共查询到20条相似文献,搜索用时 15 毫秒
1.
Maki Kiso Kyoko Shinya Masayuki Shimojima Ryo Takano Kei Takahashi Hiroaki Katsura Satoshi Kakugawa Mai thi Quynh Le Makoto Yamashita Yousuke Furuta Makoto Ozawa Yoshihiro Kawaoka 《PLoS pathogens》2010,6(8)
Influenza viruses resistant to antiviral drugs emerge frequently. Not surprisingly, the widespread treatment in many countries of patients infected with 2009 pandemic influenza A (H1N1) viruses with the neuraminidase (NA) inhibitors oseltamivir and zanamivir has led to the emergence of pandemic strains resistant to these drugs. Sporadic cases of pandemic influenza have been associated with mutant viruses possessing a histidine-to-tyrosine substitution at position 274 (H274Y) in the NA, a mutation known to be responsible for oseltamivir resistance. Here, we characterized in vitro and in vivo properties of two pairs of oseltaimivir-sensitive and -resistant (possessing the NA H274Y substitution) 2009 H1N1 pandemic viruses isolated in different parts of the world. An in vitro NA inhibition assay confirmed that the NA H274Y substitution confers oseltamivir resistance to 2009 H1N1 pandemic viruses. In mouse lungs, we found no significant difference in replication between oseltamivir-sensitive and -resistant viruses. In the lungs of mice treated with oseltamivir or even zanamivir, 2009 H1N1 pandemic viruses with the NA H274Y substitution replicated efficiently. Pathological analysis revealed that the pathogenicities of the oseltamivir-resistant viruses were comparable to those of their oseltamivir-sensitive counterparts in ferrets. Further, the oseltamivir-resistant viruses transmitted between ferrets as efficiently as their oseltamivir-sensitive counterparts. Collectively, these data indicate that oseltamivir-resistant 2009 H1N1 pandemic viruses with the NA H274Y substitution were comparable to their oseltamivir-sensitive counterparts in their pathogenicity and transmissibility in animal models. Our findings highlight the possibility that NA H274Y-possessing oseltamivir-resistant 2009 H1N1 pandemic viruses could supersede oseltamivir-sensitive viruses, as occurred with seasonal H1N1 viruses. 相似文献
2.
Amy L. Vincent Kelly M. Lager Michelle Harland Alessio Lorusso Eraldo Zanella Janice R. Ciacci-Zanella Marcus E. Kehrli Jr. Alexander Klimov 《PloS one》2009,4(12)
The emergence of the pandemic 2009 H1N1 influenza A virus in humans and subsequent discovery that it was of swine influenza virus lineages raised concern over the safety of pork. Pigs experimentally infected with pandemic 2009 H1N1 influenza A virus developed respiratory disease; however, there was no evidence for systemic disease to suggest that pork from pigs infected with H1N1 influenza would contain infectious virus. These findings support the WHO recommendation that pork harvested from pandemic influenza A H1N1 infected swine is safe to consume when following standard meat hygiene practices. 相似文献
3.
Magali Lemaitre Fabrice Carrat Grégoire Rey Mark Miller Lone Simonsen Cécile Viboud 《PloS one》2012,7(9)
Background
The mortality burden of the 2009 A/H1N1 pandemic remains unclear in many countries due to delays in reporting of death statistics. We estimate the age- and cause-specific excess mortality impact of the pandemic in France, relative to that of other countries and past epidemic and pandemic seasons.Methods
We applied Serfling and Poisson excess mortality approaches to model weekly age- and cause-specific mortality rates from June 1969 through May 2010 in France. Indicators of influenza activity, time trends, and seasonal terms were included in the models. We also reviewed the literature for country-specific estimates of 2009 pandemic excess mortality rates to characterize geographical differences in the burden of this pandemic.Results
The 2009 A/H1N1 pandemic was associated with 1.0 (95% Confidence Intervals (CI) 0.2–1.9) excess respiratory deaths per 100,000 population in France, compared to rates per 100,000 of 44 (95% CI 43–45) for the A/H3N2 pandemic and 2.9 (95% CI 2.3–3.7) for average inter-pandemic seasons. The 2009 A/H1N1 pandemic had a 10.6-fold higher impact than inter-pandemic seasons in people aged 5–24 years and 3.8-fold lower impact among people over 65 years.Conclusions
The 2009 pandemic in France had low mortality impact in most age groups, relative to past influenza seasons, except in school-age children and young adults. The historical A/H3N2 pandemic was associated with much larger mortality impact than the 2009 pandemic, across all age groups and outcomes. Our 2009 pandemic excess mortality estimates for France fall within the range of previous estimates for high-income regions. Based on the analysis of several mortality outcomes and comparison with laboratory-confirmed 2009/H1N1 deaths, we conclude that cardio-respiratory and all-cause mortality lack precision to accurately measure the impact of this pandemic in high-income settings and that use of more specific mortality outcomes is important to obtain reliable age-specific estimates. 相似文献4.
Background
The 2009 influenza pandemic and shortages in vaccine supplies worldwide underscore the need for new approaches to develop more effective vaccines.Methodology/Principal Findings
We generated influenza virus-like particles (VLPs) containing proteins derived from the A/California/04/2009 virus, and tested their efficacy as a vaccine in mice. A single intramuscular vaccination with VLPs provided complete protection against lethal challenge with the A/California/04/2009 virus and partial protection against A/PR/8/1934 virus, an antigenically distant human isolate. VLP vaccination induced predominant IgG2a antibody responses, high hemagglutination inhibition (HAI) titers, and recall IgG and IgA antibody responses. HAI titers after VLP vaccination were equivalent to those observed after live virus infection. VLP immune sera also showed HAI responses against diverse geographic pandemic isolates. Notably, a low dose of VLPs could provide protection against lethal infection.Conclusion/Significance
This study demonstrates that VLP vaccination provides highly effective protection against the 2009 pandemic influenza virus. The results indicate that VLPs can be developed into an effective vaccine, which can be rapidly produced and avoid the need to isolate high growth reassortants for egg-based production. 相似文献5.
Carrie Reed Jacqueline M. Katz Kathy Hancock Amanda Balish Alicia M. Fry HN Serosurvey Working Group 《PloS one》2012,7(10)
Background
2009 pandemic influenza A/H1N1 (A(H1N1)pdm09) was first detected in the United States in April 2009 and resulted in a global pandemic. We conducted a serologic survey to estimate the cumulative incidence of A(H1N1)pdm09 through the end of 2009 when pandemic activity had waned in the United States.Methods
We conducted a pair of cross sectional serologic surveys before and after the spring/fall waves of the pandemic for evidence of seropositivity (titer ≥40) using the hemagglutination inhibition (HI) assay. We tested a baseline sample of 1,142 serum specimens from the 2007–2008 National Health and Nutrition Examination Survey (NHANES), and 2,759 serum specimens submitted for routine screening to clinical diagnostic laboratories from ten representative sites.Results
The age-adjusted prevalence of seropositivity to A(H1N1)pdm09 by year-end 2009 was 36.9% (95%CI: 31.7–42.2%). After adjusting for baseline cross-reactive antibody, pandemic vaccination coverage and the sensitivity/specificity of the HI assay, we estimate that 20.2% (95%CI: 10.1–28.3%) of the population was infected with A(H1N1)pdm09 by December 2009, including 53.3% (95%CI: 39.0–67.1%) of children aged 5–17 years.Conclusions
By December 2009, approximately one-fifth of the US population, or 61.9 million persons, may have been infected with A(H1N1)pdm09, including around half of school-aged children. 相似文献6.
Samit R. Joshi Albert C. Shaw Vincent J. Quagliarello 《The Yale journal of biology and medicine》2009,82(4):143-151
Seasonal and pandemic strains of influenza have widespread implications for the global economy and global health. This has been highlighted recently as the epidemiologic characteristics for hospitalization and mortality for pandemic influenza H1N1 2009 are now emerging. While treatment with neuraminidase inhibitors are effective for seasonal and pandemic influenza, prevention of morbidity and mortality through effective vaccines requires a rigorous process of research and development. Vulnerable populations such as older adults (i.e., > age 65 years) suffer the greatest impact from seasonal influenza yet do not have a consistent seroprotective response to seasonal influenza vaccines due to a combination of factors. This short narrative review will highlight the emerging epidemiologic characteristics of pandemic H1N1 2009 and focus on immunosenescence, innate immune system responses to influenza virus infection and vaccination, and influenza vaccine responsiveness as it relates to seasonal and H1N1 pandemic influenza vaccines. 相似文献
7.
Manabu Igarashi Kimihito Ito Reiko Yoshida Daisuke Tomabechi Hiroshi Kida Ayato Takada 《PloS one》2010,5(1)
The pandemic influenza virus (2009 H1N1) was recently introduced into the human population. The hemagglutinin (HA) gene of 2009 H1N1 is derived from “classical swine H1N1” virus, which likely shares a common ancestor with the human H1N1 virus that caused the pandemic in 1918, whose descendant viruses are still circulating in the human population with highly altered antigenicity of HA. However, information on the structural basis to compare the HA antigenicity among 2009 H1N1, the 1918 pandemic, and seasonal human H1N1 viruses has been lacking. By homology modeling of the HA structure, here we show that HAs of 2009 H1N1 and the 1918 pandemic virus share a significant number of amino acid residues in known antigenic sites, suggesting the existence of common epitopes for neutralizing antibodies cross-reactive to both HAs. It was noted that the early human H1N1 viruses isolated in the 1930s–1940s still harbored some of the original epitopes that are also found in 2009 H1N1. Interestingly, while 2009 H1N1 HA lacks the multiple N-glycosylations that have been found to be associated with an antigenic change of the human H1N1 virus during the early epidemic of this virus, 2009 H1N1 HA still retains unique three-codon motifs, some of which became N-glycosylation sites via a single nucleotide mutation in the human H1N1 virus. We thus hypothesize that the 2009 H1N1 HA antigenic sites involving the conserved amino acids will soon be targeted by antibody-mediated selection pressure in humans. Indeed, amino acid substitutions predicted here are occurring in the recent 2009 H1N1 variants. The present study suggests that antibodies elicited by natural infection with the 1918 pandemic or its early descendant viruses play a role in specific immunity against 2009 H1N1, and provides an insight into future likely antigenic changes in the evolutionary process of 2009 H1N1 in the human population. 相似文献
8.
Béatrice Labrosse Mathieu Tourdjman Rapha?l Porcher Jér?me LeGoff Xavier de Lamballerie Fran?ois Simon Jean-Michel Molina Fran?ois Clavel 《PloS one》2010,5(6)
Background
Cross-immunity between seasonal and pandemic A/H1N1 influenza viruses remains uncertain. In particular, the extent that previous infection or vaccination by seasonal A/H1N1 viruses can elicit protective immunity against pandemic A/H1N1 is unclear.Methodology/Principal Findings
Neutralizing titers against seasonal A/H1N1 (A/Brisbane/59/2007) and against pandemic A/H1N1 (A/California/04/2009) were measured using an HIV-1-based pseudovirus neutralization assay. Using this highly sensitive assay, we found that a large fraction of subjects who had never been exposed to pandemic A/H1N1 express high levels of pandemic A/H1N1 neutralizing titers. A significant correlation was seen between neutralization of pandemic A/H1N1 and neutralization of a standard seasonal A/H1N1 strain. Significantly higher pandemic A/H1N1 neutralizing titers were measured in subjects who had received vaccination against seasonal influenza in 2008–2009. Higher pandemic neutralizing titers were also measured in subjects over 60 years of age.Conclusions/Significance
Our findings reveal that the extent of protective cross-immunity between seasonal and pandemic A/H1N1 influenza viruses may be more important than previously estimated. This cross-immunity could provide a possible explanation of the relatively mild profile of the recent influenza pandemic. 相似文献9.
Simon Rayner 《Virologica Sinica》2011,(6)
A total of 100 H1N1 flu real-time-PCR positive throat swabs collected from fever patients in Zhejiang, Hubei and Guangdong between June and November 2009, were provided by local CDC laboratories. After MDCK cell culture, 57 Influenza A Pandemic (H1N1) viruses were isolated and submitted for whole genome sequencing. A total of 39 HA sequences, 52 NA sequences, 36 PB2 sequences, 31 PB1 sequences, 40 PA sequences, 48 NP sequences, 51 MP sequences and 36 NS sequences were obtained, including 20 whole genome seq... 相似文献
10.
11.
12.
Arun K. Kashyap John Steel Adam Rubrum Angeles Estelles Raffaella Briante Natalia A. Ilyushina Li Xu Ryann E. Swale Aleksandr M. Faynboym Pamela K. Foreman Michael Horowitz Lawrence Horowitz Richard Webby Peter Palese Richard A. Lerner Ramesh R. Bhatt 《PLoS pathogens》2010,6(7)
Influenza viruses elude immune responses and antiviral chemotherapeutics through genetic drift and reassortment. As a result, the development of new strategies that attack a highly conserved viral function to prevent and/or treat influenza infection is being pursued. Such novel broadly acting antiviral therapies would be less susceptible to virus escape and provide a long lasting solution to the evolving virus challenge. Here we report the in vitro and in vivo activity of a human monoclonal antibody (A06) against two isolates of the 2009 H1N1 pandemic influenza virus. This antibody, which was obtained from a combinatorial library derived from a survivor of highly pathogenic H5N1 infection, neutralizes H5N1, seasonal H1N1 and 2009 “Swine” H1N1 pandemic influenza in vitro with similar potency and is capable of preventing and treating 2009 H1N1 influenza infection in murine models of disease. These results demonstrate broad activity of the A06 antibody and its utility as an anti-influenza treatment option, even against newly evolved influenza strains to which there is limited immunity in the general population. 相似文献
13.
Pathogenicity and Transmissibility of Novel Reassortant H3N2 Influenza Viruses with 2009 Pandemic H1N1 Genes in Pigs 总被引:1,自引:0,他引:1
Jingjiao Ma Huigang Shen Qinfang Liu Bhupinder Bawa Wenbao Qi Michael Duff Yuekun Lang Jinhwa Lee Hai Yu Jianfa Bai Guangzhi Tong Richard A. Hesse Jürgen A. Richt Wenjun Ma 《Journal of virology》2015,89(5):2831-2841
14.
Shanta M. Zimmer Corey J. Crevar Donald M. Carter James H. Stark Brendan M. Giles Richard K. Zimmerman Stephen M. Ostroff Bruce Y. Lee Donald S. Burke Ted M. Ross 《PloS one》2010,5(7)
Background
In April 2009, a new pandemic strain of influenza infected thousands of persons in Mexico and the United States and spread rapidly worldwide. During the ensuing summer months, cases ebbed in the Northern Hemisphere while the Southern Hemisphere experienced a typical influenza season dominated by the novel strain. In the fall, a second wave of pandemic H1N1 swept through the United States, peaking in most parts of the country by mid October and returning to baseline levels by early December. The objective was to determine the seroprevalence of antibodies against the pandemic 2009 H1N1 influenza strain by decade of birth among Pittsburgh-area residents.Methods and Findings
Anonymous blood samples were obtained from clinical laboratories and categorized by decade of birth from 1920–2009. Using hemagglutination-inhibition assays, approximately 100 samples per decade (n = 846) were tested from blood samples drawn on hospital and clinic patients in mid-November and early December 2009. Age specific seroprevalences against pandemic H1N1 (A/California/7/2009) were measured and compared to seroprevalences against H1N1 strains that had previously circulated in the population in 2007, 1957, and 1918. (A/Brisbane/59/2007, A/Denver/1/1957, and A/South Carolina/1/1918). Stored serum samples from healthy, young adults from 2008 were used as a control group (n = 100). Seroprevalences against pandemic 2009 H1N1 influenza varied by age group, with children age 10–19 years having the highest seroprevalence (45%), and persons age 70–79 years having the lowest (5%). The baseline seroprevalence among control samples from 18–24 year-olds was 6%. Overall seroprevalence against pandemic H1N1 across all age groups was approximately 21%.Conclusions
After the peak of the second wave of 2009 H1N1, HAI seroprevalence results suggest that 21% of persons in the Pittsburgh area had become infected and developed immunity. Extrapolating to the entire US population, we estimate that at least 63 million persons became infected in 2009. As was observed among clinical cases, this sero-epidemiological study revealed highest infection rates among school-age children. 相似文献15.
Hana M. Weingartl Yohannes Berhane Tamiko Hisanaga James Neufeld Helen Kehler Carissa Emburry-Hyatt Kathleen Hooper-McGreevy Samantha Kasloff Brett Dalman Jan Bystrom Soren Alexandersen Yan Li John Pasick 《Journal of virology》2010,84(5):2245-2256
Since its initial identification in Mexico and the United States, concerns have been raised that the novel H1N1 influenza virus might cause a pandemic of severity comparable to that of the 1918 pandemic. In late April 2009, viruses phylogenetically related to pandemic H1N1 influenza virus were isolated from an outbreak on a Canadian pig farm. This outbreak also had epidemiological links to a suspected human case. Experimental infections carried out in pigs using one of the swine isolates from this outbreak and the human isolate A/Mexico/InDRE4487/2009 showed differences in virus recovery from the lower respiratory tract. Virus was consistently isolated from the lungs of pigs infected with A/Mexico/InDRE4487/2009, while only one pig infected with A/swine/Alberta/OTH-33-8/2008 yielded live virus from the lung, despite comparable amounts of viral RNA and antigen in both groups of pigs. Clinical disease resembled other influenza virus infections in swine, albeit with somewhat prolonged virus antigen detection and delayed viral-RNA clearance from the lungs. There was also a noteworthy amount of genotypic variability among the viruses isolated from the pigs on the farm. This, along with the somewhat irregular pathobiological characteristics observed in experimentally infected animals, suggests that although the virus may be of swine origin, significant viral evolution may still be ongoing.The zoonotic potential of swine influenza viruses is well recognized (18), and pigs have been considered a leading candidate for the role of intermediate host in the generation of reassortant influenza A viruses with pandemic potential. This has been largely based on genomic analysis of influenza A viruses isolated from swine and the fact that α2,3-linked sialic acid (avian-like) and α2,6-linked sialic acid (human-like) receptors are both abundant in the swine respiratory tract (12). Despite this, there is no direct evidence that the reassortment of the 1957 and the 1968 human pandemic viruses occurred in pigs (28). Furthermore, it is very likely that the 1918 pandemic virus was introduced to pigs from humans (8, 31). The origins of influenza A viruses that have been isolated from pigs include those that are wholly human or avian, as well as reassortants containing swine, human, and avian genes (2, 20, 29). Although there have been several instances of swine-to-human transmission, for example, that of triple-reassortant swine influenza (H1) viruses (rH1N1), which appeared after 1998, they did not lead to establishment of sustained transmission in the human population (23).In the early spring of 2009, Mexico and the United States reported clusters of human pneumonia cases caused by a novel H1N1 influenza A virus. This virus subsequently spread across the globe at an unprecedented rate, prompting the WHO to declare a pandemic in June 2009. Phylogenetic analysis has inferred that the virus is likely a reassortant between a North American triple-reassortant swine H1N1 or H1N2 virus and a Eurasian lineage H1N1 swine influenza virus (7, 19). Bayesian molecular-clock analysis of each gene of this novel H1N1 virus (24) concluded that the mean evolutionary rate is typical of that of swine influenza viruses but that the duration of unsampled diversity for each gene segment had means that ranged from 9.24 to 17.15 years, suggesting that the proposed ancestors of this virus may have been circulating undetected for nearly a decade. Inadequate surveillance and characterization of influenza A viruses that circulate in swine have been blamed for this evolutionary gap.On 28 April 2009 the Canadian Food Inspection Agency (CFIA) became involved in a suspected outbreak of swine influenza on a pig farm in Leslieville, Alberta, Canada. The farm was a 220-sow farrow-to-finish operation consisting of approximately 2,200 animals that ranged from newborn piglets to market weight pigs. The animals were not vaccinated against swine influenza, and although there had been prior problems with porcine reproductive and respiratory syndrome virus and Mycoplasma hypopneumoniae, two etiologic agents of the swine respiratory disease complex, the herd had been stable with respect to respiratory disease. Beginning 20 April, approximately 25% of the pregrower and grower pigs in two of the barns exhibited respiratory problems with clinical signs that included an acute onset of coughing, lethargy, and loss of appetite. These clinical signs were preceded by the hiring of a carpenter on 14 April to work on the ventilation system in the same two barns. This individual had been ill for 2 days after his return from Mexico on 12 April (10). Given the evolving situation in Mexico and the United States, the CFIA and Alberta Agriculture and Rural Development decided to place the herd under quarantine and to carry out a full epidemiological and laboratory investigation.Here, we report on the characterization of the first pandemic H1N1 2009 viruses to be isolated from a naturally infected pig herd. Genetic sequence data from several viruses isolated from this outbreak have provided a glimpse into the mutation frequencies associated with replication of the virus in the swine host. Experimental infections of pigs comparing one of these swine isolates with the human isolate A/Mexico/InDRE4487/2009(H1N1) were also carried out and have provided insights into the pathobiological behavior of these viruses in pigs. 相似文献
16.
建立新甲型H1N1流感病毒小鼠致死模型,为研究致病性、宿主适应性以及疫苗保护性提供动物模型,并寻找病毒在适应宿主过程中影响毒力和适应性的关键位点。将新甲型H1N1流感病毒A/四川/SWL1/2009 H1N1在小鼠中连续传15代,各代次毒株均在MDCK细胞上增殖后进行测序,根据序列分析结果选择6个传代毒株感染小鼠,连续监测14 d体重和死亡情况;并对第14代和15代病毒在噬斑实验纯化后克隆和测序分析。原代病毒不致死BABL/C小鼠,经动物体内连续传代适应宿主动物后,其毒力增强,具体表现为所选的6个传代毒株中第7、11、15代毒株可以100%致死试验小鼠;分析这6个传代毒株的全基因组表明这些毒株的部分氨基酸位点发生突变。新甲型H1N1流感病毒经小鼠体内连续传代后,建立了小鼠致死模型,病毒毒力增强可能与某些氨基酸位点的改变有关。 相似文献
17.
During the early phase of the 2009 influenza pandemic, attempts were made to contain the spread of the virus. Success of reactive control measures may be compromised if the proportion of transmission that occurs before overt clinical symptoms develop is high. In this study we investigated the timing of transmission of an early prototypic strain of pandemic H1N1 2009 influenza virus in the ferret model. Ferrets are the only animal model in which this can be assessed because they display typical influenza-like clinical signs including fever and sneezing after infection. We assessed transmission from infected animals to sentinels that were placed either in direct contact or in adjacent cages, the latter reflecting the respiratory droplet (RD) transmission route. We found that pre-symptomatic influenza transmission occurred via both contact and respiratory droplet exposure before the earliest clinical sign, fever, developed. Three of 3 animals exposed in direct contact between day 1 and 2 after infection of the donor animals became infected, and 2/3 of the animals exposed at this time period by the RD route acquired the infection, with the third animal becoming seropositive indicating either a low level infection or significant exposure. Moreover, this efficient transmission did not temporally correlate with respiratory symptoms, such as coughs and sneezes, but rather with the peak viral titre in the nose. Indeed respiratory droplet transmission did not occur late in infection, even though this was when sneezing and coughing were most apparent. None of the 3 animals exposed at this time by the RD route became infected and these animals remained seronegative at the end of the experiment. These data have important implications for pandemic planning strategies and suggest that successful containment is highly unlikely for a human-adapted influenza virus that transmits efficiently within a population. 相似文献
18.
19.
Ning Du Jianfang Zhou Xiaojing Lin Yonghui Zhang Xiaoxing Yang Yue Wang Yuelong Shu 《Journal of virology》2010,84(15):7822-7831
Natural killer (NK) cells are the effectors of innate immunity and are recruited into the lung 48 h after influenza virus infection. Functional NK cell activation can be triggered by the interaction between viral hemagglutinin (HA) and natural cytotoxicity receptors NKp46 and NKp44 on the cell surface. Recently, novel subtypes of influenza viruses, such as H5N1 and 2009 pandemic H1N1, transmitted directly to the human population, with unusual mortality and morbidity rates. Here, the human NK cell responses to these viruses were studied. Differential activation of heterogeneous NK cells (upregulation of CD69 and CD107a and gamma interferon [IFN-γ] production as well as downregulation of NKp46) was observed following interactions with H5N1, 1918 H1N1, and 2009 H1N1 pseudotyped particles (pps), respectively, and the responses of the CD56dim subset predominated. Much stronger NK activation was triggered by H5N1 and 1918 H1N1 pps than by 2009 H1N1 pps. The interaction of pps with NK cells and subsequent internalization were mediated by NKp46 partially. The NK cell activation by pps showed a dosage-dependent manner, while an increasing viral HA titer attenuated NK activation phenotypes, cytotoxicity, and IFN-γ production. The various host innate immune responses to different influenza virus subtypes or HA titers may be associated with disease severity.Influenza is a contagious, acute respiratory disease caused by influenza viruses and has caused substantial human morbidity and mortality over the past century (24, 27). The 1918-1919 pandemic caused by influenza virus type A H1N1 was responsible for an estimated 50 million deaths (21). In recent years, novel subtype influenza viruses, such as H5N1 and the 2009 pandemic H1N1, have been transmitted directly from animals to the human population. These infections were characterized by unusually high rates of severe respiratory disease and mortality among young patients (8, 18). Various genetic shifts have occurred in these viruses, allowing them to evade the host protective effects of specific antihemagglutinin (HA) or antineuraminidase (NA) antibodies (27). Therefore, host innate immunity in the early phase of infection, which includes a variety of pattern recognition molecules, inflammatory cytokines, and immune cells, such as macrophages and natural killer (NK) cells, plays a critical role in host defense.NK cells are bone marrow-derived, large, granular lymphocytes and are key effector cells in innate immunity for host defense against invading infectious pathogens and malignant transformation through cytolytic activity and production of cytokines, such as gamma interferon (IFN-γ) (10, 28, 43, 51). In humans, NK cells account for approximately 10% of all blood lymphocytes and are identified by their expression of the CD56 surface antigen and their lack of CD3. Two distinct subsets of human NK cells have been defined according to the cell surface density of CD56 expression (10). The majority (∼90% in blood) of human NK cells are CD56dim, and a minor population (∼10% in blood) is CD56bright. These NK subsets are functionally distinct, with the immunoregulatory CD56bright cells producing abundant cytokines and the cytotoxic CD56dim cells probably functioning as efficient effectors of natural and antibody-dependent target cell lysis (11).Many lines of evidence suggest that NK cells can be functionally activated by the interaction between natural cytotoxicity receptors (NCRs) on the cell surface and influenza virus HA protein or stress-induced proteins from infected cells (2, 13, 33, 44, 46). On the other hand, influenza virus is able to evade host immunity by infecting NK cells and triggering cell apoptosis or by attenuating NK cell lysis of H3N2-infected cells, owing to alterations in HA binding properties (35, 39). The infiltration of macrophages and lymphocytes into the lung and strong inflammatory responses were detected in H5N1 and the 1918 and 2009 pandemic H1N1 infections. Nevertheless, little is known about the precise roles of NK cells in these infections.In this study, the responses of NK cells to 1918 H1N1, 2009 H1N1, and H5N1 influenza A viruses were evaluated using three strains of influenza A virus pseudotyped particles (pps). Our findings may aid in understanding the pathogenicity of influenza viruses and its correlation with clinical severity. 相似文献
20.
Xiaoqing Liu Yuan Liu Yanjun Zhang Zhihui Chen Ziwei Tang Qingqiang Xu Yue Wang Ping Zhao Zhongtian Qi 《PloS one》2013,8(3)
Pre-existing immunity is an important factor countering the pandemic potential of an emerging influenza virus strain. Thus, studying of pre-existing immunity to the 2009 pandemic H1N1 virus (2009 H1N1) will advance our understanding of the pathogenesis and epidemiology of this emerging pathogen. In the present study, sera were collected from 486 individuals in a hospital in Shanghai, China, before the 2009 H1N1 influenza pandemic. The serum anti-hemagglutinins (HA) antibody, hemagglutination inhibition (HI) antibody and neutralizing antibody against the 2009 H1N1 were assayed. Among this population, 84.2%, 14.61% and 26.5% subjects possessed anti-HA antibody, HI antibody and neutralizing antibody, respectively. Although neutralizing antibody only existed in those sera with detectable anti-HA antibody, there was no obvious correlation between the titers of anti-HA and neutralizing antibody. However, the titers of anti-HA and neutralizing antibody against seasonal H1N1 virus were highly correlated. In the same population, there was no correlation between titers of neutralizing antibody against 2009 H1N1 and seasonal H1N1. DNA immunization performed on mice demonstrated that antibodies to the HA of 2009 pandemic and seasonal H1N1 influenza viruses were strain-specific and had no cross-neutralizing activity. In addition, the predicted conserved epitope in the HA of 2009 H1N1 and recently circulating seasonal H1N1 virus, GLFGAIAGFIE, was not an immunologically valid B-cell epitope. The data in this report are valuable for advancing our understanding of 2009 H1N1 influenza virus infection. 相似文献