首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The emergence of the pandemic 2009 H1N1 influenza A virus in humans and subsequent discovery that it was of swine influenza virus lineages raised concern over the safety of pork. Pigs experimentally infected with pandemic 2009 H1N1 influenza A virus developed respiratory disease; however, there was no evidence for systemic disease to suggest that pork from pigs infected with H1N1 influenza would contain infectious virus. These findings support the WHO recommendation that pork harvested from pandemic influenza A H1N1 infected swine is safe to consume when following standard meat hygiene practices.  相似文献   

2.

Background

The Influenza A pandemic H1N1 2009 (H1N1pdm) virus appeared in India in May 2009 and thereafter outbreaks with considerable morbidity and mortality have been reported from many parts of the country. Continuous monitoring of the genetic makeup of the virus is essential to understand its evolution within the country in relation to global diversification and to track the mutations that may affect the behavior of the virus.

Methods

H1N1pdm viruses were isolated from both recovered and fatal cases representing major cities and sequenced. Phylogenetic analyses of six concatenated whole genomes and the hemagglutinin (HA) gene of seven more isolates from May-September 2009 was performed with reference to 685 whole genomes of global isolates available as of November 24, 2009. Molecular characterization of all the 8 segments was carried out for known pathogenic markers.

Results

The first isolate of May 2009 belonged to clade 5. Although clade 7 was the dominant H1N1pdm lineage in India, both clades 6 and 7 were found to be co-circulating. The neuraminidase of all the Indian isolates possessed H275, the marker for sensitivity to the neuraminidase inhibitor Oseltamivir. Some of the mutations in HA are at or in the vicinity of antigenic sites and may therefore be of possible antigenic significance. Among these a D222G mutation in the HA receptor binding domain was found in two of the eight Indian isolates obtained from fatal cases.

Conclusions

The majority of the 13 Indian isolates grouped in the globally most widely circulating H1N1pdm clade 7. Further, correlations of the mutations specific to clade 7 Indian isolates to viral fitness and adaptability in the country remains to be understood. The D222G mutation in HA from isolates of fatal cases needs to be studied for pathogenicity.  相似文献   

3.
The pandemic influenza virus (2009 H1N1) was recently introduced into the human population. The hemagglutinin (HA) gene of 2009 H1N1 is derived from “classical swine H1N1” virus, which likely shares a common ancestor with the human H1N1 virus that caused the pandemic in 1918, whose descendant viruses are still circulating in the human population with highly altered antigenicity of HA. However, information on the structural basis to compare the HA antigenicity among 2009 H1N1, the 1918 pandemic, and seasonal human H1N1 viruses has been lacking. By homology modeling of the HA structure, here we show that HAs of 2009 H1N1 and the 1918 pandemic virus share a significant number of amino acid residues in known antigenic sites, suggesting the existence of common epitopes for neutralizing antibodies cross-reactive to both HAs. It was noted that the early human H1N1 viruses isolated in the 1930s–1940s still harbored some of the original epitopes that are also found in 2009 H1N1. Interestingly, while 2009 H1N1 HA lacks the multiple N-glycosylations that have been found to be associated with an antigenic change of the human H1N1 virus during the early epidemic of this virus, 2009 H1N1 HA still retains unique three-codon motifs, some of which became N-glycosylation sites via a single nucleotide mutation in the human H1N1 virus. We thus hypothesize that the 2009 H1N1 HA antigenic sites involving the conserved amino acids will soon be targeted by antibody-mediated selection pressure in humans. Indeed, amino acid substitutions predicted here are occurring in the recent 2009 H1N1 variants. The present study suggests that antibodies elicited by natural infection with the 1918 pandemic or its early descendant viruses play a role in specific immunity against 2009 H1N1, and provides an insight into future likely antigenic changes in the evolutionary process of 2009 H1N1 in the human population.  相似文献   

4.
5.
Influenza viruses resistant to antiviral drugs emerge frequently. Not surprisingly, the widespread treatment in many countries of patients infected with 2009 pandemic influenza A (H1N1) viruses with the neuraminidase (NA) inhibitors oseltamivir and zanamivir has led to the emergence of pandemic strains resistant to these drugs. Sporadic cases of pandemic influenza have been associated with mutant viruses possessing a histidine-to-tyrosine substitution at position 274 (H274Y) in the NA, a mutation known to be responsible for oseltamivir resistance. Here, we characterized in vitro and in vivo properties of two pairs of oseltaimivir-sensitive and -resistant (possessing the NA H274Y substitution) 2009 H1N1 pandemic viruses isolated in different parts of the world. An in vitro NA inhibition assay confirmed that the NA H274Y substitution confers oseltamivir resistance to 2009 H1N1 pandemic viruses. In mouse lungs, we found no significant difference in replication between oseltamivir-sensitive and -resistant viruses. In the lungs of mice treated with oseltamivir or even zanamivir, 2009 H1N1 pandemic viruses with the NA H274Y substitution replicated efficiently. Pathological analysis revealed that the pathogenicities of the oseltamivir-resistant viruses were comparable to those of their oseltamivir-sensitive counterparts in ferrets. Further, the oseltamivir-resistant viruses transmitted between ferrets as efficiently as their oseltamivir-sensitive counterparts. Collectively, these data indicate that oseltamivir-resistant 2009 H1N1 pandemic viruses with the NA H274Y substitution were comparable to their oseltamivir-sensitive counterparts in their pathogenicity and transmissibility in animal models. Our findings highlight the possibility that NA H274Y-possessing oseltamivir-resistant 2009 H1N1 pandemic viruses could supersede oseltamivir-sensitive viruses, as occurred with seasonal H1N1 viruses.  相似文献   

6.

Background

The 2009 influenza pandemic and shortages in vaccine supplies worldwide underscore the need for new approaches to develop more effective vaccines.

Methodology/Principal Findings

We generated influenza virus-like particles (VLPs) containing proteins derived from the A/California/04/2009 virus, and tested their efficacy as a vaccine in mice. A single intramuscular vaccination with VLPs provided complete protection against lethal challenge with the A/California/04/2009 virus and partial protection against A/PR/8/1934 virus, an antigenically distant human isolate. VLP vaccination induced predominant IgG2a antibody responses, high hemagglutination inhibition (HAI) titers, and recall IgG and IgA antibody responses. HAI titers after VLP vaccination were equivalent to those observed after live virus infection. VLP immune sera also showed HAI responses against diverse geographic pandemic isolates. Notably, a low dose of VLPs could provide protection against lethal infection.

Conclusion/Significance

This study demonstrates that VLP vaccination provides highly effective protection against the 2009 pandemic influenza virus. The results indicate that VLPs can be developed into an effective vaccine, which can be rapidly produced and avoid the need to isolate high growth reassortants for egg-based production.  相似文献   

7.
Very limited evidence has been reported to show human adaptive immune responses to the 2009 pandemic H1N1 swine-origin influenza A virus (S-OIV). We studied 17 S-OIV peptides homologous to immunodominant CD4 T epitopes from hemagglutinin (HA), neuraminidase (NA), nuclear protein (NP), M1 matrix protein (MP), and PB1 of a seasonal H1N1 strain. We concluded that 15 of these 17 S-OIV peptides would induce responses of seasonal influenza virus-specific T cells. Of these, seven S-OIV sequences were identical to seasonal influenza virus sequences, while eight had at least one amino acid that was not conserved. T cells recognizing epitopes derived from these S-OIV antigens could be detected ex vivo. Most of these T cells expressed memory markers, although none of the donors had been exposed to S-OIV. Functional analysis revealed that specific amino acid differences in the sequences of these S-OIV peptides would not affect or partially affect memory T-cell responses. These findings suggest that without protective antibody responses, individuals vaccinated against seasonal influenza A may still benefit from preexisting cross-reactive memory CD4 T cells reducing their susceptibility to S-OIV infection.The outbreak of H1N1 swine-origin influenza A virus (S-OIV) in April 2009 has raised a new threat to public health (5, 6). This novel virus (with A/California/04/09 H1N1 as a prototypic strain) not only replicated more efficiently but also caused more severe pathological lesions in the lungs of infected mice, ferrets, and nonhuman primates than a currently circulating human H1N1 virus (9). Similarly, human patients with influenza-like illness who tested negative for S-OIV had a milder clinical course than those who tested positive (13). Another major concern is the lack of immune protection against S-OIV in the human population. Initial serum analysis indicated that cross-reactive antibodies to this novel viral strain were detected in only one-third of people over 60 years of age, while humoral immune responses in the population under 60 years of age were rarely detected (3, 8). In addition, vaccination with recent seasonal influenza vaccines induced little or no cross-reactive antibody responses to S-OIV in any age group (3, 8).Only a few studies address whether preexisting seasonal influenza A virus-specific memory T cells cross-react with antigenic peptides derived from S-OIV (7). In the absence of preexisting cross-reactive neutralizing antibodies, it is likely that T-cell-mediated cellular immunity contributes to viral clearance and reduces the severity of symptoms, although virus-specific T cells cannot directly prevent the establishment of infection (10). Greenbaum and colleagues recently compared published T-cell epitopes for seasonal influenza viruses with S-OIV antigens (Ags) using a computational approach (7). Several seasonal H1N1 epitopes were found to be identical to S-OIV sequences. This implies that seasonal flu-specific memory T cells circulating in the peripheral blood of vaccinated and/or previously infected individuals are able to recognize their S-OIV homologues.The first objective of this study was to determine the extent of cross-reactivity of seasonal H1N1 influenza A virus-specific CD4 T cells with S-OIV epitopes, especially those less conserved peptide sequences. We chose 17 immunodominant DR4-restricted T-cell epitopes derived from a seasonal H1N1 strain, compared the binding of these epitopes and their S-OIV homologous peptides to DR4, tested the ability of S-OIV peptides to drive seasonal influenza virus-specific T-cell proliferation in vitro, and estimated the frequency of S-OIV cross-reactive T cells in the periphery of noninfected donors. We found that most homologous S-OIV peptides were able to activate seasonal H1N1 virus-specific CD4 T cells. The second objective was to compare the antigen dosage requirement to activate those T cells. By assessing the alternations in the functional avidities (of T cells to the cognate peptide and S-OIV homologue) due to amino acid differences in S-OIV peptides, we showed how those cross-reactive CD4 T cells differentially responded to the antigenic peptides derived from seasonal H1N1 virus or S-OIV. This study leads to the conclusion that previous exposure to seasonal H1N1 viral antigens will generate considerable levels of memory CD4 T cells cross-reactive with S-OIV.  相似文献   

8.
While few children and young adults have cross-protective antibodies to the pandemic H1N1 2009 (pdmH1N1) virus, the illness remains mild. The biological reasons for these epidemiological observations are unclear. In this study, we demonstrate that the bulk memory cytotoxic T lymphocytes (CTLs) established by seasonal influenza viruses from healthy individuals who have not been exposed to pdmH1N1 can directly lyse pdmH1N1-infected target cells and produce gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Using influenza A virus matrix protein 1 (M158-66) epitope-specific CTLs isolated from healthy HLA-A2+ individuals, we further found that M158-66 epitope-specific CTLs efficiently killed both M158-66 peptide-pulsed and pdmH1N1-infected target cells ex vivo. These M158-66-specific CTLs showed an effector memory phenotype and expressed CXCR3 and CCR5 chemokine receptors. Of 94 influenza A virus CD8 T-cell epitopes obtained from the Immune Epitope Database (IEDB), 17 epitopes are conserved in pdmH1N1, and more than half of these conserved epitopes are derived from M1 protein. In addition, 65% (11/17) of these epitopes were 100% conserved in seasonal influenza vaccine H1N1 strains during the last 20 years. Importantly, seasonal influenza vaccination could expand the functional M158-66 epitope-specific CTLs in 20% (4/20) of HLA-A2+ individuals. Our results indicated that memory CTLs established by seasonal influenza A viruses or vaccines had cross-reactivity against pdmH1N1. These might explain, at least in part, the unexpected mild pdmH1N1 illness in the community and also might provide some valuable insights for the future design of broadly protective vaccines to prevent influenza, especially pandemic influenza.Since its first identification in North America in April 2009, the novel pandemic H1N1 2009 (pdmH1N1) virus has been spreading in humans worldwide, giving rise to the first pandemic in the 21st century (13, 18). The pdmH1N1 virus contains a unique gene constellation, with its NA and M gene segments being derived from the Eurasian swine lineage while the other gene segments originated from the swine triple-reassortant H1N1 lineage. The triple-reassortant swine viruses have in turn derived the HA, NP, and NS gene segments from the classical swine lineage (20). The 1918 pandemic virus gave rise to both the seasonal influenza H1N1 and the classical swine H1N1 virus lineages (41). Evolution in different hosts during the subsequent 90 years has led to increasing antigenic differences between recent seasonal H1N1 viruses and swine H1 viruses (42). Thus, younger individuals have no antibodies that cross neutralize pdmH1N1, while those over 65 years of age are increasingly likely to have cross-neutralizing antibodies to pdmH1N1 (10, 25).Currently available seasonal influenza vaccines do not induce cross-reactive antibodies against this novel virus in any age group (10, 25). In animal models, it has been shown that pdmH1N1 replicated more efficiently and caused more severe pathological lesions than the current seasonal influenza virus (28). However, most patients with pdmH1N1 virus infection show a mild illness comparable to seasonal influenza (9, 42). The incidence of severe cases caused by pdmH1N1 was not significantly higher than that caused by human seasonal influenza viruses (43). These findings imply that seasonal influenza A virus-specific memory T cells preexisting in previously infected individuals may have cross-protection to this novel pdmH1N1.Cross-reactivity of influenza A virus-specific T-cell immunity against heterosubtypic strains which are serologically distinct has been demonstrated (5, 29, 33, 47). Humans who have not been exposed to avian influenza A (H5N1) virus do have cross-reactive memory CD4 and CD8 T cells to a wide range of H5N1 peptides (33, 47). More recently, one study also showed that some seasonal influenza A virus-specific memory T cells in individuals without exposure to prior pdmH1N1 infection can recognize pdmH1N1 (24). However, the results in most of these studies were determined by the gamma interferon (IFN-γ) responses to influenza virus peptides. Although the recalled IFN-γ response is commonly used to detect memory CD4 and CD8 T cells, the activated T cells that bind major histocompatibility complex (MHC)-presented peptide are not necessarily capable of lysing the target cells (6). In addition, the peptides, but not the whole virus, may not be able to fully represent the human cross-response against the virus as a whole. Therefore, in addition to cytokine production, the demonstration of direct antigen-specific cytotoxicity of cytotoxic T lymphocytes (CTLs) against both peptide-pulsed and virus-infected target cells is needed for better understanding of human CTL responses against pdmH1N1 virus.In this study, using bulk memory CTLs and epitope-specific CTLs established by seasonal influenza A viruses and epitope-specific peptide from healthy individuals, respectively, we evaluated their cross-cytotoxicity and cytokine responses to pdmH1N1. We also examined the expression of chemokine receptors CXCR3 and CCR5, which could help CTLs to migrate to the site of infection. In addition, to understand whether the seasonal influenza vaccines have benefit for people who have not been exposed to pdmH1N1, we further examined the ability of seasonal influenza vaccines to induce the conserved M158-66 epitope-specific CTLs in HLA-A2-seropositive healthy individuals.  相似文献   

9.

Background

2009 pandemic influenza A/H1N1 (A(H1N1)pdm09) was first detected in the United States in April 2009 and resulted in a global pandemic. We conducted a serologic survey to estimate the cumulative incidence of A(H1N1)pdm09 through the end of 2009 when pandemic activity had waned in the United States.

Methods

We conducted a pair of cross sectional serologic surveys before and after the spring/fall waves of the pandemic for evidence of seropositivity (titer ≥40) using the hemagglutination inhibition (HI) assay. We tested a baseline sample of 1,142 serum specimens from the 2007–2008 National Health and Nutrition Examination Survey (NHANES), and 2,759 serum specimens submitted for routine screening to clinical diagnostic laboratories from ten representative sites.

Results

The age-adjusted prevalence of seropositivity to A(H1N1)pdm09 by year-end 2009 was 36.9% (95%CI: 31.7–42.2%). After adjusting for baseline cross-reactive antibody, pandemic vaccination coverage and the sensitivity/specificity of the HI assay, we estimate that 20.2% (95%CI: 10.1–28.3%) of the population was infected with A(H1N1)pdm09 by December 2009, including 53.3% (95%CI: 39.0–67.1%) of children aged 5–17 years.

Conclusions

By December 2009, approximately one-fifth of the US population, or 61.9 million persons, may have been infected with A(H1N1)pdm09, including around half of school-aged children.  相似文献   

10.
The clinical impact of the 2009 pandemic influenza A(H1N1) virus (pdmH1N1) has been relatively low. However, amino acid substitution D222G in the hemagglutinin of pdmH1N1 has been associated with cases of severe disease and fatalities. D222G was introduced in a prototype pdmH1N1 by reverse genetics, and the effect on virus receptor binding, replication, antigenic properties, and pathogenesis and transmission in animal models was investigated. pdmH1N1 with D222G caused ocular disease in mice without further indications of enhanced virulence in mice and ferrets. pdmH1N1 with D222G retained transmissibility via aerosols or respiratory droplets in ferrets and guinea pigs. The virus displayed changes in attachment to human respiratory tissues in vitro, in particular increased binding to macrophages and type II pneumocytes in the alveoli and to tracheal and bronchial submucosal glands. Virus attachment studies further indicated that pdmH1N1 with D222G acquired dual receptor specificity for complex α2,3- and α2,6-linked sialic acids. Molecular dynamics modeling of the hemagglutinin structure provided an explanation for the retention of α2,6 binding. Altered receptor specificity of the virus with D222G thus affected interaction with cells of the human lower respiratory tract, possibly explaining the observed association with enhanced disease in humans.In April 2009, the H1N1 influenza A virus of swine origin was detected in humans in North America (9, 12, 42). Evidence for its origin came from analyses of the viral genome, with six gene segments displaying the closest resemblance to American “triple-reassortant” swine viruses and two to “Eurasian-lineage” swine viruses (13, 42). After this first detection in humans, the virus spread rapidly around the globe, starting the first influenza pandemic of the 21st century. The 2009 pandemic influenza A(H1N1) virus (pdmH1N1) has been relatively mild, with a spectrum of disease ranging from subclinical infections or mild upper respiratory tract illness to sporadic cases of severe pneumonia and acute respiratory distress syndrome (3, 11, 27, 29, 30, 37). Overall, the case-fatality rate during the start of the pandemic was not significantly higher than in seasonal epidemics in most countries. However, a marked difference was observed in the case-fatality rate in specific age groups, with seasonal influenza generally causing highest mortality in elderly and immunocompromised individuals, and the pdmH1N1 affecting a relatively large proportion of (previously healthy) young individuals (3, 11, 27, 29, 30, 37).Determinants of influenza A virus virulence have been mapped for a wide variety of zoonotic and pandemic influenza viruses to the polymerase genes, hemagglutinin (HA), neuraminidase (NA), and nonstructural protein 1 (NS1). Such virulence-associated substitutions generally facilitate more efficient replication in humans via improved interactions with host cell factors. Since most of these virulence-associated substitutions were absent in the earliest pdmH1N1s, it has been speculated that the virus could acquire some of these mutations, potentially resulting in the emergence of more pathogenic viruses. Such virulence markers could be acquired by gene reassortment with cocirculating influenza A viruses, or by mutation. The influenza virus polymerase genes, in particular PB2, have been shown to be important determinants of the virulence of the highly pathogenic avian influenza (HPAI) H5N1 and H7N7 viruses and the transmission of the 1918 H1N1 Spanish influenza virus (17, 26, 34, 51). One of the most commonly identified virulence markers to date is E627K in PB2. The glutamic acid (E) residue is generally found in avian influenza viruses, while human viruses have a lysine (K), and this mutation was described as a determinant of host range in vitro (48). Given that all human and many zoonotic influenza viruses of the last century contained 627K, it was surprising that the pdmH1N1 had 627E. In addition, an aspartate (D)-to-asparagine (N) substitution at position 701 (D701N) of PB2 has previously been shown to expand the host range of avian H5N1 virus to mice and humans and to increase virus transmission in guinea pigs (26, 46). Like E627K, D701N was absent in the genome of pdmH1N1. Thus, the pdmH1N1 was the first known human pandemic virus with 627E and 701D, and it has been speculated that pdmH1N1 could mutate into a more virulent form by acquiring one of these mutations or both. Recently, it was shown that neither E627K nor D701N in PB2 of pdmH1N1 increased its virulence in ferrets and mice (18). The PB1-F2 protein has previously also been associated with high pathogenicity of the 1918 H1N1 and HPAI H5N1 viruses (8). The PB1-F2 protein of the pdmH1N1 is truncated due to premature stop codons. However, restoration of the PB1-F2 reading frame did not result in viruses with increased virulence (15). The NS1 protein of pdmH1N1 is also truncated due to a stop codon and, as a result, does not contain a PDZ ligand domain that is involved in cell-signaling pathways and has been implicated in the pathogenicity of 1918 H1N1 and HPAI H5N1 viruses (5, 8, 21). Surprisingly, restoration of a full-length version of the NS1 gene did not result in increased virulence in animal models (16). Mutations affecting virulence and host range have further frequently been mapped to hemagglutinin (HA) and neuraminidase (NA) in relation to their interaction with α2,3- or α2,6-linked sialic acids (SAs), the virus receptors on host cells (17, 32, 35, 50). The HA gene of previous pandemic viruses incorporated substitutions that allow efficient attachment to α2,6-SAs—the virus receptor on human cells—compared to ancestral avian viruses that attach more efficiently to α2,3-SAs (35, 47, 50).To search for mutations of potential importance to public health, numerous laboratories performed genome sequencing of pdmH1N1s, resulting in the real-time accumulation of information on emergence of potential virulence markers. Of specific interest were reports on amino acid substitutions from aspartic acid (D) to glycine (G) at position 222 (position 225 in H3) in HA of pdmH1N1. This substitution was observed in a fatal case of pdmH1N1 infection in June 2009 in the Netherlands (M. Jonges et al., unpublished data). Between July and December 2009, viruses from 11 (18%) of 61 cases with severe disease outcome in Norway have also been reported to harbor the D222G substitution upon direct sequencing of HA in clinical specimens. Such mutant viruses were not observed in any of 205 mild cases investigated, and the frequency of detection of this mutation was significantly higher in severe cases than in mild cases (23). In Hong Kong, the D222G substitution was detected in 12.5% (6) and 4.1% (31) of patients with severe disease and in 0% of patients with mild disease, in two different studies without prior propagation in embryonated chicken eggs. In addition to Norway and Hong Kong, the mutation has been detected in Brazil, Japan, Mexico, Ukraine, and the United States (56). Thus, D222G in HA could be the first identified “virulence marker” of pdmH1N1. pdmH1N1 with D222G in HA have not become widespread in the population, although they were detected in several countries. However, D222G in HA is of special interest, since it has also been described as the single change in HA between two strains of the “Spanish” 1918 H1N1 virus that differed in receptor specificity (47). Furthermore, upon propagation in embryonated chicken eggs, pdmH1N1 can acquire the mutation rapidly, presumably because it results in virus adaptation to avian (α2,3-SAs) receptors (49). The presence of the substitution in pdmH1N1s in the human population and its potential association with more severe disease prompted us to test its effect on pdmH1N1 receptor binding, replication, antigenic properties, and pathogenesis and transmission in animal models.  相似文献   

11.
2009甲型H1N1流感病毒研究进展   总被引:1,自引:0,他引:1  
2009年3月在美国和墨西哥爆发的新型甲型H1N1流感在很短的时间内便扩散到世界多个国家,形成了流感的大流行,引起世界卫生组织和各国的高度重视。综述新型甲型H1N1流感病毒的基因组来源、目前主要的检测手段,并对预防和治疗的方法进行简单介绍。  相似文献   

12.
2009年3月在美国和墨西哥流感样患者的呼吸道标本中鉴定出新的猪源性甲型H1N1流感病毒。该病毒可人一人传播,已蔓延到172个国家和地区。现就猪源性甲型H1N1流感病毒的鉴定、基因组结构特征做一综述。  相似文献   

13.
To study the pathogenicity factors of the pandemic A(H1N1) influenza virus, a number of mutant variants of the A/Hamburg/5/2009 (H1N1)pdm09 strain were obtained through passage in chicken embryos, mouse lungs, and MDCK cell culture. After 17 lung-to-lung passages of the A/Hamburg/5/2009 in mice, the minimum lethal dose of the derived variant decreased by five orders of magnitude compared to that of the parental virus. This variant differed from the original virus by nine amino acid residues in the following viral proteins: hemagglutinin (HA), neuraminidase (NA), and components of the polymerase complex. Additional passaging of the intermediate variants and cloning made it possible to obtain pairs of strains that differed by a single amino acid substitution. Comparative analysis of replicative activity, receptor specificity, and virulence of these variants revealed two mechanisms responsible for increased pathogenicity of the virus for mice. Thus, (1) substitutions in HA (Asp225Gly or Gln226Arg) and compensatory mutation decreasing the charge of HA (Lys123Asn, Lys157Asn, Gly158Glu, Asn159Asp, or Lys212Met) altered viral receptor-binding specificity and restored the functional balance between HA and NA; (2) Phe35Leu substitution in the PA protein increased viral polymerase activity.  相似文献   

14.
自2009年3月,甲型H1N1流感疫情相继在包括我国在内的许多国家暴发,对人体健康和社会经济发展造成了严重危害。血凝素(HA)蛋白是重要的病毒表面糖蛋白,主要有3种功能:①与宿主细胞表面受体结合;②引起病毒包膜与靶细胞间的膜融合;③刺激机体产生中和性抗体。本文综合了近年来的研究成果,对甲型H1N1流感病毒HA蛋白结构、主要功能、进化、抗原性的研究进展进行了综述。  相似文献   

15.
Pandemic 2009 influenza A virus (A/H1N1/2009) has emerged globally. In this study, we performed a comprehensive detection of potential pathogens by de novo sequencing using a next-generation DNA sequencer on total RNAs extracted from an autopsy lung of a patient who died of viral pneumonia with A/H1N1/2009. Among a total of 9.4×106 40-mer short reads, more than 98% appeared to be human, while 0.85% were identified as A/H1N1/2009 (A/Nagano/RC1-L/2009(H1N1)). Suspected bacterial reads such as Streptococcus pneumoniae and other oral bacteria flora were very low at 0.005%, and a significant bacterial infection was not histologically observed. De novo assembly and read mapping analysis of A/Nagano/RC1-L/2009(H1N1) showed more than ×200 coverage on average, and revealed nucleotide heterogeneity on hemagglutinin as quasispecies, specifically at two amino acids (Gly172Glu and Gly239Asn of HA) located on the Sa and Ca2 antigenic sites, respectively. Gly239 and Asn239 on antigenic site Ca2 appeared to be minor amino acids compared with the highly distributed Asp239 in H1N1 HAs. This study demonstrated that de novo sequencing can comprehensively detect pathogens, and such in-depth investigation facilitates the identification of influenza A viral heterogeneity. To better characterize the A/H1N1/2009 virus, unbiased comprehensive techniques will be indispensable for the primary investigations of emerging infectious diseases.  相似文献   

16.

Background

In April 2009, novel swine-origin influenza viruses (S-OIV) were identified in patients from Mexico and the United States. The viruses were genetically characterized as a novel influenza A (H1N1) strain originating in swine, and within a very short time the S-OIV strain spread across the globe via human-to-human contact.

Methodology

We conducted a comprehensive computational search of all available sequences of the surface proteins of H1N1 swine influenza isolates and found that a similar strain to S-OIV appeared in Thailand in 2000. The earlier isolates caused infections in pigs but only one sequenced human case, A/Thailand/271/2005 (H1N1).

Significance

Differences between the Thai cases and S-OIV may help shed light on the ability of the current outbreak strain to spread rapidly among humans.  相似文献   

17.
The initial wave of swine-origin influenza A virus (pandemic H1N1/09) in the United States during the spring and summer of 2009 also resulted in an increased vigilance and sampling of seasonal influenza viruses (H1N1 and H3N2), even though they are normally characterized by very low incidence outside of the winter months. To explore the nature of virus evolution during this influenza “off-season,” we conducted a phylogenetic analysis of H1N1 and H3N2 sequences sampled during April to June 2009 in New York State. Our analysis revealed that multiple lineages of both viruses were introduced and cocirculated during this time, as is typical of influenza virus during the winter. Strikingly, however, we also found strong evidence for the presence of a large transmission chain of H3N2 viruses centered on the south-east of New York State and which continued until at least 1 June 2009. These results suggest that the unseasonal transmission of influenza A viruses may be more widespread than is usually supposed.The recent emergence of swine-origin H1N1 influenza A virus (pandemic H1N1/09) in humans has heightened awareness of how the burden of morbidity and mortality due to influenza is associated with the appearance of new genetic variants (5) and of the genetic and epidemiological determinants of viral transmission (8). The emergence of pandemic H1N1/09 is also unprecedented in recorded history as it means that three antigenically distinct lineages of influenza A virus—pandemic H1N1/09 and the seasonal H1N1 and H3N2 viruses— currently cocirculate within human populations.Although the presence of multiple subtypes of influenza A virus may place an additional burden on public health resources, it also provides a unique opportunity to compare the patterns and dynamics of evolution in these viruses on a similar time scale. Indeed, one of the most interesting secondary effects of the current H1N1/09 pandemic has been an increased vigilance for cases of influenza-like illness and hence an intensified sampling of seasonal H1N1 and H3N2 viruses during the typical influenza “off-season” (i.e., spring-summer) in the northern hemisphere. Because the influenza season in the northern hemisphere generally runs from November through March, with a usual peak in January or February, influenza viruses sampled outside of this period are of special interest.The current model for the global spatiotemporal dynamics of influenza A virus is that the northern and southern hemispheres represent ecological “sinks” for this virus, with little ongoing viral transmission during the summer months (9). In contrast, more continual viral transmission occurs within the tropical “source” population (13) that is most likely centered on an intense transmission network in east and southeast Asia (10). However, the precise epidemiological and evolutionary reasons for this major geographic division, and for the seasonality of influenza A virus in general, remain uncertain (1, 4). Evidence for this “sink-source” ecological model is that viruses sampled from successive seasons in localities such as New York State do not usually form linked clusters on phylogenetic trees, indicating that they are not connected by direct transmission through the summer months (7). Similar conclusions can be drawn for the United States as a whole and point to multiple introductions of phylogenetically distinct lineages during the winter (6), followed by complex patterns of spatial diffusion (14). However, despite the growing epidemiological and phylogenetic data supporting this model, it is also evident that there is relatively little sequence data from seasonal influenza viruses that are sampled from April to October in the northern hemisphere. Hence, it is uncertain whether extended chains of transmission can occur during this time period, even though this may have an important bearing on our understanding of influenza seasonality.To address these issues, we examined the evolutionary behavior of seasonal H1N1 and H3N2 viruses as they cocirculated during a single time period—(late) April to June 2009—within a single locality (New York State). Not only are levels of influenza virus transmission in the northern hemisphere usually very low during this time period, but in this particular season the human host population was also experiencing the emerging epidemic of pandemic H1N1/09.  相似文献   

18.
Influenza virus defective interfering (DI) particles are naturally occurring noninfectious virions typically generated during in vitro serial passages in cell culture of the virus at a high multiplicity of infection. DI particles are recognized for the role they play in inhibiting viral replication and for the impact they have on the production of infectious virions. To date, influenza virus DI particles have been reported primarily as a phenomenon of cell culture and in experimentally infected embryonated chicken eggs. They have also been isolated from a respiratory infection of chickens. Using a sequencing approach, we characterize several subgenomic viral RNAs from human nasopharyngeal specimens infected with the influenza A(H1N1)pdm09 virus. The distribution of these in vivo-derived DI-like RNAs was similar to that of in vitro DIs, with the majority of the defective RNAs generated from the PB2 (segment 1) of the polymerase complex, followed by PB1 and PA. The lengths of the in vivo-derived DI-like segments also are similar to those of known in vitro DIs, and the in vivo-derived DI-like segments share internal deletions of the same segments. The presence of identical DI-like RNAs in patients linked by direct contact is compatible with transmission between them. The functional role of DI-like RNAs in natural infections remains to be established.  相似文献   

19.

Background

In April 2009, the first cases of pandemic (H1N1)-2009 influenza [H1N1sw] virus were detected in France. Virological surveillance was undertaken in reference laboratories of the seven French Defence Zones.

Methodology/Principal Findings

We report results of virological analyses performed in the Public Hospitals of Marseille during the first months of the outbreak. (i) Nasal swabs were tested using rapid influenza diagnostic test (RIDT) and two RT-PCR assays. Epidemiological characteristics of the 99 first suspected cases were analyzed, including detection of influenza virus and 18 other respiratory viruses. During three months, a total of 1,815 patients were tested (including 236 patients infected H1N1sw virus) and distribution in age groups and results of RIDT were analyzed. (ii) 600 sera received before April 2009 and randomly selected from in-patients were tested by a standard hemagglutination inhibition assay for antibody to the novel H1N1sw virus. (iii) One early (May 2009) and one late (July 2009) viral isolates were characterized by sequencing the complete hemagglutinine and neuraminidase genes. (iiii) Epidemiological characteristics of a cluster of cases that occurred in July 2009 in a summer camp were analyzed.

Conclusions/Significance

This study presents new virological and epidemiological data regarding infection by the pandemic A/H1N1 virus in Europe. Distribution in age groups was found to be similar to that previously reported for seasonal H1N1. The first seroprevalence data made available for a European population suggest a previous exposure of individuals over 40 years old to influenza viruses antigenically related to the pandemic (H1N1)-2009 virus. Genomic analysis indicates that strains harbouring a new amino-acid pattern in the neuraminidase gene appeared secondarily and tended to supplant the first strains. Finally, in contrast with previous reports, our data support the use of RIDT for the detection of infection in children, especially in the context of the investigation of grouped cases.  相似文献   

20.

Background

During the 2009 pandemic influenza H1N1 (2009) virus (pH1N1) outbreak, school students were at an increased risk of infection by the pH1N1 virus. However, the estimation of the attack rate showed significant variability.

Methods

Two school outbreaks were investigated in this study. A questionnaire was designed to collect information by interview. Throat samples were collected from all the subjects in this study 6 times and sero samples 3 times to confirm the infection and to determine viral shedding. Data analysis was performed using the software STATA 9.0.

Findings

The attack rate of the pH1N1 outbreak was 58.3% for the primary school, and 52.9% for the middle school. The asymptomatic infection rates of the two schools were 35.8% and 37.6% respectively. Peak virus shedding occurred on the day of ARI symptoms onset, followed by a steady decrease over subsequent days (p = 0.026). No difference was found either in viral shedding or HI titer between the symptomatic and the asymptomatic infectious groups.

Conclusions

School children were found to be at a high risk of infection by the novel virus. This may be because of a heightened risk of transmission owing to increased mixing at boarding school, or a lack of immunity owing to socio-economic status. We conclude that asymptomatically infectious cases may play an important role in transmission of the pH1N1 virus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号