首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
The development of abiotic stress-resistant cultivars is of premium importance for the agriculture of developing countries. Further progress in maize (Zea mays) performance under stresses is expected by combining marker-assisted breeding with metabolite markers. In order to dissect metabolic responses and to identify promising metabolite marker candidates, metabolite profiles of maize leaves were analyzed and compared with grain yield in field trials. Plants were grown under well-watered conditions (control) or exposed to drought, heat, and both stresses simultaneously. Trials were conducted in 2010 and 2011 using 10 tropical hybrids selected to exhibit diverse abiotic stress tolerance. Drought stress evoked the accumulation of many amino acids, including isoleucine, valine, threonine, and 4-aminobutanoate, which has been commonly reported in both field and greenhouse experiments in many plant species. Two photorespiratory amino acids, glycine and serine, and myoinositol also accumulated under drought. The combination of drought and heat evoked relatively few specific responses, and most of the metabolic changes were predictable from the sum of the responses to individual stresses. Statistical analysis revealed significant correlation between levels of glycine and myoinositol and grain yield under drought. Levels of myoinositol in control conditions were also related to grain yield under drought. Furthermore, multiple linear regression models very well explained the variation of grain yield via the combination of several metabolites. These results indicate the importance of photorespiration and raffinose family oligosaccharide metabolism in grain yield under drought and suggest single or multiple metabolites as potential metabolic markers for the breeding of abiotic stress-tolerant maize.The increasing world population coupled to environmental deterioration is creating ever greater pressure on our capacity for sustainable food productivity. Alongside biotic stresses, abiotic stresses such as drought, heat, salinity, and nutrient deficiency greatly reduce yields in crop fields either when present alone or in combination. Breeding for more resilient crops, therefore, is one of the major approaches to cope with the increasing challenges in world agriculture. Considerable research effort has thus been invested in order to dissect plant responses to individual stresses at various levels (for review, see Urano et al., 2010; Lopes et al., 2011; Obata and Fernie, 2012), but the interaction between different stresses has been far less investigated (Cairns et al., 2012b, 2013; Suzuki et al., 2014). In general, the combination of stresses additively affects plant physiology (i.e. the symptoms of the individual stresses appear simultaneously) and synergistically diminishes the yield and productivity of plants (Keleş and Öncel, 2002; Giraud et al., 2008; Vile et al., 2012; Suzuki et al., 2014). The molecular responses, however, are not simply additive and are rarely predicted from the responses to individual stresses (Rizhsky et al., 2002, 2004; Prasch and Sonnewald, 2013; Rasmussen et al., 2013). Information from carefully controlled greenhouse experiments has begun to dissect the molecular mechanisms by which plants, in particular Arabidopsis (Arabidopsis thaliana), respond to drought and temperature stresses (Skirycz et al., 2010, 2011; Skirycz and Inzé, 2010; Bowne et al., 2012; Tardieu, 2012; Verkest et al., 2015). Our knowledge of the molecular basis of the responses of crop species in a field environment, however, is considerably less well advanced (Araus et al., 2008; Cabrera-Bosquet et al., 2012). That said, a large number of genotypes have been generated on the basis of their resistance to both biotic and abiotic stresses (for review, see Bänziger et al., 2006; Takeda and Matsuoka, 2008; Cooper et al., 2014), and the genome sequencing and molecular characterization of a range of stress-tolerant plant species have recently been reported (Wu et al., 2012; Ma et al., 2013; Bolger et al., 2014; Tohge et al., 2014). These studies are not only important as basic research for further studies in crops but also are a prerequisite in the development of molecular marker-based approaches to improve crop tolerance to stress.As a first step toward this goal, a deeper understanding of the plant responses to the stressful environment, especially those to multiple stress conditions under field conditions, is crucial for the improvement of stress-tolerant crops. This is important on two levels: (1) in the field, singular abiotic stresses are rare; and (2) yield and stress adaptation are complex traits that render breeding gains slower than would be expected under optimal conditions (Bruce et al., 2002). Recent studies have revealed that the response of plants to combinations of two or more stress conditions is unique and cannot be directly extrapolated from their responses to the different stresses when applied individually. This would be a result of complex combinations of different, and sometimes opposing, responses in signaling pathways, including those that may interact and inhibit one another (Prasch and Sonnewald, 2013; Rasmussen et al., 2013; Suzuki et al., 2014).Maize (Zea mays) is grown in over 170 million ha worldwide, of which 130 million ha are in less-developed countries (FAO, 2014). In sub-Saharan Africa, maize is a staple crop; however, yields in this region have stagnated at less than 2 tons ha−1, while maize yields worldwide have continued to increase (Cairns et al., 2012a). Low yields in sub-Saharan Africa are largely associated with drought stress (DS) and low soil fertility (Bänziger and Araus, 2007). Additionally, simulation studies indicate that maize yield in Africa is likely to be significantly impaired by heat stress (HS; Lobell and Burke, 2010; Lobell et al., 2011), such as can be anticipated as a result of the changes in climate predicted for the coming decades (Müller et al., 2011). Moreover, the sensitivity of maize yield to heat is exacerbated under drought conditions (Lobell et al., 2011; Cairns et al., 2012a, 2012b, 2013). Therefore, the development of maize germplasm tolerant to drought and heat conditions is of utmost importance to both increase yields and offset predicted yield losses under projected climate change scenarios (Easterling et al., 2007), especially in sub-Saharan Africa. While direct selection for grain yield under DS has resulted in admirable gains in grain yield under stress (Bänziger et al., 2006; Cairns et al., 2013), further improvement requires the incorporation of additional selection traits (Cairns et al., 2012a, 2012b). In recent years, genetic and phenotypic markers have been searched extensively for drought tolerance of maize by high-throughput genomic and phenotyping approaches, respectively (Tuberosa and Salvi, 2006; Wen et al., 2011; Araus et al., 2012; Cairns et al., 2013; Prasanna et al., 2013; Araus and Cairns, 2014; Tsonev et al., 2014). Moreover, metabolic markers started to draw attention due to their close relationship with yield phenotypes (Fernie and Schauer, 2009; Redestig et al., 2011; Riedelsheimer et al., 2012a, 2012b; Witt et al., 2012; Degenkolbe et al., 2013). The accumulation of some metabolites has been reported to be directly related to the performance of potato (Solanum tuberosum) cultivars in beetle resistance in the field (Tai et al., 2014). Additionally, identical genomic regions were mapped as both agronomic and metabolic quantitative trait loci in field-grown maize and wheat (Triticum aestivum), indicating the utility of metabolic traits for breeding selection (Riedelsheimer et al., 2012b; Hill et al., 2015). A recent study showed that genetic gains in maize grain yield under DS were higher using a molecular marker-based approach than conventional breeding (Beyene et al., 2015).Here, we focused on the relationship between leaf metabolites and grain yield under drought, heat, and simultaneous drought and heat conditions in the field. The negative effect of DS on maize yield is especially acute during the reproductive stage between tassel emergence and early grain filling (Grant et al., 1989), when it is believed to induce premature seed desiccation and to limit grain filling. Grain is more susceptible to DS than vegetative tissues; therefore, the prediction of grain yield from the physiological parameter of leaves is a challenge (Sangoi and Salvador, 1998; Khodarahmpour and Hamidi, 2011). Nevertheless, maize yield is dependent on both the assimilate supply to the kernel (source) and the potential of the kernel to accommodate this assimilate (sink potential; Jones and Simmons, 1983). Breeding for modern temperate hybrids has focused more on the sink potential, particularly under stress conditions (Tollenaar and Lee, 2006); therefore, there should be considerable potential remaining to improve source ability. DS and HS would be anticipated largely to affect leaf metabolism and especially photosynthesis, compromising the source capacity of leaves (Chaves et al., 2009; Lawlor and Tezara, 2009; Osakabe et al., 2014). In keeping with this, drought was found to have the most dramatic effect on the metabolite composition in leaves compared with other organs in our previous greenhouse experiments (Witt et al., 2012). Since the source ability is closely related to leaf metabolism, the leaf metabolite profile should have a close relationship to grain yield particularly under conditions of stress. Given that several recent studies have indicated the importance of metabolic preadaptation to various stress tolerances in plants (Sanchez et al., 2011; Benina et al., 2013), we also postulate that basal metabolite levels under optimal growth conditions could be correlated to stress tolerance. In order to test this, metabolite profiles of the leaf blades of 10 hybrids were analyzed in field experiments conducted at the International Maize and Wheat Improvement Center (CIMMYT) subtropical experimental station in 2010 and 2011 in which the plants were exposed to singular or combined drought and heat stresses (DS+HS; Cairns et al., 2012a, 2013). The results are discussed both in the context of current models of stress tolerance and with respect to their practical implications for future breeding strategies.  相似文献   

5.
6.
7.
In C4 plants, pyruvate orthophosphate dikinase (PPDK) activity is tightly dark/light regulated by reversible phosphorylation of an active-site threonine (Thr) residue; this process is catalyzed by PPDK regulatory protein (PDRP). Phosphorylation and dephosphorylation of PPDK lead to its inactivation and activation, respectively. Here, we show that light intensity rather than the light/dark transition regulates PPDK activity by modulating the reversible phosphorylation at Thr-527 (previously termed Thr-456) of PPDK in maize (Zea mays). The amount of PPDK (unphosphorylated) involved in C4 photosynthesis is indeed strictly controlled by light intensity, despite the high levels of PPDK protein that accumulate in mesophyll chloroplasts. In addition, we identified a transit peptide cleavage site, uncovered partial amino-terminal acetylation, and detected phosphorylation at four serine (Ser)/Thr residues, two of which were previously unknown in maize. In vitro experiments indicated that Thr-527 and Ser-528, but not Thr-309 and Ser-506, are targets of PDRP. Modeling suggests that the two hydrogen bonds between the highly conserved residues Ser-528 and glycine-525 are required for PDRP-mediated phosphorylation of the active-site Thr-527 of PPDK. Taken together, our results suggest that the regulation of maize plastid PPDK isoform (C4PPDK) activity is much more complex than previously reported. These diverse regulatory pathways may work alone or in combination to fine-tune C4PPDK activity in response to changes in lighting.Pyruvate orthophosphate dikinase (PPDK) is an abundant mesophyll-chloroplast enzyme involved in C4 photosynthesis. It plays an essential role in regenerating phosphoenolpyruvate (PEP), the primary cellular CO2 acceptor molecule. PPDK activity strongly correlates (r = 0.96) with the photosynthetic rate (Edwards et al., 1985). Therefore, PPDK may limit the rate of CO2 assimilation in the C4 cycle (Hatch, 1987). PPDK regulatory protein (PDRP), a unique bifunctional enzyme, catalyzes this light-dependent regulation by reversible phosphorylation of an active-site Thr in PPDK (Thr-527 in maize [Zea mays] in full amino acid sequence [http://www.maizegdb.org]; previously termed Thr-456; Ashton and Hatch, 1983; Burnell and Hatch, 1985; Roeske and Chollet, 1987; Ashton et al., 1990; Burnell, 1990; Chastain et al., 2000, 2011). PDRP is an unusual regulatory protein for three reasons (Chastain et al., 1997, 2008; Burnell and Chastain, 2006; Astley et al., 2011): (1) it is bifunctional, catalyzing both PPDK activation/dephosphorylation and PPDK inactivation/phosphorylation; (2) it uses ADP instead of ATP as the phosphoryl donor; and (3) it employs an inorganic phosphate-dependent, inorganic pyrophosphate-forming dephosphorylation mechanism as opposed to the simple hydrolysis mechanism common to most protein phosphatases.The functional properties of PDRP have been examined by selective substitutions at His-458 and active-site Thr-456 in the maize plastid PPDK isoform (C4PPDK; Ashton and Hatch, 1983; Burnell and Hatch, 1984, 1985). These studies confirmed that PDRP is a Ser/Thr kinase that requires a phosphorylated His in the target enzyme (Burnell and Hatch, 1986). This regulatory threonyl phosphorylation of PPDK is a monocyclic cascade (Stadtman and Chock, 1977) in which the covalent modification system is assumed to be a continuous process that allows the extent of PPDK activation to be attuned to the metabolic needs (Roeske and Chollet, 1989). Therefore, PDRP can alter the activation state of its target enzyme, PPDK, according to the concentrations of metabolites (e.g. ADP, inorganic phosphate, pyruvate, and PEP) involved in the regulatory cycle. In addition, PPDK activity also can be modulated by Mg2+ and temperature (Hatch and Slack, 1968; Wang et al., 2008).In all plants, PPDK is located in both cytoplasmic and plastid compartments (Chastain and Chollet, 2003). Regulation of the bidirectional activities of C4PPDK has been proposed to be the consequence of light/dark-mediated changes in the stromal ADP level via its action as a potent competitive inhibitor of the PDRP phospho-PPDK dephosphorylation function (Burnell and Hatch, 1985; Chastain et al., 2011). However, GDP can serve as a substrate for the regulatory phosphorylation of the cytoplasmic PPDK isoform (Chastain et al., 2011). Two genes that encode chloroplastic (RP1) and cytosolic (RP2) isoforms of PDRP have been identified in the C3 plant Arabidopsis (Arabidopsis thaliana). Both of them have kinase and phosphotransferase activities, although RP2 catalyzes PPDK dephosphorylation at a slower rate than does RP1 (Chastain et al., 2008; Astley et al., 2011). Bacterial genomic databases show that PDRP homologs, referred to as Domain of Unknown Function299 (DUF299) genes, are present in all PPDK-containing bacteria (Burnell, 2010). In Escherichia coli, which lacks PPDK, DUF299 regulates the on/off activity of phosphoenolpyruvate synthetase (PEPS) via reversible phosphorylation of the PEPS active-site Thr (Burnell, 2010). This specific target Thr residue for PDRP in C4PPDK is highly conserved in all dikinases from C3 angiosperms and prokaryotes that have been examined (Rosche et al., 1994; Fisslthaler et al., 1995; Agarie et al., 1997; Imaizumi et al., 1997; Wei et al., 2000). Taken together, these results suggest that this regulatory threonyl phosphorylation of the PPDK is a very ancient mechanism. This notion implies a common evolutionary pathway for C4 photosynthesis facilitated by the preexistence of homologs of C4 enzymes in C3 plants (Edwards et al., 2001; Hibberd and Quick, 2002; Wang et al., 2009). The most significant adaptation for the enzyme to be utilized in C4 photosynthesis may have already occurred well before the emergence of the pathway in modern angiosperms (Chastain et al., 2011).A previous empirical study showed that PPDK activity is insensitive to variations in PPDK level when a cold-tolerant ppdk is inserted into the genome of maize (Ohta et al., 2006). Enzyme activity measurements were performed on 48 strains, each with a different PPDK expression level, showing that there was only about a 20% change in the PEP formation rate despite a 5.7-fold variation in PPDK level. A similar phenomenon was also observed in transgenic rice (Oryza sativa) leaves, in which maize PPDKs accumulated at very high levels but failed to activate fully, even after 14 h of illumination and complete inactivation in darkness (Taniguchi et al., 2008). These findings suggest that the mechanism for regulating PPDK is far more complicated than previously thought. It is not known whether all or only part of the PPDK that accumulates in mesophyll chloroplasts is required for C4 photosynthesis, because the protein level does not affect its enzyme activity. If it is only a select portion of PPDK that is required, then it is also unknown how light regulates the amount of PPDK involved in C4 photosynthesis.To address these issues, we created a comprehensive profile of PPDK posttranslational modifications. We identified the cleavage site of the transit peptide, its N-terminal acetylated form, and four phosphorylated residues. We found that it is not the light/dark transition per se but rather a change in light intensity that regulates PPDK activity by modulating reversible phosphorylation at Thr-527. Importantly, we also partially determined the catalytic mechanism of PDRP. Taken together, these results suggest that the mechanisms via which PPDK is regulated are more complex than previously described (Ashton and Hatch, 1983; Chastain et al., 2000) and provide a foundation for studies on the molecular mechanism of PPDK regulation in the C4 pathway.  相似文献   

8.
Volatile methyl esters are common constituents of plant volatiles with important functions in plant defense. To study the biosynthesis of these compounds, especially methyl anthranilate and methyl salicylate, we identified a group of methyltransferases that are members of the SABATH enzyme family in maize (Zea mays). In vitro biochemical characterization after bacterial expression revealed three S-adenosyl-l-methionine-dependent methyltransferases with high specificity for anthranilic acid as a substrate. Of these three proteins, Anthranilic Acid Methyltransferase1 (AAMT1) appears to be responsible for most of the S-adenosyl-l-methionine-dependent methyltransferase activity and methyl anthranilate formation observed in maize after herbivore damage. The enzymes may also be involved in the formation of low amounts of methyl salicylate, which are emitted from herbivore-damaged maize. Homology-based structural modeling combined with site-directed mutagenesis identified two amino acid residues, designated tyrosine-246 and glutamine-167 in AAMT1, which are responsible for the high specificity of AAMTs toward anthranilic acid. These residues are conserved in each of the three main clades of the SABATH family, indicating that the carboxyl methyltransferases are functionally separated by these clades. In maize, this gene family has diversified especially toward benzenoid carboxyl methyltransferases that accept anthranilic acid and benzoic acid.Volatile compounds have important roles in the reproduction and defense of plants. Volatiles can attract pollinators and seed dispersers (Dobson and Bergström, 2000; Knudsen et al., 2006) or function as indirect defense compounds that attract natural enemies of herbivores (Dicke, 1994; Degenhardt et al., 2003; Howe and Jander, 2008). A well-studied example for the role of volatiles in plant defense is the tritrophic interaction between maize (Zea mays) plants, their lepidopteran herbivores, and parasitoid wasps of the herbivores. After damage by larvae of Spodoptera species, maize releases a complex volatile blend containing different classes of natural products (Turlings et al., 1990; Turlings and Benrey, 1998a). This volatile blend can be used as a cue by parasitic wasps to find hosts for oviposition (Turlings et al., 1990, 2005). After parasitization, lepidopteran larvae feed less and die upon emergence of the adult wasp, resulting in a considerable reduction in damage to the plant (Hoballah et al., 2002, 2004). The composition of the maize volatile blend is complex, consisting of terpenoids and products of the lipoxygenase pathway, along with three aromatic compounds: indole, methyl anthranilate, and methyl salicylate (Turlings et al., 1990; Degen et al., 2004; Köllner et al., 2004a). In the last decade, several studies have addressed the biosynthesis of terpenoids (Shen et al., 2000; Schnee et al., 2002, 2006; Köllner et al., 2004b, 2008a, 2008b) and indole (Frey et al., 2000, 2004) in maize. The formation of methyl anthranilate and methyl salicylate, however, has not been elucidated.Methyl anthranilate and methyl salicylate are carboxyl methyl esters of anthranilic acid, an intermediate of Trp biosynthesis, and the plant hormone salicylic acid, respectively. Our understanding of methyl anthranilate biosynthesis in plants is very limited. The only enzyme that has been described to be involved in methyl anthranilate synthesis is the anthraniloyl-CoA:methanol acyltransferase in Washington Concord grape (Vitis vinifera; Wang and De Luca, 2005). In contrast, the biosynthesis of methyl salicylate has been well studied in several plant species, such as Clarkia brewerii (Ross et al., 1999), Arabidopsis (Arabidopsis thaliana; Chen et al., 2003), and rice (Oryza sativa; Xu et al., 2006; Koo et al., 2007; Zhao et al., 2010). In all these species, methyl salicylate is synthesized by the action of S-adenosyl-l-methionine:salicylic acid carboxyl methyltransferase (SAMT). The apparent homology of SAMTs from different plant species suggests that methyl salicylate formation in maize, a species closely related to rice, is also catalyzed by an SAMT. SAMT enzymes are considered part of a larger family of methyltransferases called SABATH methyltransferases (D''Auria et al., 2003). The SABATH family also includes methyltransferases producing other methyl esters such as methyl benzoate, methyl jasmonate, and methyl indole-3-acetate (Seo et al., 2001; Effmert et al., 2005; Qin et al., 2005; Song et al., 2005; Zhao et al., 2007). An activity forming methyl anthranilate has not been described in the SABATH family, despite the striking structural similarity between methyl anthranilate and methyl salicylate or methyl benzoate. Two different classes of enzymes, methanol acyl transferases and methyltransferases, therefore, might be responsible for methyl anthranilate biosynthesis in maize (Fig. 1). Some of the SABATH methyltransferases have been shown previously to have methyltransferase activity in vitro using anthranilic acid as substrate (Chen et al., 2003; Zhao et al., 2010), but the biological relevance of such activity is unknown.Open in a separate windowFigure 1.The biosynthesis of methyl anthranilate from anthranilic acid can proceed over two pathways. Pathway A has been documented in grape, while pathway B is demonstrated here. AMAT, Anthraniloyl-CoA:methanol acyltransferase; SAH, S-adenosyl-l-homocysteine.In our ongoing attempt to investigate the biosynthesis and function of maize volatiles, we have studied the biosynthesis of the aromatic methyl esters, methyl salicylate and methyl anthranilate, and their regulation by herbivory. Biochemical characterization of maize benzenoid carboxyl methyltransferases of the SABATH family led to the discovery of a group of anthranilic acid methyltransferases (AAMTs). Homology-based structural modeling combined with site-directed mutagenesis identified the residues critical for the binding of the anthranilic acid substrate. Such functionally important residues are responsible for the diversification and evolution of benzenoid carboxyl methyltransferases in plants.  相似文献   

9.
10.
11.
Dehydrins (DHNs; late embryogenesis abundant D11 family) are a family of intrinsically unstructured plant proteins that accumulate in the late stages of seed development and in vegetative tissues subjected to water deficit, salinity, low temperature, or abscisic acid treatment. We demonstrated previously that maize (Zea mays) DHNs bind preferentially to anionic phospholipid vesicles; this binding is accompanied by an increase in α-helicity of the protein, and adoption of α-helicity can be induced by sodium dodecyl sulfate. All DHNs contain at least one “K-segment,” a lysine-rich 15-amino acid consensus sequence. The K-segment is predicted to form a class A2 amphipathic α-helix, a structural element known to interact with membranes and proteins. Here, three K-segment deletion proteins of maize DHN1 were produced. Lipid vesicle-binding assays revealed that the K-segment is required for binding to anionic phospholipid vesicles, and adoption of α-helicity of the K-segment accounts for most of the conformational change of DHNs upon binding to anionic phospholipid vesicles or sodium dodecyl sulfate. The adoption of structure may help stabilize cellular components, including membranes, under stress conditions.When plants encounter environmental stresses such as drought or low temperature, various responses take place to adapt to these conditions. Typical responses include increased expression of chaperones, signal transduction pathway and late embryogenesis abundant (LEA) proteins, osmotic adjustment, and induction of degradation and repair systems (Ingram and Bartels, 1996).Dehydrins (DHNs; LEA D11 family) are a subfamily of group 2 LEA proteins that accumulate to high levels during late stages of seed development and in vegetative tissues subjected to water deficit, salinity, low temperature, or abscisic acid (ABA) treatment (Svensson et al., 2002). Some DHNs are expressed constitutively during normal growth (Nylander et al., 2001; Rorat et al., 2004, 2006; Rodriguez et al., 2005). DHNs exist in a wide range of photosynthetic organisms, including angiosperms, gymnosperms, algae, and mosses (Svensson et al., 2002). DHNs are encoded by a dispersed multigene family and are differentially regulated, at least in higher plants. For example, 13 Dhn genes have been identified in barley (Hordeum vulgare), dispersed over seven genetic map locations (Choi et al., 1999; Svensson et al., 2002) and regulated variably by drought, low temperature, and embryo development (Tommasini et al., 2008). DHNs are localized in various subcellular compartments, including cytosol (Roberts et al., 1993), nucleus (Houde et al., 1995), chloroplast (Artus et al., 1996), vacuole (Heyen et al., 2002), and proximal to the plasma membrane and protein bodies (Asghar et al., 1994; Egerton-Warburton et al., 1997; Puhakainen et al., 2004). Elevated expression of Dhn genes generally has been correlated with the acquisition of tolerance to abiotic stresses such as drought (Whitsitt et al., 1997), salt (Godoy et al., 1994; Jayaprakash et al., 1998), chilling (Ismail et al., 1999a), or freezing (Houde et al., 1995; Danyluk et al., 1998; Fowler et al., 2001). The differences in expression and tissue location suggest that individual members of the Dhn multigene family have somewhat distinct biological functions (Close, 1997; Zhu et al., 2000; Nylander et al., 2001). Many studies have observed a positive correlation between the accumulation of DHNs and tolerance to abiotic stresses (Svensson et al., 2002). However, overexpression of a single DHN protein has not, in general, been sufficient to confer stress tolerance (Puhakainen et al., 2004).DHNs are subclassified by sequence motifs referred to as the K-segment (Lys-rich consensus sequence), the Y-segment (N-terminal conserved sequence), the S-segment (a tract of Ser residues), and the φ-segment (Close, 1996). Because of high hydrophilicity, high content of Gly (>20%), and the lack of a defined three-dimensional structure in the pure form (Lisse et al., 1996), DHNs have been categorized as “intrinsically disordered/unstructured proteins” or “hydrophilins” (Wright and Dyson, 1999; Garay-Arroyo et al., 2000; Tompa, 2005; Kovacs et al., 2008). On the basis of compositional and biophysical properties and their link to abiotic stresses, several functions of DHNs have been proposed, including ion sequestration (Roberts et al., 1993), water retention (McCubbin et al., 1985), and stabilization of membranes or proteins (Close, 1996, 1997). Observations from in vitro experiments include DHN binding to lipid vesicles (Koag et al., 2003; Kovacs et al., 2008) or metals (Svensson et al., 2000; Heyen et al., 2002; Kruger et al., 2002; Alsheikh et al., 2003; Hara et al., 2005), protection of membrane lipid against peroxidation (Hara et al., 2003), retention of hydration or ion sequestration (Bokor et al., 2005; Tompa et al., 2006), and chaperone activity against the heat-induced inactivation and aggregation of various proteins (Kovacs et al., 2008).Intrinsically disordered/unstructured proteins that lack a well-defined three-dimensional structure have recently been recognized to be prevalent in prokaryotes and eukaryotes (Oldfield et al., 2005). They fulfill important functions in signal transduction, gene expression, and binding to targets such as protein, RNA, ions, and membranes (Wright and Dyson, 1999; Tompa, 2002; Dyson and Wright, 2005). The disorder confers structural flexibility and malleability to adapt to changes in the protein environment, including water potential, pH, ionic strength, and temperature, and to undergo structural transition when complexed with ligands such as other proteins, DNA, RNA, or membranes (Prestrelski et al., 1993; Uversky, 2002). Structural changes from disorder to ordered functional structure also can be induced by the folding of a partner protein (Wright and Dyson, 1999; Tompa, 2002; Mouillon et al., 2008).The idea that DHNs interact with membranes is consistent with many immunolocalization studies, which have shown that DHNs accumulate near the plasma membrane or membrane-rich areas surrounding lipid and protein bodies (Asghar et al., 1994; Egerton-Warburton et al., 1997; Danyluk et al., 1998; Puhakainen et al., 2004). The K-segment is predicted to form a class A2 amphipathic α-helix, in which hydrophilic and hydrophobic residues are arranged on opposite faces (Close, 1996). The amphipathic α-helix is a structural element known to interact with membranes and proteins (Epand et al., 1995). Also, in the presence of helical inducers such as SDS and trifluoroethanol (Dalal and Pio, 2006), DHNs take on α-helicity (Lisse et al., 1996; Ismail et al., 1999b). We previously examined the binding of DHN1 to liposomes and found that DHNs bind preferentially to anionic phospholipids and that this binding is accompanied by an increase in α-helicity of the protein (Koag et al., 2003). Similarly, a mitochondrial LEA protein, one of the group III LEA proteins, recently has been shown to interact with and protect membranes subjected to desiccation, coupled with the adoption of amphipathic α-helices (Tolleter et al., 2007).Here, we explore the basis of DHN-vesicle interaction using K-segment deletion proteins. This study reveals that the K-segment is necessary and sufficient for binding to anionic phospholipid vesicles and that the adoption of α-helicity of DHN proteins can be attributed mainly to the K-segment.  相似文献   

12.
13.
14.
15.
Plants make coenzyme A (CoA) in the cytoplasm but use it for reactions in mitochondria, chloroplasts, and peroxisomes, implying that these organelles have CoA transporters. A plant peroxisomal CoA transporter is already known, but plant mitochondrial or chloroplastic CoA transporters are not. Mitochondrial CoA transporters belonging to the mitochondrial carrier family, however, have been identified in yeast (Saccharomyces cerevisiae; Leu-5p) and mammals (SLC25A42). Comparative genomic analysis indicated that angiosperms have two distinct homologs of these mitochondrial CoA transporters, whereas nonflowering plants have only one. The homologs from maize (Zea mays; GRMZM2G161299 and GRMZM2G420119) and Arabidopsis (Arabidopsis thaliana; At1g14560 and At4g26180) all complemented the growth defect of the yeast leu5Δ mitochondrial CoA carrier mutant and substantially restored its mitochondrial CoA level, confirming that these proteins have CoA transport activity. Dual-import assays with purified pea (Pisum sativum) mitochondria and chloroplasts, and subcellular localization of green fluorescent protein fusions in transiently transformed tobacco (Nicotiana tabacum) Bright Yellow-2 cells, showed that the maize and Arabidopsis proteins are targeted to mitochondria. Consistent with the ubiquitous importance of CoA, the maize and Arabidopsis mitochondrial CoA transporter genes are expressed at similar levels throughout the plant. These data show that representatives of both monocotyledons and eudicotyledons have twin, mitochondrially located mitochondrial carrier family carriers for CoA. The highly conserved nature of these carriers makes possible their reliable annotation in other angiosperm genomes.CoA acts as an acyl carrier in many reactions of primary and secondary metabolism, and some 8% of the nearly 4,900 enzymes described in the Enzyme Commission database are CoA dependent (Bairoch, 2000). CoA occupies a central position in lipid metabolism, respiration, gluconeogenesis, and other pathways (Leonardi et al., 2005). It is present in all forms of life, but while all organisms can synthesize it from pantothenate (vitamin B5), only prokaryotes, plants, and fungi are able to synthesize pantothenate; animals obtain pantothenate from the diet (Daugherty et al., 2002; Leonardi et al., 2005; Webb and Smith, 2011).In plants, the steps that convert pantothenate to CoA are almost certainly cytosolic (Webb and Smith, 2011; Gerdes et al., 2012). CoA, however, is required in mitochondria for the citric acid cycle, in chloroplasts for fatty acid synthesis, and in peroxisomes for β-oxidation. CoA, therefore, must be imported into these organelles from the cytosol, and indeed, early work demonstrated a CoA transport system in potato (Solanum tuberosum) mitochondria (Neuburger et al., 1984). Yeast (Saccharomyces cerevisiae) and mammalian mitochondria and peroxisomes likewise import CoA because they cannot make it (Fiermonte et al., 2009; Agrimi et al., 2012b). The compartmentation of CoA in all eukaryotes appears to be closely regulated, with cytosol and organelles maintaining separate CoA pools whose levels can modulate fluxes through CoA-dependent reactions (Hunt and Alexson, 2002; Leonardi et al., 2005; De Marcos Lousa et al., 2013).Mitochondrial CoA transporters belonging to the mitochondrial carrier family (MCF) have been identified in yeast (Leu-5p; Prohl et al., 2001) and human (SLC25A42; Fiermonte et al., 2009). Furthermore, peroxisomal CoA carriers from human (SLC25A17; Agrimi et al., 2012b) and Arabidopsis (Arabidopsis thaliana; peroxisomal CoA and NAD carrier [PXN]; Agrimi et al., 2012a) have also been identified. However, no transporters for CoA are known for plant mitochondria or chloroplasts (Palmieri et al., 2011; Gerdes et al., 2012).In this study, a comparative genomic analysis first identified close Arabidopsis and maize (Zea mays) homologs of the yeast and mammalian mitochondrial CoA carriers as candidates for the missing plant mitochondrial or chloroplast transporters. Experimental evidence then demonstrated that the candidate proteins transport CoA when expressed in yeast, that they are targeted to mitochondria in vitro and in planta, and that they are expressed throughout the plant.  相似文献   

16.
A 5.5-y-old intact male cynomolgus macaque (Macaca fasicularis) presented with inappetence and weight loss 57 d after heterotopic heart and thymus transplantation while receiving an immunosuppressant regimen consisting of tacrolimus, mycophenolate mofetil, and methylprednisolone to prevent graft rejection. A serum chemistry panel, a glycated hemoglobin test, and urinalysis performed at presentation revealed elevated blood glucose and glycated hemoglobin (HbA1c) levels (727 mg/dL and 10.1%, respectively), glucosuria, and ketonuria. Diabetes mellitus was diagnosed, and insulin therapy was initiated immediately. The macaque was weaned off the immunosuppressive therapy as his clinical condition improved and stabilized. Approximately 74 d after discontinuation of the immunosuppressants, the blood glucose normalized, and the insulin therapy was stopped. The animal''s blood glucose and HbA1c values have remained within normal limits since this time. We suspect that our macaque experienced new-onset diabetes mellitus after transplantation, a condition that is commonly observed in human transplant patients but not well described in NHP. To our knowledge, this report represents the first documented case of new-onset diabetes mellitus after transplantation in a cynomolgus macaque.Abbreviations: NODAT, new-onset diabetes mellitus after transplantationNew-onset diabetes mellitus after transplantation (NODAT, formerly known as posttransplantation diabetes mellitus) is an important consequence of solid-organ transplantation in humans.7-10,15,17,19,21,25-28,31,33,34,37,38,42 A variety of risk factors have been identified including increased age, sex (male prevalence), elevated pretransplant fasting plasma glucose levels, and immunosuppressive therapy.7-10,15,17,19,21,25-28,31,33,34,37,38,42 The relationship between calcineurin inhibitors, such as tacrolimus and cyclosporin, and the development of NODAT is widely recognized in human medicine.7-10,15,17,19,21,25-28,31,33,34,37,38,42 Cynomolgus macaques (Macaca fasicularis) are a commonly used NHP model in organ transplantation research. Cases of natural and induced diabetes of cynomolgus monkeys have been described in the literature;14,43,45 however, NODAT in a macaque model of solid-organ transplantation has not been reported previously to our knowledge.  相似文献   

17.
18.
19.
20.
Plants have evolved a unique plasticity of their root system architecture to flexibly exploit heterogeneously distributed mineral elements from soil. Local high concentrations of nitrate trigger lateral root initiation in adult shoot-borne roots of maize (Zea mays) by increasing the frequency of early divisions of phloem pole pericycle cells. Gene expression profiling revealed that, within 12 h of local high nitrate induction, cell cycle activators (cyclin-dependent kinases and cyclin B) were up-regulated, whereas repressors (Kip-related proteins) were down-regulated in the pericycle of shoot-borne roots. In parallel, a ubiquitin protein ligase S-Phase Kinase-Associated Protein1-cullin-F-box proteinS-Phase Kinase-Associated Protein 2B-related proteasome pathway participated in cell cycle control. The division of pericycle cells was preceded by increased levels of free indole-3-acetic acid in the stele, resulting in DR5-red fluorescent protein-marked auxin response maxima at the phloem poles. Moreover, laser-capture microdissection-based gene expression analyses indicated that, at the same time, a significant local high nitrate induction of the monocot-specific PIN-FORMED9 gene in phloem pole cells modulated auxin efflux to pericycle cells. Time-dependent gene expression analysis further indicated that local high nitrate availability resulted in PIN-FORMED9-mediated auxin efflux and subsequent cell cycle activation, which culminated in the initiation of lateral root primordia. This study provides unique insights into how adult maize roots translate information on heterogeneous nutrient availability into targeted root developmental responses.Roots have developed adaptive strategies to reprogram their gene expression and metabolic activity in response to heterogeneous soil environments (Osmont et al., 2007). By this way, local environmental stimuli can be integrated into the developmental program of roots (Forde, 2014; Giehl and von Wirén, 2014). In resource-depleted environments, an important heterogeneously distributed soil factor is nutrient availability, which then directs lateral root growth preferentially into nutrient-rich patches (Zhang and Forde, 1998; Lima et al., 2010; Giehl et al., 2012). Such directed lateral root development depends on regulatory networks that integrate both local and systemic signals to coordinate them with the overall plant nutritional status (Ruffel et al., 2011; Guan et al., 2014). As shown by the impact of the N status-dependent regulatory module CLAVATA3/EMBRYO-SURROUNDING REGION-related peptides-CLAVATA1 leucine-rich repeat receptor-like kinase, economizing the costs for root development is pivotal for a resource-efficient strategy in nutrient acquisition (Araya et al., 2014). In recent years, strategies on yield and efficiency improvement have been developed that are primarily based on the manipulation of root system architecture (Gregory et al., 2013; Lynch, 2014; Meister et al., 2014). A common imperative of these strategies is to develop crops that use water and nutrients more efficiently, allowing the reduction of fertilizer input and potentially hazardous environmental contamination.Maize (Zea mays) plays an eminent role in global food, feed, and fuel production, which is also a consequence of its unique root system (Rogers and Benfey, 2015). The genetic analysis of maize root architecture revealed a complex molecular network coordinating root development during the whole lifecycle (for review, see Hochholdinger et al., 2004a, 2004b). Identification of root type-specific lateral root mutants in maize emphasized the existence of regulatory mechanisms involved in the branching of embryonic roots, which are distinct from those in postembryonic roots (Hochholdinger and Feix, 1998; Woll et al., 2005). Under heterogeneous nutrient supplies, nitrate-rich patches increased only the length of lateral roots in primary and seminal roots, whereas they increased both length and density of lateral roots from shoot-borne roots of adult maize plants (Yu et al., 2014a). Remarkably, modulation of the extensive postembryonic shoot-borne root stock has a great potential to improve grain yield and nutrient use efficiency (Hochholdinger and Tuberosa, 2009).Lateral root branching is critical to secure anchorage and ensure adequate uptake of water and nutrients. In maize, these roots originate from concentric single-file layers of pericycle and endodermis cells (Fahn, 1990; Jansen et al., 2012). Lateral root initiation is the result of auxin-dependent cell cycle progression (Beeckman et al., 2001; Jansen et al., 2013a). Most of the molecular changes during the cell cycle like, for instance, the induction of positive regulators, such as cyclins (CYCs) and cyclin-dependent kinases (CDKs), and the repression of Kip-related proteins (KRPs), thus account for a reactivation of the cell cycle (Beeckman et al., 2001; Himanen et al., 2002, 2004). In eukaryotes, ubiquitin-mediated degradation of cell cycle proteins plays a critical role in the regulation of cell division (Hershko, 2005; Jakoby et al., 2006). Conjugation of ubiquitin to a substrate requires the sequential action of three enzymes: ubiquitin-activating enzyme, ubiquitin-conjugating enzyme, and ubiquitin-protein ligase (E3). The E3 enzymes are responsible for the specificity of the pathway, and several classes of E3 enzymes have been implicated in cell cycle regulation, including the S-Phase Kinase-Associated Protein1-cullin-F-box protein (SCF) and Really Interesting New Gene (RING) finger-domain ubiquitin ligases (Del Pozo and Manzano, 2014). The F-box protein S-Phase Kinase-Associated Protein 2B (SKP2B) encodes an F-box ubiquitin ligase, which plays an important role in the cell cycle by regulating the stability of KRP1 and pericycle founder cell division during lateral root initiation (Ren et al., 2008; Manzano et al., 2012).It has been shown that auxin is involved in long-distance signaling to adjust root growth in response to local nutrient availability (Giehl et al., 2012), and it is likely to serve in long-distance signaling for local nutrient responses as well (for review, see Rubio et al., 2009; Krouk et al., 2011; Saini et al., 2013; Forde, 2014). Polar auxin transport is instrumental for the generation of local auxin maxima, which guide these cells to switch their developmental program (Vanneste and Friml, 2009; Lavenus et al., 2013). In Arabidopsis (Arabidopsis thaliana), the PIN-FORMED (PIN) family of auxin efflux carrier proteins controls the directionality of auxin flows to maximum formation at the tip or pericycle cells (Benková et al., 2003; Laskowski et al., 2008; Marhavý et al., 2013). Auxin responses in protoxylem or protophloem cells of the basal meristem coincide with the site of lateral root initiation (De Smet et al., 2007; Jansen et al., 2012). In these defined pericycle cells, the phloem pole pericycle founder cells are primed before auxin accumulation occurs (De Smet et al., 2007; Jansen et al., 2012, 2013a). In contrast to dicots, the larger PIN family in monocots has a more divergent phylogenetic structure (Paponov et al., 2005). It is likely that monocot-specific PIN genes regulate monocot-specific morphogenetic processes, such as the development of a complex root system (Wang et al., 2009; Forestan et al., 2012).The molecular control of lateral root initiation of the root system to heterogeneous nitrate availabilities is not yet understood in maize. In this study, the plasticity of lateral root induction in adult shoot-borne roots of maize in response to local high concentration of nitrate was surveyed in an experimental setup that simulated patchy nitrate distribution. RNA-sequencing (RNA-Seq) experiments and cell type-specific gene expression analyses showed that local nitrate triggers progressive cell cycle control during pericycle cell division. In addition, tissue-specific determination of indole-3-acetic acid (IAA) and its metabolites combined with auxin maxima determination by DR5 supported a role of basipetal auxin transport during lateral root initiation in shoot-borne roots. Thereby, this study provides unique insights in how auxin orchestrates cell cycle control under local nitrate stimulation in the shoot-borne root system of maize.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号