共查询到20条相似文献,搜索用时 0 毫秒
1.
Cher-Pheng Ooi Lee R. Haines Daniel M. Southern Michael J. Lehane Alvaro Acosta-Serrano 《PLoS neglected tropical diseases》2015,9(1)
The complement cascade in mammalian blood can damage the alimentary tract of haematophagous arthropods. As such, these animals have evolved their own repertoire of complement-inactivating factors, which are inadvertently exploited by blood-borne pathogens to escape complement lysis. Unlike the bloodstream stages, the procyclic (insect) stage of Trypanosoma brucei is highly susceptible to complement killing, which is puzzling considering that a tsetse takes a bloodmeal every 2–4 days. In this study, we identified four tsetse (Glossina morsitans morsitans) serine protease inhibitors (serpins) from a midgut expressed sequence tag (EST) library (GmmSRPN3, GmmSRPN5, GmmSRPN9 and GmmSRPN10) and investigated their role in modulating the establishment of a T. brucei infection in the midgut. Although not having evolved in a common blood-feeding ancestor, all four serpins have an active site sharing remarkable homology with the human complement C1-inhibitor serpin, SerpinG1. RNAi knockdown of individual GmmSRPN9 and GmmSRPN10 genes resulted in a significant decreased rate of infection by procyclic form T. brucei. Furthermore, recombinant GmmSRPN10 was both able to inhibit the activity of human complement-cascade serine proteases, C1s and Factor D, and to protect the in vitro killing of procyclic trypanosomes when incubated with complement-activated human serum. Thus, the secretion of serpins, which may be part of a bloodmeal complement inactivation system in tsetse, is used by procyclic trypanosomes to evade an influx of fresh trypanolytic complement with each bloodmeal. This highlights another facet of the complicated relationship between T. brucei and its tsetse vector, where the parasite takes advantage of tsetse physiology to further its chances of propagation and transmission. 相似文献
2.
Tsetse flies (Glossina spp.) vector pathogenic African trypanosomes, which cause sleeping sickness in humans and nagana in domesticated animals. Additionally, tsetse harbors 3 maternally transmitted endosymbiotic bacteria that modulate their host''s physiology. Tsetse is highly resistant to infection with trypanosomes, and this phenotype depends on multiple physiological factors at the time of challenge. These factors include host age, density of maternally-derived trypanolytic effector molecules present in the gut, and symbiont status during development. In this study, we investigated the molecular mechanisms that result in tsetse''s resistance to trypanosomes. We found that following parasite challenge, young susceptible tsetse present a highly attenuated immune response. In contrast, mature refractory flies express higher levels of genes associated with humoral (attacin and pgrp-lb) and epithelial (inducible nitric oxide synthase and dual oxidase) immunity. Additionally, we discovered that tsetse must harbor its endogenous microbiome during intrauterine larval development in order to present a parasite refractory phenotype during adulthood. Interestingly, mature aposymbiotic flies (Gmm
Apo) present a strong immune response earlier in the infection process than do WT flies that harbor symbiotic bacteria throughout their entire lifecycle. However, this early response fails to confer significant resistance to trypanosomes. Gmm
Apo adults present a structurally compromised peritrophic matrix (PM), which lines the fly midgut and serves as a physical barrier that separates luminal contents from immune responsive epithelial cells. We propose that the early immune response we observe in Gmm
Apo flies following parasite challenge results from the premature exposure of gut epithelia to parasite-derived immunogens in the absence of a robust PM. Thus, tsetse''s PM appears to regulate the timing of host immune induction following parasite challenge. Our results document a novel finding, which is the existence of a positive correlation between tsetse''s larval microbiome and the integrity of the emerging adult PM gut immune barrier. 相似文献
3.
Guy Caljon Karin De Ridder Patrick De Baetselier Marc Coosemans Jan Van Den Abbeele 《PloS one》2010,5(3)
Background
Tsetse flies (Glossina sp.), the African trypanosome vectors, rely on anti-hemostatic compounds for efficient blood feeding. Despite their medical importance, very few salivary proteins have been characterized and functionally annotated.Methodology/Principal Findings
Here we report on the functional characterisation of a 5′nucleotidase-related (5′Nuc) saliva protein of the tsetse fly Glossina morsitans morsitans. This protein is encoded by a 1668 bp cDNA corresponding at the genomic level with a single-copy 4 kb gene that is exclusively transcribed in the tsetse salivary gland tissue. The encoded 5′Nuc protein is a soluble 65 kDa glycosylated compound of tsetse saliva with a dual anti-hemostatic action that relies on its combined apyrase activity and fibrinogen receptor (GPIIb/IIIa) antagonistic properties. Experimental evidence is based on the biochemical and functional characterization of recombinant protein and on the successful silencing of the 5′nuc translation in the salivary gland by RNA interference (RNAi). Refolding of a 5′Nuc/SUMO-fusion protein yielded an active apyrase enzyme with Km and Vmax values of 43±4 µM and 684±49 nmol Pi/min×mg for ATPase and 49±11 µM and 177±37 nmol Pi/min×mg for the ADPase activity. In addition, recombinant 5′Nuc was found to bind to GPIIb/IIIa with an apparent KD of 92±25 nM. Consistent with these features, 5′Nuc potently inhibited ADP-induced thrombocyte aggregation and even caused disaggregation of ADP-triggered human platelets. The importance of 5′Nuc for the tsetse fly hematophagy was further illustrated by specific RNAi that reduced the anti-thrombotic activities in saliva by approximately 50% resulting in a disturbed blood feeding process.Conclusions/Significance
These data show that this 5′nucleotidase-related apyrase exhibits GPIIb/IIIa antagonistic properties and represents a key thromboregulatory compound of tsetse fly saliva. 相似文献4.
KEITH VICKERMAN 《The Journal of eukaryotic microbiology》1973,20(3):394-404
SYNOPSIS. The ultrastructure of attached Trypanosoma vivax epimastigote clusters in the proboscis of the tsetse fly Glossina fuscipes is described from electron micrographs of thin sections. Some flagellates are attached directly to the lining of the insect's labrum by their flagella, most of which are aligned along the long axis of the proboscis. Other trypanosomes are attached indirectly, their flagella adhering to those of flagellates which are directly attached. Junctional complexes similar to those described from metazoan epithelia are found on the flagellar membrane. A long zonular hemidesmosome attaches the flagellum to the proboscis wall and a series of closely set macular desmosomes link the flagellar membranes of adjacent flagellates. Unlike the trypomastigote stages of T. vivax, more than one row of macular desmosomes may be present along the flagellum-body junction of the trypanosome. It is suggested that all these Junctional complexes serve to buttress the flagellate's attachment to its insect host and so maintain anchorage of the parasite during the fly's blood meals. The ability of the flagellum of trypanosomatids to form Junctional complexes may be a factor contributing to their success as parasites, this adaptation enabling them to multiply while attached to host surfaces. 相似文献
5.
Interspecific Transfer of Bacterial Endosymbionts between Tsetse Fly Species: Infection Establishment and Effect on Host Fitness 总被引:1,自引:1,他引:1 下载免费PDF全文
BrianL. Weiss Rosa Mouchotte Rita V. M. Rio Yi-neng Wu Zheyang Wu Abdelaziz Heddi Serap Aksoy 《Applied microbiology》2006,72(11):7013-7021
Tsetse flies (Glossina spp.) can harbor up to three distinct species of endosymbiotic bacteria that exhibit unique modes of transmission and evolutionary histories with their host. Two mutualist enterics, Wigglesworthia and Sodalis, are transmitted maternally to tsetse flies' intrauterine larvae. The third symbiont, from the genus Wolbachia, parasitizes developing oocytes. In this study, we determined that Sodalis isolates from several tsetse fly species are virtually identical based on a phylogenetic analysis of their ftsZ gene sequences. Furthermore, restriction fragment-length polymorphism analysis revealed little variation in the genomes of Sodalis isolates from tsetse fly species within different subgenera (Glossina fuscipes fuscipes and Glossina morsitans morsitans). We also examined the impact on host fitness of transinfecting G. fuscipes fuscipes and G. morsitans morsitans flies with reciprocal Sodalis strains. Tsetse flies cleared of their native Sodalis symbionts were successfully repopulated with the Sodalis species isolated from a different tsetse fly species. These transinfected flies effectively transmitted the novel symbionts to their offspring and experienced no detrimental fitness effects compared to their wild-type counterparts, as measured by longevity and fecundity. Quantitative PCR analysis revealed that transinfected flies maintained their Sodalis populations at densities comparable to those in flies harboring native symbionts. Our ability to transinfect tsetse flies is indicative of Sodalis ' recent evolutionary history with its tsetse fly host and demonstrates that this procedure may be used as a means of streamlining future paratransgenesis experiments. 相似文献
6.
7.
8.
9.
10.
Background
The IAEA colony is the only one available for mass rearing of Glossina pallidipes, a vector of human and animal African trypanosomiasis in eastern Africa. This colony is the source for Sterile Insect Technique (SIT) programs in East Africa. The source population of this colony is unclear and its genetic diversity has not previously been evaluated and compared to field populations.Methodology/Principal Findings
We examined the genetic variation within and between the IAEA colony and its potential source populations in north Zimbabwe and the Kenya/Uganda border at 9 microsatellites loci to retrace the demographic history of the IAEA colony. We performed classical population genetics analyses and also combined historical and genetic data in a quantitative analysis using Approximate Bayesian Computation (ABC). There is no evidence of introgression from the north Zimbabwean population into the IAEA colony. Moreover, the ABC analyses revealed that the foundation and establishment of the colony was associated with a genetic bottleneck that has resulted in a loss of 35.7% of alleles and 54% of expected heterozygosity compared to its source population. Also, we show that tsetse control carried out in the 1990''s is likely reduced the effective population size of the Kenya/Uganda border population.Conclusions/Significance
All the analyses indicate that the area of origin of the IAEA colony is the Kenya/Uganda border and that a genetic bottleneck was associated with the foundation and establishment of the colony. Genetic diversity associated with traits that are important for SIT may potentially have been lost during this genetic bottleneck which could lead to a suboptimal competitiveness of the colony males in the field. The genetic diversity of the colony is lower than that of field populations and so, studies using colony flies should be interpreted with caution when drawing general conclusions about G. pallidipes biology. 相似文献11.
Trypanosomes compartmentalize many metabolic enzymes in glycosomes, peroxisome-related microbodies that are essential to parasite survival. While it is understood that these dynamic organelles undergo profound changes in protein composition throughout life cycle differentiation, the adaptations that occur in response to changes in environmental conditions are less appreciated. We have adopted a fluorescent-organelle reporter system in procyclic Trypanosoma brucei by expressing a fluorescent protein (FP) fused to a glycosomal targeting sequence (peroxisome-targeting sequence 2 [PTS2]). In these cell lines, PTS2-FP is localized within import-competent glycosomes, and organelle composition can be analyzed by microscopy and flow cytometry. Using this reporter system, we have characterized parasite populations that differ in their glycosome composition. In glucose-rich medium, two parasite populations are observed; one population harbors glycosomes bearing the full repertoire of glycosome proteins, while the other parasite population contains glycosomes that lack the usual glycosome-resident proteins but do contain the glycosome membrane protein TbPEX11. Interestingly, these cells lack TbPEX13, a protein essential for the import of proteins into the glycosome. This bimodal distribution is lost in low-glucose medium. Furthermore, we have demonstrated that changes in environmental conditions trigger changes in glycosome protein composition. These findings demonstrate a level of procyclic glycosome diversity heretofore unappreciated and offer a system by which glycosome dynamics can be studied in live cells. This work adds to our growing understanding of how the regulation of glycosome composition relates to environmental sensing. 相似文献
12.
George F. O. Obiero Paul O. Mireji Steven R. G. Nyanjom Alan Christoffels Hugh M. Robertson Daniel K. Masiga 《PLoS neglected tropical diseases》2014,8(4)
Tsetse flies use olfactory and gustatory responses, through odorant and gustatory receptors (ORs and GRs), to interact with their environment. Glossina morsitans morsitans genome ORs and GRs were annotated using homologs of these genes in Drosophila melanogaster and an ab initio approach based on OR and GR specific motifs in G. m. morsitans gene models coupled to gene ontology (GO). Phylogenetic relationships among the ORs or GRs and the homologs were determined using Maximum Likelihood estimates. Relative expression levels among the G. m. morsitans ORs or GRs were established using RNA-seq data derived from adult female fly. Overall, 46 and 14 putative G. m. morsitans ORs and GRs respectively were recovered. These were reduced by 12 and 59 ORs and GRs respectively compared to D. melanogaster. Six of the ORs were homologous to a single D. melanogaster OR (DmOr67d) associated with mating deterrence in females. Sweet taste GRs, present in all the other Diptera, were not recovered in G. m. morsitans. The GRs associated with detection of CO2 were conserved in G. m. morsitans relative to D. melanogaster. RNA-sequence data analysis revealed expression of GmmOR15 locus represented over 90% of expression profiles for the ORs. The G. m. morsitans ORs or GRs were phylogenetically closer to those in D. melanogaster than to other insects assessed. We found the chemoreceptor repertoire in G. m. morsitans smaller than other Diptera, and we postulate that this may be related to the restricted diet of blood-meal for both sexes of tsetse flies. However, the clade of some specific receptors has been expanded, indicative of their potential importance in chemoreception in the tsetse. 相似文献
13.
ALON WARBURG ROBERT B. TESH DIANE McMAHON-PRATT 《The Journal of eukaryotic microbiology》1989,36(6):613-617
An in vitro assay was developed to study the recognition mechanism for attachment of Leishmania flagella to sand fly midgut epithelium. Frozen sections of sand fly guts were incubated with Hagella preparations, and probed with a flagella-specific monoclonal antibody. Tissue-specific adhesion of flagella to midgut epithelium was demonstrated by indirect immunofluorescence. None of the 13 sugars, screened to test for possible lectin-mediation, appeared to significantly inhibit the adhesion of flagella to gut sections. Similarly no inhibition was achieved by incubating flagella with pep 63 which inhibits the promastigote-macrophage recognition mechanism. Significant inhibition was attained by incubating flagella preparations with a monoclonal antibody which binds to a flagellar membrane-component. The possible relevance of the described mechanism for the biology of Leishmania in their sand fly hosts, is discussed. 相似文献
14.
The unfolded protein response is a critical system by which the cell handles excess misfolded protein in the secretory pathway. The role of the system in modulating the effects of aggregation prone cytosolic proteins has received less attention. We use genetic reporters to demonstrate activation of the unfolded protein response in a transgenic Drosophila model of Alzheimer''s disease and related tauopathies. We then use loss of function genetic reagents to support a role for the unfolded protein response in protecting from tau neurotoxicity. Our findings suggest that the unfolded protein response can ameliorate the toxicity of tau in vivo. 相似文献
15.
Andrew M. Stern Binbin Liu Lars R. Bakken James P. Shapleigh Jun Zhu 《Journal of bacteriology》2013,195(20):4702-4708
Reactive nitrogen species (RNS), in particular nitric oxide (NO), are toxic to bacteria, and bacteria have mechanisms to allow growth despite this stress. Understanding how bacteria interact with NO is essential to understanding bacterial physiology in many habitats, including pathogenesis; however, many targets of NO and enzymes involved in NO resistance remain uncharacterized. We performed for the first time a metabolomic screen on NO-treated and -untreated bacteria to define broadly the effects of NO on bacterial physiology, as well as to identify the function of NnrS, a previously uncharacterized enzyme involved in defense against NO. We found many known and novel targets of NO. We also found that iron-sulfur cluster enzymes were preferentially inhibited in a strain lacking NnrS due to the formation of iron-NO complexes. We then demonstrated that NnrS is particularly important for resistance to nitrosative stress under anaerobic conditions. Our data thus reveal the breadth of the toxic effects of NO on metabolism and identify the function of an important enzyme in alleviating this stress. 相似文献
16.
17.
Collagen-induced arthritis is a B cell-mediated autoimmune disease. Recently published studies have demonstrated that in some rare cases pathogens can confer protection from autoimmunity. Trypanosoma brucei parasites are tsetse fly transmitted extracellular protozoans causing sleeping sickness disease in humans and Nagana in livestock in sub-Saharan endemic areas. In the past, we demonstrated that trypanosome infections impair B cell homeostasis and abolish vaccine-induced protection against unrelated antigens. Hence, here we hypothesized that trypanosome infection can affect the onset of CIA by specifically dampening specific B-cell responses and type II collagen antibody titers in DBA/1 prone mice. We observed a substantial delay in the onset of collagen-induced arthritis in T. brucei-infected DBA/1 mice that correlates with a drastic decrease of type II collagen titers of the different IgG isotypes in the serum. Treatment of infected mice with Berenil, a trypanocidal drug, restored the development of CIA-associated clinical symptoms. Interestingly, these data were confirmed by the challenge of immunized DBA/1 prone mice with T. brucei-infected tsetse flies. Together, these results demonstrate that T. brucei infection is impairing the maintenance of the antigen specific plasma B cell pool driving the development of CIA in DBA/1 prone mice. 相似文献
18.
19.
Ryotaro Yabe Akane Miura Tatsuya Usui Ingrid Mudrak Egon Ogris Takashi Ohama Koichi Sato 《PloS one》2015,10(12)
Protein phosphatase 2A (PP2A) is a conserved essential enzyme that is implicated as a tumor suppressor based on its central role in phosphorylation-dependent signaling pathways. Protein phosphatase methyl esterase (PME-1) catalyzes specifically the demethylation of the C-terminal Leu309 residue of PP2A catalytic subunit (PP2Ac). It has been shown that PME-1 affects the activity of PP2A by demethylating PP2Ac, but also by directly binding to the phosphatase active site, suggesting loss of PME-1 in cells would enhance PP2A activity. However, here we show that PME-1 knockout mouse embryonic fibroblasts (MEFs) exhibit lower PP2A activity than wild type MEFs. Loss of PME-1 enhanced poly-ubiquitination of PP2Ac and shortened the half-life of PP2Ac protein resulting in reduced PP2Ac levels. Chemical inhibition of PME-1 and rescue experiments with wild type and mutated PME-1 revealed methyl-esterase activity was necessary to maintain PP2Ac protein levels. Our data demonstrate that PME-1 methyl-esterase activity protects PP2Ac from ubiquitin/proteasome degradation. 相似文献