共查询到20条相似文献,搜索用时 15 毫秒
1.
A Technique to Simultaneously Visualize Virus-Specific CD8+ T Cells and Virus-Infected Cells In situ
Qingsheng Li Pamela J. Skinner Lijie Duan Ashley T. Haase 《Journal of visualized experiments : JoVE》2009,(30)
The numbers and locations of virus-specific CD8+ T cells relative to the numbers and locations of their infected cell targets is thought to be critical in determining outcomes that range from clearance to chronic persistent infections. We describe here a method for assessing the spatial and quantitative relationships between immune effector (E) virus-specific CD8+ T cells and infected targets (T) that combines in situ tetramer (IST) staining to detect virus-specific CD8+ T cells and in situ hybridization (ISH) to detect viral-RNA+ cells in the tissues where the battle between immune defenses and infection takes place. The combination of IST staining and ISH, abbreviated ISTH, enables visualization and mapping of the locations of immune effector cells and targets, and facile determination of E:T ratios. These parameters in turn can then be used to determine the relationships between spatial proximity, and the timing and magnitude of the immune response that predict outcomes in early infection.Download video file.(240M, mp4) 相似文献
2.
Background
The emergence of antibiotic-resistant strains of Salmonella enterica serovar Typhi (S. Typhi), the etiologic agent of typhoid fever, has aggravated an already important public health problem and added new urgency to the development of more effective typhoid vaccines. To this end it is critical to better understand the induction of immunity to S. Typhi. CD8+ T cells are likely to play an important role in host defense against S. Typhi by several effector mechanisms, including killing of infected cells and IFN-γ secretion. However, how S. Typhi regulates the development of specific CD8+ responses in humans remains unclear. Recent studies in mice have shown that dendritic cells (DC) can either directly (upon uptake and processing of Salmonella) or indirectly (by bystander mechanisms) elicit Salmonella-specific CD8+ T cells.Methodology/Principal Findings
We report here that upon infection with live S. Typhi, human DC produced high levels of pro-inflammatory cytokines IL-6, IL-8 and TNF-α, but low levels of IL-12 p70 and IFN-γ. In contrast, DC co-cultured with S. Typhi-infected cells, through suicide cross-presentation, uptake S. Typhi-infected human cells and release high levels of IFN-γ and IL-12p70, leading to the subsequent presentation of bacterial antigens and triggering the induction of memory T cells, mostly CD3+CD8+CD45RA−CD62L− effector/memory T cells.Conclusions/Significance
This study is the first to demonstrate the effect of S. Typhi on human DC maturation and on their ability to prime CD8+ cells and highlights the significance of these phenomena in eliciting adaptive immunity to S. Typhi. 相似文献3.
The extent to which direct- and cross-presentation (DP and CP) contribute to the priming of CD8+ T cell (TCD8+) responses to viruses is unclear mainly because of the difficulty in separating the two processes. Hence, while CP in the absence of DP has been clearly demonstrated, induction of an anti-viral TCD8+ response that excludes CP has never been purposely shown. Using vaccinia virus (VACV), which has been used as the vaccine to rid the world of smallpox and is proposed as a vector for many other vaccines, we show that DP is the main mechanism for the priming of an anti-viral TCD8+ response. These findings provide important insights to our understanding of how one of the most effective anti-viral vaccines induces immunity and should contribute to the development of novel vaccines. 相似文献
4.
Lara Vojnov Jason S. Reed Kim L. Weisgrau Eva G. Rakasz John T. Loffredo Shari M. Piaskowski Jonah B. Sacha Holly L. Kolar Nancy A. Wilson R. Paul Johnson David I. Watkins 《Journal of virology》2010,84(2):753-764
The immune correlates of human/simian immunodeficiency virus control remain elusive. While CD8+ T lymphocytes likely play a major role in reducing peak viremia and maintaining viral control in the chronic phase, the relative antiviral efficacy of individual virus-specific effector populations is unknown. Conventional assays measure cytokine secretion of virus-specific CD8+ T cells after cognate peptide recognition. Cytokine secretion, however, does not always directly translate into antiviral efficacy. Recently developed suppression assays assess the efficiency of virus-specific CD8+ T cells to control viral replication, but these assays often use cell lines or clones. We therefore designed a novel virus production assay to test the ability of freshly ex vivo-sorted simian immunodeficiency virus (SIV)-specific CD8+ T cells to suppress viral replication from SIVmac239-infected CD4+ T cells. Using this assay, we established an antiviral hierarchy when we compared CD8+ T cells specific for 12 different epitopes. Antiviral efficacy was unrelated to the disease status of each animal, the protein from which the tested epitopes were derived, or the major histocompatibility complex (MHC) class I restriction of the tested epitopes. Additionally, there was no correlation with the ability to suppress viral replication and epitope avidity, epitope affinity, CD8+ T-cell cytokine multifunctionality, the percentage of central and effector memory cell populations, or the expression of PD-1. The ability of virus-specific CD8+ T cells to suppress viral replication therefore cannot be determined using conventional assays. Our results suggest that a single definitive correlate of immune control may not exist; rather, a successful CD8+ T-cell response may be comprised of several factors.CD8+ T cells may play a critical role in blunting peak viremia and controlling human immunodeficiency virus (HIV) and simian immunodeficiency virus (SIV) replication. The transient depletion of CD8+ cells in SIV-infected macaques results in increased viral replication (26, 31, 51, 70). The emergence of virus-specific CD8+ T cells coincides with the reduction of peak viremia (12, 39, 42, 63), and CD8+ T-cell pressure selects for escape mutants (6, 9, 13, 28, 29, 38, 60, 61, 85). Furthermore, particular major histocompatibility complex (MHC) class I alleles are overrepresented in SIV- and HIV-infected elite controllers (15, 29, 33, 34, 46, 56, 88).Because it has been difficult to induce broadly neutralizing antibodies (Abs), the AIDS vaccine field is currently focused on developing a vaccine designed to elicit HIV-specific CD8+ T cells (8, 52, 53, 82). Investigators have tried to define the immune correlates of HIV control. Neither the magnitude nor the breadth of epitopes recognized by virus-specific CD8+ T-cell responses correlates with the control of viral replication (1). The quality of the immune response may, however, contribute to the antiviral efficacy of the effector cells. It has been suggested that the number of cytokines that virus-specific CD8+ T cells secrete may correlate with viral control, since HIV-infected nonprogressors appear to maintain CD8+ T cells that secrete several cytokines, compared to HIV-infected progressors (11, 27). An increased amount of perforin secretion may also be related to the proliferation of HIV-specific CD8+ T cells in HIV-infected nonprogressors (55). While those studies offer insight into the different immune systems of progressors and nonprogressors, they did not address the mechanism of viral control. Previously, we found no association between the ability of SIV-specific CD8+ T-cell clones to suppress viral replication in vitro and their ability to secrete gamma interferon (IFN-γ), tumor necrosis factor alpha (TNF-α), or interleukin-2 (IL-2) (18).Evidence suggests that some HIV/SIV proteins may be better vaccine targets than others. CD8+ T cells recognize epitopes derived from Gag as early as 2 h postinfection, whereas CD8+ T cells specific for epitopes in Env recognize infected cells only at 18 h postinfection (68). Additionally, a previously reported study of HIV-infected individuals showed that an increased breadth of Gag-specific responses was associated with lower viral loads (35, 59, 65, 66). CD8+ T-cell responses specific for Env, Rev, Tat, Vif, Vpr, Vpu, and Nef were associated with higher viral loads, with increased breadth of Env in particular being significantly associated with a higher chronic-phase viral set point.None of the many sophisticated methods employed for analyzing the characteristics of HIV- or SIV-specific immune responses clearly demarcate the critical qualities of an effective antiviral response. In an attempt to address these questions, we developed a new assay to measure the antiviral efficacy of individual SIV-specific CD8+ T-cell responses sorted directly from fresh peripheral blood mononuclear cells (PBMC). Using MHC class I tetramers specific for the epitope of interest, we sorted freshly isolated virus-specific CD8+ T cells and determined their ability to suppress virus production from SIV-infected CD4+ T cells. We then looked for a common characteristic of efficacious epitope-specific CD8+ T cells using traditional methods. 相似文献
5.
Bertram T. Ober Artur Summerfield Christina Mattlinger Karl-Heinz Wiesmüller Günther Jung Eberhard Pfaff Armin Saalmüller Hanns-Joachim Rziha 《Journal of virology》1998,72(6):4866-4873
Pseudorabies virus (PRV; suid herpesvirus 1) infection causes heavy economic losses in the pig industry. Therefore, vaccination with live attenuated viruses is practiced in many countries. This vaccination was demonstrated to induce extrathymic virus-specific memory CD4+CD8+ T lymphocytes. Due to their major histocompatibility complex (MHC) class II-restricted proliferation, it is generally believed that these T lymphocytes function as memory T-helper cells. To directly prove this hypothesis, 15-amino-acid, overlapping peptides of the viral glycoprotein gC were used for screening in proliferation assays with peripheral blood mononuclear cells of vaccinated d/d haplotype inbred pigs. In these experiments, two naturally processed T-cell epitopes (T1 and T2) which are MHC class II restricted were identified. It was shown that extrathymic CD4+CD8+ T cells are the T-lymphocyte subpopulation that responds to epitope T2. In addition, we were able to show that cytokine secretion can be induced in these T cells through recall with inactivated PRV and demonstrated that activated PRV-primed CD4+CD8+ T cells are able to induce PRV-specific immunoglobulin synthesis by PRV-primed, resting B cells. Taken together, these results demonstrate that the glycoprotein gC takes part in the priming of humoral anti-PRV memory responses. The experiments identified the first T-cell epitopes so far known to induce the generation of virus-specific CD4+CD8+ memory T lymphocytes and showed that CD4+CD8+ T cells are memory T-helper cells. Therefore, this study describes the generation of virus-specific CD4+CD8+ T cells, which is observed during vaccination, as a part of the potent humoral anti-PRV memory response induced by the vaccine.Pseudorabies virus (PRV), a member of the Alphaherpesvirinae, is the causative agent of Aujeszky’s disease. This disease is lethal to young pigs and causes important economic losses (52). Therefore, vaccination of pigs is practiced in many countries.Several humoral immune system effector mechanisms are involved in the protection of pigs from PRV infection. Virus-neutralizing antibodies, antibodies mediating antibody-dependent cell-mediated cytotoxicity, and antibodies mediating complement-mediated lysis of PRV-infected target cells have been demonstrated (22, 23, 53, 54). The main targets of this humoral immune response were shown to be the viral glycoproteins (3, 45), and passive immunization with monoclonal antibodies (MAbs) against gB, gC, and gD protects pigs from a lethal challenge (20, 49).The protection conferred through cell-mediated immunity is poorly understood. An increase in major histocompatibility complex (MHC)-unrestricted cell-mediated cytotoxicity against uninfected and PRV-infected cells has been detected after infection or vaccination of pigs with PRV (16, 53, 54), and specific cellular immune responses to PRV infections could be demonstrated by stimulation of proliferation and lymphokine secretion of porcine PRV-immune lymphocytes (10, 17, 42, 43, 51) as well as by the detection of PRV-specific cytotoxic lymphocytes (21, 56).There are some difficulties in defining more precisely the impact of cell-mediated immune effector mechanisms to protection from PRV-infection and their interplay with the observed humoral immune response. Considerably fewer porcine than human or mouse differentiation markers are available (34). In addition, the immune system of swine differs considerably from that of humans and mice. The pig has a substantial number of CD4−CD8− T lymphocytes in the peripheral blood (4, 6, 12, 36, 39). In young animals, this subpopulation of T lymphocytes comprises up to 60% of the T lymphocytes and contains mainly γδ T lymphocytes. The pig is also the only species so far known to contain a substantial number of resting extrathymic CD4+CD8+ T lymphocytes (28, 36, 39). This T-lymphocyte population shows morphologically the phenotype of mature T lymphocytes (40) and increases with age to up to 60% of peripheral T lymphocytes (29, 35, 39, 55). Further, it was demonstrated that CD4+CD8+ T lymphocytes comprise memory T cells which proliferate upon stimulation with recall antigen (43, 55). Since the observed proliferative response was shown to be MHC class II-restricted, it was speculated that the porcine CD4+CD8+ T-cell subset contains memory T-helper lymphocytes (43). However, the ability of these T lymphocytes to secrete cytokines or to provide help to B cells has so far not been demonstrated.To gain a better understanding of immune effector mechanisms conferring protection from PRV infection, the function of these unusual extrathymic T-lymphocyte subsets has to be elucidated. In the present study, we identified two T-cell epitopes on glycoprotein gC which are primed during vaccination of d/d haplotype inbred pigs (41) against PRV and demonstrated that MHC class II-restricted, peripheral CD4+CD8+ memory T lymphocytes are the responding T lymphocytes. We were further able to show that PRV-specific, extrathymic CD4+CD8+ T lymphocytes are able to secrete cytokines and have the capacity to stimulate the secretion of PRV-specific immunoglobulins (Ig) by PRV-primed B cells. These results demonstrate that porcine CD4+CD8+ T lymphocytes can function as memory T-helper cells and can direct humoral anti-PRV memory responses. 相似文献
6.
7.
8.
9.
Monica Vaccari Rabih Halwani L. Jean Patterson Adriano Boasso Jennifer Beal Elzbieta Tryniszewska Anna Hryniewicz David Venzon Elias K. Haddad Mohamed El-Far Margherita Rosati George N. Pavlakis Barbara K. Felber Saleh Al-Muhsen Marjorie Robert-Guroff Rafick-Pierre Sekaly Genoveffa Franchini 《Journal of virology》2013,87(6):3526-3537
We compared the relative efficacies against simian immunodeficiency virus (SIV) challenge of three vaccine regimens that elicited similar frequencies of SIV-specific CD4+ and CD8+ T-cell responses but differed in the level of antibody responses to the gp120 envelope protein. All macaques were primed with DNA plasmids expressing SIV gag, pol, env, and Retanef genes and were boosted with recombinant modified vaccinia Ankara virus (MVA) expressing the same genes, either once (1 × MVA) or twice (2 × MVA), or were boosted once with MVA followed by a single boost with replication-competent adenovirus (Ad) type 5 host range mutant (Ad5 h) expressing SIV gag and nef genes but not Retanef or env (1 × MVA/Ad5). While two of the vaccine regimens (1 × MVA and 1 × MVA/Ad5) protected from high levels of SIV replication only during the acute phase of infection, the 2 × MVA regimen, with the highest anti-SIV gp120 titers, protected during the acute phase and transiently during the chronic phase of infection. Mamu-A*01 macaques of this third group exhibited persistent Gag CD8+CM9+ effector memory T cells with low expression of surface Programmed death-1 (PD-1) receptor and high levels of expression of genes associated with major histocompatibility complex class I (MHC-I) and MHC-II antigen. The fact that control of SIV replication was associated with both high titers of antibodies to the SIV envelope protein and durable effector SIV-specific CD8+ T cells suggests the hypothesis that the presence of antibodies at the time of challenge may increase innate immune recruiting activity by enhancing antigen uptake and may result in improvement of the quality and potency of secondary SIV-specific CD8+ T-cell responses. 相似文献
10.
Pratip K. Chattopadhyay Kiprotich Chelimo Paula B. Embury David H. Mulama Peter Odada Sumba Emma Gostick Kristin Ladell Tess M. Brodie John Vulule Mario Roederer Ann M. Moormann David A. Price 《Journal of virology》2013,87(3):1779-1788
Coinfection with Plasmodium falciparum malaria and Epstein-Barr virus (EBV) is a major risk factor for endemic Burkitt lymphoma (eBL), still one of the most prevalent pediatric cancers in equatorial Africa. Although malaria infection has been associated with immunosuppression, the precise mechanisms that contribute to EBV-associated lymphomagenesis remain unclear. In this study, we used polychromatic flow cytometry to characterize CD8+ T-cell subsets specific for EBV-derived lytic (BMFL1 and BRLF1) and latent (LMP1, LMP2, and EBNA3C) antigens in individuals with divergent malaria exposure. No malaria-associated differences in EBV-specific CD8+ T-cell frequencies were observed. However, based on a multidimensional analysis of CD45RO, CD27, CCR7, CD127, CD57, and PD-1 expression, we found that individuals living in regions with intense and perennial (holoendemic) malaria transmission harbored more differentiated EBV-specific CD8+ T-cell populations that contained fewer central memory cells than individuals living in regions with little or no (hypoendemic) malaria. This profile shift was most marked for EBV-specific CD8+ T-cell populations that targeted latent antigens. Importantly, malaria exposure did not skew the phenotypic properties of either cytomegalovirus (CMV)-specific CD8+ T cells or the global CD8+ memory T-cell pool. These observations define a malaria-associated aberration localized to the EBV-specific CD8+ T-cell compartment that illuminates the etiology of eBL. 相似文献
11.
Mina O. Seedhom Evan R. Jellison Keith A. Daniels Raymond M. Welsh 《Journal of virology》2009,83(24):12907-12916
A productive CD8+ T-cell response to a viral infection requires rapid division and proliferation of virus-specific CD8+ T cells. Tetramer-based enrichment assays have recently given estimates of the numbers of peptide-major histocompatibility complex-specific CD8+ T cells in naïve mice, but precursor frequencies for entire viruses have been examined only by using in vitro limiting-dilution assays (LDAs). To examine CD8+ T-cell precursor frequencies for whole viruses, we developed an in vivo LDA and found frequencies of naïve CD8+ T-cell precursors of 1 in 1,444 for vaccinia virus (VV) (∼13,850 VV-specific CD8+ T cells per mouse) and 1 in 2,958 for lymphocytic choriomeningitis virus (LCMV) (∼6,761 LCMV-specific CD8+ T cells per mouse) in C57BL/6J mice. In mice immune to VV, the number of VV-specific precursors, not surprisingly, dramatically increased to 1 in 13 (∼1,538,462 VV-specific CD8+ T cells per mouse), consistent with estimates of VV-specific memory T cells. In contrast, precursor numbers for LCMV did not increase in VV-immune mice (1 in 4,562, with ∼4,384 LCMV-specific CD8+ T cells per VV-immune mouse). Using H-2Db-restricted LCMV GP33-specific P14-transgenic T cells, we found that, after donor T-cell take was accounted for, approximately every T cell transferred underwent a full proliferative expansion in response to LCMV infection. This high efficiency was also seen with memory populations, suggesting that most antigen-specific T cells will proliferate extensively at a limiting dilution in response to infections. These results show that frequencies of naïve and memory CD8+ T cell precursors for whole viruses can be remarkably high.The immune response to a viral infection often involves the rapid proliferation of CD8+ effector T cells that recognize virus-infected targets expressing 8- to 11-amino-acid-long peptides on class I major histocompatibility complex (MHC) molecules. This recognition is mediated by membrane-bound T-cell receptors (TCRs) that are generated through largely random DNA recombination events of the many TCRα and -β genes, encoding polypeptide chains that heterodimerize to form the recognition structure of T cells. The recombination of the segments also involves addition or deletion of nucleotides during the joining process, causing even greater diversity, and these processes allow for a very broad range of T-cell specificities, with a calculated theoretical diversity of ∼1015 TCRs in the mouse (7). By use of PCR, CDR3 spectratyping, and sequencing techniques, it was estimated that there are approximately 2 × 106 distinct TCR specificities in a mouse spleen (1, 5). This is far below the theoretical level of T-cell diversity, but considering estimates of T-cell degeneracy that propose that a single TCR can recognize up to 106 peptide-MHC (pMHC) complexes (17, 36), it is likely that the functional diversity is much greater than the number of individual TCRs.It has been of interest to calculate the number of T cells that would either recognize or respond to a pathogen or to a specific pMHC complex. Early estimates of numbers of CD8+ T cells that are specific to a single virus, i.e., precursor frequencies, took advantage of an in vitro limiting-dilution assay (LDA) and calculated CD8+ T-cell virus-specific precursor frequencies to be on the order of 1 in 100,000 in naïve mice and predicted that these cells needed to undergo about 15 divisions to reach the higher precursor frequencies found at day 8 postinfection (29, 30). The efficiency of such assays, however, is relatively poor. Later studies estimated the number of pMHC-specific CD8+ T cells in a naïve mouse by CDR3 sequencing. H-2Kd-restricted T cells specific to HLA residues 170 to 179 (HLA 170-179) were sorted by tetramer from human tumor-immunized mice, and their Vβ CDR3 regions were sequenced. After a plateau suggesting that the majority of the different TCRs had been sequenced was reached, exhaustive sequencing was then used to identify the frequencies of these sequences in naïve mice. These studies found that there were about 600 CD8+ T cells specific for that pMHC complex in naïve mice (4). A second strategy used an in vivo competition assay with H-2Db-restricted lymphocytic choriomeningitis virus (LCMV) GP33-specific P14-transgenic T cells to estimate the number of GP33-specific CD8 T cells in naïve mice and calculated the number to be between 100 to 200 cells per mouse (2).Others estimated numbers of pMHC-specific T cells by sequencing the CDR3β regions of antigen-specific T cells that had expanded during an acute infection. By calculating a measure of CDR3 diversity and then assuming a logarithmic distribution of diversity, they extrapolated the number of T-cell clones that responded to an acute infection. With this technique, 300 to 500 H-2Db-restricted mouse hepatitis virus (MHV)-encoded S510 clonotypes were calculated to be in the central nervous systems of acutely infected mice, with ∼100 to 900 clonotypes calculated to be in chronically infected mice (24). Later studies used a gamma interferon (IFN-γ) capture assay instead of tetramer sorting and estimated 1,100 to 1,500 H-2Db-restricted S510-specific clonotypes and 600 to 900 clonotypes of the subdominant H-2Kb-restricted MHV S598 peptide-specific T cells in the spleens of acutely infected mice (25). Those studies also estimated that there were 1,000 to 1,200 different H-2Db-restricted GP33-specific clonotypes that could respond to an LCMV infection.More-recent studies have taken advantage of magnetic tetramer binding enrichment and double tetramer staining of cells from the spleen and lymph nodes of naïve mice to determine pMHC precursor frequencies, with the assumption that most CD8+ T cells in a naïve mouse reside in lymphoid organs and will react with tetramers. This technique was first described by Moon et al. for CD4+ T cells, and it detected ∼190 I-Ab 2W1S 52-68-specific T cells, ∼20 I-Ab Salmonella enterica serovar Typhimurium FLiC 427-441-specific T cells, and ∼16 I-Ab chicken ovalbumin (OVA) 323-339-specific T cells per mouse (19). This same technique was then used to determine numbers of pMHC-specific CD8+ T cells for epitopes derived from a variety of viruses and found 15 to 1,070 pMHC-specific CD8+ T cells per mouse, depending on the specificity of the pMHC tetramer (10, 15, 23). Determinations of CD8+ T-cell precursor frequencies in humans are currently not experimentally attainable, but exhaustive sequencing of an HLA-A2.1-restricted influenza A virus (IAV) M1 58-66-specific T-cell response has suggested that there are at least 141 different clonotypes that can grow out in response to an in vitro stimulation with peptide, providing a minimum number of T cells that can respond to this pMHC complex in humans (22).Most of the assays estimate the number of T cells specific to single peptides in individual mice. These assays, therefore, do not determine the numbers of CD8+ T cells that can proliferate in response to an entire virus, especially if the virus is known to have many epitopes or if epitopes for the virus have not been described. By examining the average number of pMHC-specific CD8+ T cells in a naïve mouse and comparing this to the number of pMHC-specific CD8+ T cells that are in a mouse at the peak of the T-cell response, it can be calculated that CD8+ T cells divide approximately 12 to 14 times after virus infection (23). Considering that the progeny of one precursor after only 12 divisions can result in just over 4,000 cells, and since recent experiments using H-2Kb-restricted chicken OVA 257-264-specific OT-1-transgenic T cells have confirmed that the progeny from a single cell can be detected in a mouse after infection (31), an in vivo LDA was set up to take advantage of the extensive division and proliferation of virus-specific CD8+ T cells in order to determine virus-specific CD8+ T-cell precursor frequencies.Here, we show that by transferring limiting amounts of carboxyfluorescein succinimidyl ester (CFSE)-labeled Thy1.1+ Ly5.2+ heterogeneous CD8+ T cells into Thy1.2+ Ly5.1+ hosts, we are able to calculate CD8+ T-cell precursor frequencies for whole viruses. Our calculations are based on finding the number of donor CD8+ T cells that results in low-level-CFSE (CFSElo) (i.e., proliferated) donor CD8 T cells in 50% of the hosts. Using probit or Reed and Muench 50% endpoint calculations (3, 26), we are able to calculate CD8+ T-cell precursor frequencies. We show here that frequencies of naïve CD8+ T-cell precursors for whole viruses are quite high and that our in vivo LDA calculates whole-virus precursor frequencies in line with determinations using other methods with naïve and immune mice. 相似文献
12.
Holly L. Johnson Robin C. Willenbring Fang Jin Whitney A. Manhart Stephanie J. LaFrance Istvan Pirko Aaron J. Johnson 《PloS one》2014,9(10)
Numerous neurological disorders are characterized by central nervous system (CNS) vascular permeability. However, the underlying contribution of inflammatory-derived factors leading to pathology associated with blood-brain barrier (BBB) disruption remains poorly understood. In order to address this, we developed an inducible model of BBB disruption using a variation of the Theiler''s murine encephalomyelitis virus (TMEV) model of multiple sclerosis. This peptide induced fatal syndrome (PIFS) model is initiated by virus-specific CD8 T cells and results in severe CNS vascular permeability and death in the C57BL/6 mouse strain. While perforin is required for BBB disruption, the cellular source of perforin has remained unidentified. In addition to CD8 T cells, various innate immune cells also express perforin and therefore could also contribute to BBB disruption. To investigate this, we isolated the CD8 T cell as the sole perforin-expressing cell type in the PIFS model through adoptive transfer techniques. We determined that C57BL/6 perforin−/− mice reconstituted with perforin competent CD8 T cells and induced to undergo PIFS exhibited: 1) heightened CNS vascular permeability, 2) increased astrocyte activation as measured by GFAP expression, and 3) loss of linear organization of BBB tight junction proteins claudin-5 and occludin in areas of CNS vascular permeability when compared to mock-treated controls. These results are consistent with the characteristics associated with PIFS in perforin competent mice. Therefore, CD8 T cells are sufficient as a sole perforin-expressing cell type to cause BBB disruption in the PIFS model. 相似文献
13.
14.
15.
Judith Rauen Christoph Kreer Arlette Paillard Suzanne van Duikeren Willemien E. Benckhuijsen Marcel G. Camps A. Rob P. M. Valentijn Ferry Ossendorp Jan W. Drijfhout Ramon Arens Sven Burgdorf 《PloS one》2014,9(8)
The use of synthetic long peptides (SLP) has been proven to be a promising approach to induce adaptive immune responses in vaccination strategies. Here, we analyzed whether the efficiency to activate cytotoxic T cells by SLP-based vaccinations can be increased by conjugating SLPs to mannose residues. We could demonstrate that mannosylation of SLPs results in increased internalization by the mannose receptor (MR) on murine antigen-presenting cells. MR-mediated internalization targeted the mannosylated SLPs into early endosomes, from where they were cross-presented very efficiently compared to non-mannosylated SLPs. The influence of SLP mannosylation was specific for cross-presentation, as no influence on MHC II-restricted presentation was observed. Additionally, we showed that vaccination of mice with mannosylated SLPs containing epitopes from either ovalbumin or HPV E7 resulted in enhanced proliferation and activation of antigen-specific CD8+ T cells. These findings demonstrate that mannosylation of SLPs augments the induction of a cytotoxic T cell response in vitro and in vivo and might be a promising approach to induce cytotoxic T cell responses in e.g. cancer therapy and anti-viral immunity. 相似文献
16.
CD8+ T cells play an important role in the anti-tumor activities of the body. The dysfunction of CD8+ T cells in glioma is unclear. This study aims to elucidate the glioma cell-derived ADAM10 (A Disintegrin and metalloproteinase domain-containing protein 10) in the suppression of CD8+ effector T cells by the induction of regulatory B cells. In this study, glioma cells were isolated from surgically removed glioma tissue and stimulated by Phorbol myristate acetage (PMA) in the culture. The levels of ADAM10 in the culture were determined by enzyme-linked immunosorbent assay. Immune cells were assessed by flow cytometry. The results showed that the isolated glioma cells express ADAM10, which was markedly up regulated after stimulated with PMA. The glioma-derived ADAM10 induced activated B cells to differentiate into regulatory B cells, the later suppressed CD8+ T cell proliferation as well as the induced regulatory T cells, which also showed the immune suppressor effect on CD8+ effector T cell proliferation. In conclusion, glioma cells produce ADAM10 to induce Bregs; the latter suppresses CD8+ T cells and induces Tregs. 相似文献
17.
Vesselin T. Tomov Lisa C. Osborne Douglas V. Dolfi Gregory F. Sonnenberg Laurel A. Monticelli Kathleen Mansfield Herbert W. Virgin David Artis E. John Wherry 《Journal of virology》2013,87(12):7015-7031
Norovirus (NV) gastroenteritis is a major contributor to global morbidity and mortality, yet little is known about immune mechanisms leading to NV control. Previous studies using the murine norovirus (MNV) model have established a key role for T cells in MNV clearance. Despite these advances, important questions remain regarding the magnitude, location, and dynamics of the MNV-specific T cell response. To address these questions, we identified MNV-specific major histocompatibility complex (MHC) class I immunodominant epitopes using an overlapping peptide screen. One of these epitopes (amino acids 519 to 527 of open reading frame 2 [ORF2519-527]) was highly conserved among all NV genogroups. Using MHC class I peptide tetramers, we tracked MNV-specific CD8 T cells in lymphoid and mucosal sites during infection with two MNV strains with distinct biological behaviors, the acutely cleared strain CW3 and the persistent strain CR6. Here, we show that enteric MNV infection elicited robust T cell responses primarily in the intestinal mucosa and that MNV-specific CD8 T cells dynamically regulated the expression of surface molecules associated with activation, differentiation, and homing. Furthermore, compared to MNV-CW3 infection, chronic infection with MNV-CR6 resulted in fewer and less-functional CD8 T cells, and this difference was evident as early as day 8 postinfection. Finally, MNV-specific CD8 T cells were capable of reducing the viral load in persistently infected Rag1−/− mice, suggesting that these cells are a crucial component of NV immunity. Collectively, these data provide fundamental new insights into the adaptive immune response to two closely related NV strains with distinct biological behaviors and bring us closer to understanding the correlates of protective antiviral immunity in the intestine. 相似文献
18.
Martha Sedegah Michael R. Hollingdale Fouzia Farooq Harini Ganeshan Maria Belmonte Yohan Kim Bjoern Peters Alessandro Sette Jun Huang Shannon McGrath Esteban Abot Keith Limbach Meng Shi Lorraine Soisson Carter Diggs Ilin Chuang Cindy Tamminga Judith E. Epstein Eileen Villasante Thomas L. Richie 《PloS one》2014,9(9)
Background
Fifteen volunteers were immunized with three doses of plasmid DNA encoding P. falciparum circumsporozoite protein (CSP) and apical membrane antigen-1 (AMA1) and boosted with human adenovirus-5 (Ad) expressing the same antigens (DNA/Ad). Four volunteers (27%) demonstrated sterile immunity to controlled human malaria infection and, overall, protection was statistically significantly associated with ELISpot and CD8+ T cell IFN-γ activities to AMA1 but not CSP. DNA priming was required for protection, as 18 additional subjects immunized with Ad alone (AdCA) did not develop sterile protection.Methodology/Principal Findings
We sought to identify correlates of protection, recognizing that DNA-priming may induce different responses than AdCA alone. Among protected volunteers, two and three had higher ELISpot and CD8+ T cell IFN-γ responses to CSP and AMA1, respectively, than non-protected volunteers. Unexpectedly, non-protected volunteers in the AdCA trial showed ELISpot and CD8+ T cell IFN-γ responses to AMA1 equal to or higher than the protected volunteers. T cell functionality assessed by intracellular cytokine staining for IFN-γ, TNF-α and IL-2 likewise did not distinguish protected from non-protected volunteers across both trials. However, three of the four protected volunteers showed higher effector to central memory CD8+ T cell ratios to AMA1, and one of these to CSP, than non-protected volunteers for both antigens. These responses were focused on discrete regions of CSP and AMA1. Class I epitopes restricted by A*03 or B*58 supertypes within these regions of AMA1 strongly recalled responses in three of four protected volunteers. We hypothesize that vaccine-induced effector memory CD8+ T cells recognizing a single class I epitope can confer sterile immunity to P. falciparum in humans.Conclusions/Significance
We suggest that better understanding of which epitopes within malaria antigens can confer sterile immunity and design of vaccine approaches that elicit responses to these epitopes will increase the potency of next generation gene-based vaccines. 相似文献19.