首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Loss-of-function mutations of the tumor suppressor gene encoding fumarase (FH) occur in individuals with hereditary leiomyomatosis and renal cell cancer syndrome (HLRCC). We found that loss of FH activity conferred protection from apoptosis in normal human renal cells and fibroblasts. In FH-defective cells, both hypoxia-inducible factor 1α (HIF-1α) and HIF-2α accumulated, but they were not required for apoptosis protection. Conversely, AMP-activated protein kinase (AMPK) was activated and required, as evidenced by the finding that FH inactivation failed to protect AMPK-null mouse embryo fibroblasts (MEFs) and AMPK-depleted human renal cells. Activated AMPK was detected in renal cysts, which occur in mice with kidney-targeted deletion of Fh1 and in kidney cancers of HLRCC patients. In Fh1-null MEFs, AMPK activation was sustained by fumarate accumulation and not by defective energy metabolism. Addition of fumarate and succinate to kidney cells led to extracellular signal-regulated kinase 1/2 (ERK1/2) and AMPK activation, probably through a receptor-mediated mechanism. These findings reveal a new mechanism of tumorigenesis due to FH loss and an unexpected pro-oncogenic role for AMPK that is important in considering AMPK reactivation as a therapeutic strategy against cancer.  相似文献   

3.
Hereditary leiomyomatosis and renal cell cancer (HLRCC) (MIM 605839) is a recently identified autosomal dominant tumor susceptibility syndrome characterized by predisposition to benign leiomyomas of the skin and the uterus (fibroids, myomas). Susceptibility to early-onset renal cell carcinoma and uterine leiomyosarcoma is present in a subset of families. Renal cell carcinomas are typically solitary and aggressive tumors displaying papillary type 2 or collecting duct histology. The disease predisposing gene was identified as fumarate hydratase (fumarase, FH) (MIM 136850). FH encodes an enzyme that operates in the mitochondrial Krebs cycle being thus involved in cellular energy metabolism. The recent discovery of HLRCC and the predisposing gene FH has increased the present knowledge of hereditary renal cancer and enabled identification of the predisposed individuals. This review provides the present knowledge of the clinical, histopathological, and molecular features of HLRCC. Future prospects related to studies on the phenotype and molecular biology of HLRCC will also be discussed.  相似文献   

4.
Yogev O  Naamati A  Pines O 《The FEBS journal》2011,278(22):4230-4242
The enzyme fumarase is a conserved protein in all organisms with regard to its sequence, structure and function. This enzyme participates in the tricarboxylic acid cycle in mitochondria which is essential for cellular respiration in eukaryotes. However, a common theme conserved from yeast to humans is the existence of a cytosolic form of fumarase; hence this protein is dual localized. We have coined identical (or nearly identical) proteins situated in different subcellular locations 'echoforms' or 'echoproteins'. Fumarase was the first example of a dual localized protein whose mechanism of distribution was found to be based on a single translation product. Consequently, fumarase has become a paradigm for three unique eukaryotic cellular phenomena related to protein dual localization: (a) distribution between mitochondria and the cytoplasm involves reverse translocation; (b) targeting to mitochondria involves translation coupled import; and (c) there are two echoforms possessing distinct functions in the respective subcellular compartments. Here we describe and discuss these fumarase related phenomena and in addition point out approaches for studying dual function of distributed proteins, in particular compartment-specific depletion. In the case of fumarase, the cytoplasmic function was only recently discovered; the enzyme was found to participate in the cellular response to DNA double strand breaks. Strikingly, upon DNA damage the protein is transported from the cytosol to the nucleus, where by virtue of its enzymatic activity it participates in the DNA damage response.  相似文献   

5.
Cloning of the Saccharomyces cerevisiae FUM1 gene downstream of the strong GAL10 promoter resulted in inducible overexpression of fumarase in the yeast. The overproducing strain exhibited efficient bioconversion of fumaric acid to L-malic acid with an apparent conversion value of 88% and a conversion rate of 80.4 mmol of fumaric acid/h per g of cell wet weight, both of which are much higher than parameters known for industrial bacterial strains. The only product of the conversion reaction was L-malic acid, which was essentially free of the unwanted by-product succinic acid. The GAL10 promoter situated upstream of a promoterless FUM1 gene led to production and correct distribution of the two fumarase isoenzyme activities between cytosolic and mitochondrial subcellular fractions. The amino-terminal sequence of fumarase contains the mitochondrial signal sequence since (i) 92 of 463 amino acid residues from the amino terminus of fumarase are sufficient to localize fumarase-lacZ fusions to mitochondria and (ii) fumarase and fumarase-lacZ fusions lacking the amino-terminal sequence are localized exclusively in the cytosol. The possibility that both mitochondrial and cytosolic fumarases are derived from the same initial translation product is discussed.  相似文献   

6.
Cloning of the Saccharomyces cerevisiae FUM1 gene downstream of the strong GAL10 promoter resulted in inducible overexpression of fumarase in the yeast. The overproducing strain exhibited efficient bioconversion of fumaric acid to L-malic acid with an apparent conversion value of 88% and a conversion rate of 80.4 mmol of fumaric acid/h per g of cell wet weight, both of which are much higher than parameters known for industrial bacterial strains. The only product of the conversion reaction was L-malic acid, which was essentially free of the unwanted by-product succinic acid. The GAL10 promoter situated upstream of a promoterless FUM1 gene led to production and correct distribution of the two fumarase isoenzyme activities between cytosolic and mitochondrial subcellular fractions. The amino-terminal sequence of fumarase contains the mitochondrial signal sequence since (i) 92 of 463 amino acid residues from the amino terminus of fumarase are sufficient to localize fumarase-lacZ fusions to mitochondria and (ii) fumarase and fumarase-lacZ fusions lacking the amino-terminal sequence are localized exclusively in the cytosol. The possibility that both mitochondrial and cytosolic fumarases are derived from the same initial translation product is discussed.  相似文献   

7.
8.
The ubiquitin-mediated degradation of hypoxia-inducible factor-α (HIF-α) by a von Hippel-Lindau tumor suppressor protein (pVHL) is mechanistically responsible for controlling gene expression due to oxygen availability. Germline mutations in the VHL gene cause dysregulation of HIF and induce an autosomal dominant cancer syndrome referred to as VHL disease. However, it is unclear whether HIF accumulation caused by VHL mutations is sufficient for tumorigenesis. Recently, we found that pVHL directly associates and positively regulates the tumor suppressor p53 by inhibiting Mdm2-mediated ubiquitination, and by subsequently recruiting p53-modifying enzymes. Moreover, VHL-deleted RCC cells showed attenuated apoptosis or abnormal cell-cycle arrest upon DNA damage, but became normal when pVHL was restored. Thus, pVHL appears to play a pivotal role in tumor suppression by participating actively as a component of p53 transactivation complex during DNA damage response.  相似文献   

9.
10.
Summary Electrophoretic studies of fumarase and nicotine adenine dinucleotide (NAD)-malate dehydrogenase were carried out in the fumaric acid-accumulating fungus Rhizopus oryzae. The analyses revealed two fumarase isoenzymes, one localised solely in the cytosol and the other found both in the cytosol and in the mitochondrial fraction. The activity of the cytosolic isoenzyme of fumarase was higher during the acid production stage than during growth. Addition of cycloheximide inhibited fumaric acid production and decreased the activity of the cytosolic isoenzyme of fumarase. These results suggested that de novo protein synthesis is required for increase in the activity of the cytosolic isoenzyme and that such an increase in activity is essential for fumaric acid accumulation. Three distinct isoenzymes of NAD-malate dehydrogenase could be detected in R. oryzae. No changes were observed in the isoenzyme pattern of malate dehydrogenase during fumaric acid production.  相似文献   

11.
Saccharomyces cerevisiae accumulates l-malic acid but only minute amounts of fumaric acid. A 13C-nuclear magnetic resonance study following the label from glucose to l-malic acid indicates that the l-malic acid is synthesized from pyruvic acid via oxaloacetic acid. From this, and from previously published studies, we conclude that a cytosolic reductive pathway leading from pyruvic acid via oxaloacetic acid to l-malic acid is responsible for the l-malic acid production in yeast. The non-production of fumaric acid can be explained by the conclusion that, in the cell, cytosolic fumarase catalyzes the conversion of fumaric acid to l-malic acid but not the reverse. This conclusion is based on the following findings. (a) The cytosolic enzyme exhibits a 17-fold higher affinity towards fumaric acid than towards l-malic acid; the K m for l-malic acid is very high indicating that l-malic acid is not an in vivo substrate of the enzyme. (b) Overexpression of cytosolic fumarase does not cause accumulation of fumaric acid (but rather more l-malic acid). (c) According to 13C NMR studies there is no interconversion of cytosolic l-malic and fumaric acids.  相似文献   

12.
AMP-activated protein kinase (AMPK) is emerging as a central cellular signaling hub involved in energy homeostasis and proliferation. The kinase is considered as a suitable target for pharmacological intervention in several energy-related pathologies like diabetes type II and cancer, although its signaling network is still incompletely understood. Here we apply an original two-dimensional in vitro screening approach for AMPK substrates that combines biophysical interaction based on surface plasmon resonance with in vitro phosphorylation. By enriching for proteins that interact with a specific AMPK isoform, we aimed to identify substrates that are also preferentially phosphorylated by this specific AMPK isoform. Application of this screen to full-length AMPK α2β2γ1 and soluble rat liver proteins identified the tumor suppressor fumarate hydratase (FH). FH was confirmed to interact with and to be preferentially phosphorylated by the AMPKα2 isoform by using yeast-two-hybrid and in vitro phosphorylation assays. AMPK-mediated phosphorylation of FH significantly increased enzyme activity in vitro and in vivo, suggesting that it is a bona fide AMPK substrate. In vivo, AMPKα2 is supposed to target the cytosolic/nuclear pools of FH, whose tumor suppressor function relies on DNA damage repair and inhibition of HIF-1α-signaling.  相似文献   

13.
Cytoglobin (Cygb) is an emerging tumor suppressor gene silenced by promoter hypermethylation in many human tumors. So far, the precise molecular mechanism underlying its tumor suppressive function remains poorly understood. Here, we identified Cygb as a genotoxic stress-responsive hemoprotein upregulated upon sensing cellular DNA damage. Our studies demonstrated that Cygb physically associates with and stabilizes p53, a key cellular DNA damage signaling factor. We provide evidence that Cygb extends the half-life of p53 by blocking its ubiquitination and subsequent degradation. We show that, upon DNA damage, cells overexpressing Cygb displayed proliferation defect by rapid accumulation of p53 and its target gene p21, while Cygb knockdown cells failed to efficiently arrest in G1 phase in response to DNA insult. These results suggest a possible involvement of Cygb in mediating cellular response to DNA damage and thereby contributing in the maintenance of genomic integrity. Our study thus presents a novel insight into the mechanistic role of Cygb in tumor suppression.  相似文献   

14.
Mutations in the FH gene cause the deficiency of the enzyme fumarase (fumarate hydratase, EC 4.2.1.2) which result in autosomal recessive fumaric aciduria in early childhood with failure to thrive, seizures, developmental delay, mental retardation, hypotonia and sometimes with polycythemia, leukopenia, and neutropenia. Many children with fumarate hydratase deficiency do not survive infancy or childhood; those surviving beyond childhood have severe psychomotor retardation. Recently, FH gene was also identified as a “non-classical” tumor suppressor gene and heterozygous mutations were shown to cause multiple cutaneous and uterine leiomyomas as well as hereditary leiomyomatosis and renal cell cancer. A male patient who was referred to investigate the etiology of psychomotor retardation was later diagnosed to have fumaric aciduria due to the combination of a previously known (c.1431_1433dupAAA) and a novel (c.782G>T) mutation. The patient had an unusually mild clinical course without acidotic attacks. Interestingly his father who was heterozygous for the c.1431_1433dupAAA mutation in the FH gene had cutaneous leiomyoma.  相似文献   

15.
The specific interaction of yeast citrate synthase with yeast mitochondrial inner membranes was characterized with respect to saturability of binding, pH optimum, effect of ionic strength, temperature response, and inhibition by oxalacetate. The binding ability of the inner membranes is inhibited by proteolysis and heat treatment, which implies that the membrane component(s) responsible for binding is a protein. A protein fraction from inner membranes when added to liposomes will bind citrate synthase. In addition, the binding of yeast fumarase, mitochondrial malate dehydrogenase, and cytosolic malate dehydrogenase to yeast inner membranes was examined. For these studies the yeast mitochondrial matrix enzymes, citrate synthase (from two types of yeast), malate dehydrogenase, and fumarase, as well as cytosolic malate dehydrogenase, were purified using rapid new techniques.  相似文献   

16.
The yeast strains of the genus Dipodascus were used for the bioconversion of fumaric acid to L-malic acid. Under nongrowth conditions, the fumarase activity in the intact cells or in the cell-free extract of Dipodascus was 10 times higher than that of Saccharomyces cerevisiae cells. Pretreatment of the Dipodascus with malonate was not necessary because succinate was not detected as a by-product. The fumarase activity in Dipodascus magnusii CCM 8235 was increased approximately 100% when Triton X-305 (0.1%) was added to the reaction mixture.  相似文献   

17.
Studies on yeast fumarase provide the main evidence for dual localization of a protein in mitochondria and cytosol by means of retrograde translocation. We have examined the subcellular targeting of yeast and human fumarase in live cells to identify factors responsible for this. The cDNAs for mature yeast or human fumarase were fused to the gene for enhanced green fluorescent protein (eGFP) and they contained, at their N-terminus, a mitochondrial targeting sequence (MTS) derived from either yeast fumarase, human fumarase, or cytochrome c oxidase subunit VIII (COX) protein. Two nuclear localization sequences (2x NLS) were also added to these constructs to facilitate detection of any cytosolic protein by its targeting to nucleus. In Cos-1 cells transfected with these constructs, human fumarase with either the native or COX MTSs was detected exclusively in mitochondria in >98% of the cells, while the remainder 1-2% of the cells showed varying amounts of nuclear labeling. In contrast, when human fumarase was fused to the yeast MTS, >50% of the cells showed nuclear labeling. Similar studies with yeast fumarase showed that with its native MTS, nuclear labeling was seen in 80-85% of the cells, but upon fusion to either human or COX MTS, nuclear labeling was observed in only 10-15% of the cells. These results provide evidence that extramitochondrial presence of yeast fumarase is mainly caused by the poor mitochondrial targeting characteristics of its MTS (but also affected by its primary sequence), and that the retrograde translocation mechanism does not play a significant role in the extramitochondrial presence of mammalian fumarase.  相似文献   

18.
19.
20.
The ataxia-telangiectasia mutated (ATM) protein kinase is best known for its role in the DNA damage response, but recent findings suggest that it also functions as a redox sensor that controls the levels of reactive oxygen species in human cells. Here, we review evidence supporting the conclusion that ATM can be directly activated by oxidation, as well as various observations from ATM-deficient patients and mouse models that point to the importance of ATM in oxidative stress responses. We also discuss the roles of this kinase in regulating mitochondrial function and metabolic control through its action on tumor suppressor p53, AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR) and hypoxia-inducible factor 1 (HIF1), and how the regulation of these enzymes may be affected in ATM-deficient patients and in cancer cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号