. smegmatis (esxA and esxB), Corynebacterium diphtheriae (esxA and esxB), and an additional non-virulence-related pair from M. tuberculosis (esxG and esxH, encoded from the esx-3 locus). Structural characterization of these proteins establishes that their secondary and quaternary structures are conserved, with each pair folding into a predominately α-helical structure and associating to form a heterodimer. We next devised and tested the utility of a novel strategy to identify proteins that interact specifically with these WXG heterodimers. This involved fusing EsxB and EsxA to create a biomimetic heterodimer for use in mycobacterial two-hybrid experiments. We reasoned that the use of this unique bait would allow the detection of proteins that interact with both components of the native heterodimer and that these proteins would normally go undetected in the conventional, single-protein two-hybrid screens. Indeed, using this approach, we identified novel protein partners of M. tuberculosis EsxBA (MtbEsxBA). We show for the first time that EspA proteins from M. tuberculosis and M. smegmatis interact with the EsxBA heterodimer (from both species) but not with EsxA or EsxB alone. We also provide evidence for promiscuity between the different M. tuberculosis ESX apparatuses by showing that EsxBA, encoded by esx-1, can interact with Esx proteins encoded by esx-2. Taken together, our studies suggest that the WXG proteins possess similar structures and properties, regardless of the host species and the apparent biological function.Open in a separate windowFIG. 2.Sequence alignment of WXG proteins characterized in this study and the strategy used to facilitate their expression. (A) Amino acid sequence alignment of four pairs of WXG proteins. Conserved sequences are in boldface, and the signature WXG motif is indicated with asterisks. Three residues in Rv3874 (EsxB) and a single residue in Rv3875 (EsxA) are underlined; they are the sites of amino acid substitutions discussed in the text that abrogate Rv3871 interactions. (B) (Bottom) Scheme for coexpression of tandemly arranged WXG genes. (Top) The ribbon cartoon (30) shows how the two monomers are freed from the expressed fusion protein by thrombin cleavage (scissors) at the peptide tether (balls and sticks). 相似文献
7.
8.
结核分枝杆菌作为肺结核病的病原菌,在人类中致死率远高于其他病原菌.结核分枝杆菌具有特殊的疏水性细胞壁结构,这种致密的细胞壁结构帮助结核分枝杆菌抵御外界环境压力和来自宿主细胞的毒素.同时,它利用特殊的分泌系统将体内的毒力蛋白输出体外,ESX-1分泌系统就是其中之一.结核分枝杆菌ESX-1系统在结核分枝杆菌进入宿主细胞吞噬小体、逃逸至细胞质以及杀死吞噬细胞这些过程中发挥重要作用.研究表明,在结核分枝杆菌内膜上存在一个由多亚基组成、旨在帮助结核分枝杆菌向外输送分泌蛋白的分泌装置.在这个分泌装置的帮助下,结核分枝杆菌重要的毒力蛋白ESAT-6跨内膜向外分泌,EspB也通过这个内膜上的分泌装置被转运至胞外.EspB存在于静置培养的结核分枝杆菌的胶囊层中,也可在振荡培养的结核分枝杆菌的培养液中被检测.通过X射线晶体衍射分析,我们解析了EspB的晶体结构,相比于其他同源结构,发现了EspB的不同构象,即EspB单体能够自组装成为七聚体的规则结构,联系其与毒力因子ESAT-6具有共分泌的特点,七聚体构象的发现为解释EspB在结核分枝杆菌向外分泌蛋白的过程中发挥的作用提供线索,即EspB具有锚定在结核分枝杆菌胶囊层中,作为运输ESAT-6的孔道而存在的可能. 相似文献
9.
10.
Molecular chaperones of the stress 70 family reversibly bind and release nonnative proteins in a nucleotide-dependent cycle. Purified monoclonal antibodies prepared against spinach (Spinacia oleracea) stress 70 molecular chaperones were used in immunoprecipitation experiments with extracts of spinach leaf tissue pulse-labeled with [35S]methionine in an effort to detect whether low-temperature exposure altered the biogenesis or the native state stability of any proteins leading to the formation of complexes with the stress 70 molecular chaperones. The two monoclonal antibodies used in this research are highly specific for the cytosolic or ER-luminal stress 70 molecular chaperones. Analyses of the immunoprecipitation results indicate that low temperature causes an increased association of some proteins with the two chaperones. The findings are consistent with the hypothesis that normal biogenesis or the conformational stability of specific proteins may be unfavorably altered at low temperature in spinach and perhaps other plants. 相似文献
11.
Teutschbein J Schumann G Möllmann U Grabley S Cole ST Munder T 《Microbiological research》2009,164(3):253-259
Tuberculosis is a chronic infectious disease caused by bacteria of the Mycobacterium tuberculosis complex. One of the major contributors to virulence and intercellular spread of M. tuberculosis is the ESAT-6 secretion system 1 (ESX-1) that has been lost by the live vaccines Mycobacterium bovis BCG (Bacille Calmette Guérin) and Mycobacterium microti as a result of independent deletions. ESX-1 consists of at least 10 genes (Rv3868-Rv3877) encoding the T-cell antigens ESAT-6 and CFP-10 as well as AAA-ATPases, chaperones, and membrane proteins which probably form a novel export system. To better understand the mode of action of the ESX-1 proteins, as a prelude to drug development, we examined systematically the interactions between the various proteins using the two-hybrid system in Saccharomyces cerevisiae. Interestingly, ESAT-6 and CFP-10 formed both hetero- and homodimers. Moreover, Rv3866, Rv3868, and CFP-10 interacted with Rv3873 which also homodimerized. The data were summarized in a protein linkage map that is consistent with the model for the secretion apparatus and can be used as a basis to identify inhibitors of specific interactions. 相似文献
12.
Sunny Park Kathryn A. Kelley Evgeny Vinogradov Robert Solinga Christopher Weidenmaier Yoshiki Misawa Jean C. Lee 《Journal of bacteriology》2010,192(18):4618-4626
Staphylococcus saprophyticus is a common cause of uncomplicated urinary tract infections in women. S. saprophyticus strain ATCC 15305 carries two staphylococcal cassette chromosome genetic elements, SCC15305RM and SCC15305cap. The SCC15305cap element carries 13 open reading frames (ORFs) involved in capsular polysaccharide (CP) biosynthesis, and its G+C content (26.7%) is lower than the average G+C content (33.2%) for the whole genome. S. saprophyticus strain ATCC 15305 capD, capL, and capK (capDSsp, capLSsp, and capKSsp) are homologous to genes encoding UDP-FucNAc biosynthesis, and gtaB and capISsp show homology to genes involved in UDP-glucuronic acid synthesis. S. saprophyticus ATCC 15305 CP, visualized by immunoelectron microscopy, was extracted and purified using anionic-exchange and size exclusion chromatography. Analysis of the purified CP by 1H and 13C nuclear magnetic resonance (NMR) spectroscopy and gas-liquid chromatography revealed two types of branched tetrasaccharide repeating units composed of the following: Sug represents two stereoisomers of 2-acetamido-2,6-dideoxy-hexos-4-ulose residues, one of which has an arabino configuration. The encapsulated ATCC 15305 strain was resistant to complement-mediated opsonophagocytic killing by human neutrophils, whereas the acapsular mutant C1 was susceptible. None of 14 clinical isolates reacted with antibodies to the ATCC 15305 CP. However, 11 of the 14 S. saprophyticus isolates were phenotypically encapsulated based on their resistance to complement-mediated opsonophagocytic killing and their failure to hemagglutinate when cultivated aerobically. Ten of the 14 clinical strains carried homologues of the conserved staphylococcal capD gene or the S. saprophyticus gtaB gene, or both. Our results suggest that some strains of S. saprophyticus are encapsulated and that more than one capsular serotype exists.Approximately 13 million women develop urinary tract infections (UTIs) annually in the United States, with a recurrence rate between 25% and 44% (45). Staphylococcus saprophyticus is second only to Escherichia coli as a cause of uncomplicated UTI in young women (45, 46). A novobiocin-resistant member of the coagulase-negative staphylococci (60), S. saprophyticus has rarely exhibited resistance to other antibiotics (25). However, a recent report (19) indicated that methicillin-resistant S. saprophyticus isolates have emerged in Japan. The gastrointestinal tract and the vagina are the major reservoirs of S. saprophyticus (18, 30) and the likely sources of recurrent infection (20, 37, 49). Approximately 40% of patients with S. saprophyticus UTI present with acute pyelonephritis (22, 30). These patients experience symptoms more severe than those of patients infected by E. coli (24), and they are more likely to develop recurrent infections (21).A number of potential virulence factors have been identified in S. saprophyticus. Gatermann et al. showed that in a rodent model of ascending UTI, the production of urease contributes to S. saprophyticus growth and pathogenicity in the bladder (10, 12). Other putative virulence factors of S. saprophyticus include a surface-associated lipase (11, 51, 53), the collagen binding protein SdrI (52), and a cell wall-anchored hemagglutinin protein that mediates the binding of S. saprophyticus to sheep erythrocytes, fibronectin, and human uroepithelial cells (14, 29, 34, 35). The hemagglutinin was dubbed UafA in the sequenced ATCC 15305 strain, and deletion of the uafA gene resulted in reduced S. saprophyticus hemagglutination (HA) and adherence to human bladder carcinoma cells (29). Kuroda et al. noted that UafA-mediated adherence of S. saprophyticus to the T24 cell line was inhibited by the presence of the ATCC 15305 polysaccharide capsule (29).Staphylococcal species produce a variety of extracellular glycopolymers that contribute to the surface properties and virulence of the bacterium, such as capsular polysaccharides (CP), teichoic acids, and poly-N-acetylglucosamine (PNAG). CP production renders Staphylococcus aureus resistant to opsonophagocytic killing; alanine modifications of teichoic acids promote bacterial resistance to antimicrobial peptides (40); and PNAG is involved in biofilm formation (4). Recently, the secretion of another anionic polymer (poly-γ-dl-glutamic acid) by certain other coagulase-negative staphylococci was reported (28). Polyglutamic acid production is enhanced under high-salt conditions and may contribute to the survival of Staphylococcus epidermidis on human skin.S. saprophyticus strain 15305 does not produce PNAG or polyglutamic acid (28, 29), but this uropathogenic species is encapsulated. CP are lacking in isolates of S. epidermidis, the most common of the coagulase-negative species, but genomic evidence indicates that Staphylococcus haemolyticus (7, 57), S. saprophyticus (29), and Staphylococcus carnosus (47) carry capsule loci with genetic similarity to the Staphylococcus aureus cap5 (cap8) gene locus. In this study, we purified and characterized the CP produced by S. saprophyticus ATCC 15305 and investigated the CP phenotype of S. saprophyticus clinical isolates. 相似文献
13.
14.
15.
近年来利用定点突变技术研究苏云金杆菌(Bacillus thuringiesis,Bt)杀虫晶体蛋白(Insecticidal crystal proteins,ICP)作用机制已取得良好进展.杀虫晶体蛋白不同结构域上氨基酸残基的突变将影响其稳定性,与受体的结合,不可逆的昆虫中肠膜插入及离子通道活性的强弱等.突变研究表明,结构域Ⅰ参与不可逆结合及插入昆虫中肠膜过程;结构域Ⅱ参与受体结合,包括初始结合与不可逆结合;结构域Ⅲ在杀虫特异性和维持三维结构的稳定性方面起重要作用,同时,可能参与离子通道的形成,受体结合和插入昆虫中肠膜过程.利用各种定点突变技术对各位点进行突变可以研究单一位点的功能,到目前为止,已有很多关于这方面的研究,并且筛选到了毒力提高的工程菌株. 相似文献
16.
Chloé Tessereau Monique Buisson Nastasia Monnet Marine Imbert Laure Barjhoux Caroline Schluth-Bolard Damien Sanlaville Emmanuel Conseiller Maurizio Ceppi Olga M. Sinilnikova Sylvie Mazoyer 《PloS one》2013,8(10)
Although the breast cancer susceptibility gene BRCA1 is one of the most extensively characterized genetic loci, much less is known about its upstream variable number tandem repeat element, the RNU2 locus. RNU2 encodes the U2 small nuclear RNA, an essential splicing element, but this locus is missing from the human genome assembly due to the inherent difficulty in the assembly of repetitive sequences. To fill the gap between RNU2 and BRCA1, we have reconstructed the physical map of this region by re-examining genomic clone sequences of public databases, which allowed us to precisely localize the RNU2 array 124 kb telomeric to BRCA1. We measured by performing FISH analyses on combed DNA for the first time the exact number of repeats carried by each of the two alleles in 41 individuals and found a range of 6-82 copies and a level of heterozygosity of 98%. The precise localisation of the RNU2 locus in the genome reference assembly and the implementation of a new technical tool to study it will make the detailed exploration of this locus possible. This recently neglected macrosatellite could be valuable for evaluating the potential role of structural variations in disease due to its location next to a major cancer susceptibility gene. 相似文献
17.
The transportation of membrane proteins through the aqueous subcellular space is an important and challenging process. Its molecular mechanism and the associated structural change are poorly understood. Periplasmic chaperones, such as Skp in Escherichia coli, play key roles in the transportation and protection of outer membrane proteins (OMPs) in Gram-negative bacteria. The molecular mechanism through which Skp interacts with and protects OMPs remains mysterious. Here, a combined experimental and molecular dynamics simulation study was performed to gain the structural and dynamical information in the process of OMPs and Skp binding. Stopped-flow experiments on site specific mutated and labeled Skp and several OMPs, namely OmpC, the transmembrane domain of OmpA, and OmpF, allowed us to obtain the mechanism of OMP entering the Skp cavity, and molecular dynamics simulations yielded detailed molecular interactions responsible for this process. Both experiment and simulation show that the entrance of OMP into Skp is a highly directional process, which is initiated by the interaction between the N-terminus of OMP and the bottom “tentacle” domain of Skp. The opening of the more flexible tentacle of Skp, the non-specific electrostatic interactions between OMP and Skp, and the constant formation and breaking of salt bridges between Skp and its substrate together allow OMP to enter Skp and gradually “climb” into the Skp cavity in the absence of an external energy supply. 相似文献
18.
Mycobacterial mammalian cell entry protein 1A (Mce1A) is involved in the uptake of bacteria in non-phagocytic cells and also possibly in granuloma formation. However, it has not been clarified whether the interaction between mycobacterial Mce1A and epithelial cell induces chemokine and cytokine production which is required for granuloma formation. To this end, we infected A549 alveolar epithelial cells in vitro with E. coli expressing Mce1A on the cell surface and examined the resultant chemokine/cytokine production. Mce1A promoted bacterial adherence and internalization of E. coli into A549 cells, and these recombinant bacteria induced high levels of MCP-1 and IL-8 production, compared to E. coli harboring the plasmid vector alone. Chemokine production was enhanced by the internalization of recombinant E. coli expressing Mce1A because cytochalasin D treatment partially inhibited MCP-1 and IL-8 production. However, Mce1A-coated latex beads did not induce the chemokine production. These results suggest that although Mce1A does not induce production of chemokines, it may promote chemokine induction by augmenting the interaction between bacteria and epithelial cells. 相似文献
19.
《Cell cycle (Georgetown, Tex.)》2013,12(17):2091-2098
COMMD1 is a protein which is associated with multiple cellular pathways, including NFκB signaling, copper homeostasis and sodium transport. Recently we found that COMMD1 is also essential for normal mouse embryogenesis. Embryos deficient for Commd1 are retarded and die between 9.5 and 10.5 dpc. Increased HIF-1 activity and elevated HIF-1α protein expression were observed in 9.5 dpc Commd1-deficient embryos. In line with these in vivo data, in vitro studies showed that reduced COMMD1 expression caused increased HIF-1α protein stability and HIF-1 activity. Functional characterization of COMMD1 in NFκB signaling and ATP7B-dependent biliary copper excretion suggested that COMMD1 also has a role in regulating the protein degradation of RelA (p65) and ATP7B. The exact function of COMMD1 in these pathways remains elusive but these recent studies suggest that COMMD1 is associated with the ubiquitin-proteasomal system for regulating protein stability. 相似文献
20.
We studied the thermal behavior of membranes composed of mixtures of natural cerebrosides (from porcine brain) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) with and without cholesterol, using differential scanning calorimetry, Fourier transform infrared spectroscopy, and confocal/multiphoton fluorescence microscopy. The POPC/cerebroside mixture display solid ordered/liquid disordered phase coexistence in a broad range of compositions and temperatures in agreement with previous results reported for POPC/(bovine brain)cerebrosides. The observed phase coexistence scenario consists of elongated, micrometer-sized cerebroside-rich solid ordered domains that span the bilayer, embedded in a POPC-rich liquid disordered phase. The data obtained from differential scanning calorimetry and Fourier transform infrared spectroscopy was in line with that obtained in the microscopy experiments for the binary mixture, except at very high cerebroside molar fractions (0.8-0.9) were some differences are observed. Cholesterol incorporation exerts strong changes on the lateral organization of POPC/porcine brain cerebroside membranes. At intermediate cholesterol concentrations (10-25 mol %) the solid ordered/liquid disordered phase coexistence scenario gradually transform to a solid ordered/liquid ordered one. Above 25 mol % of cholesterol two distinct regions with liquid ordered phase character are visualized in the membrane until a single liquid ordered phase forms at 40 mol % cholesterol. The observed cholesterol effect largely differs from that reported for POPC/porcine brain ceramide, reflecting the impact of the sphingolipids polar headgroup on the membrane lateral organization. 相似文献