首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The majority of Listeria monocytogenes isolates recovered from foods and the environment are strains of serogroup 1/2, especially serotypes 1/2a and 1/2b. However, serotype 4b strains cause the majority of human listeriosis outbreaks. Our investigation of L. monocytogenes biofilms used a simulated food-processing system that consisted of repeated cycles of growth, sanitation treatment, and starvation to determine the competitive fitness of strains of serotypes 1/2a and 4b in pure and mixed-culture biofilms. Selective enumeration of strains of a certain serotype in mixed-culture biofilms on stainless steel coupons was accomplished by using serotype-specific quantitative PCR and propidium monoazide treatment to prevent amplification of extracellular DNA or DNA from dead cells. The results showed that the serotype 1/2a strains tested were generally more efficient at forming biofilms and predominated in the mixed-culture biofilms. The growth and survival of strains of one serotype were not inhibited by strains of the other serotype in mixed-culture biofilms. However, we found that a cocktail of serotype 4b strains survived and grew significantly better in mixed-culture biofilms containing a specific strain of serotype 1/2a (strain SK1387), with final cell densities averaging 0.5 log10 CFU/cm2 higher than without the serotype 1/2a strain. The methodology used in this study contributed to our understanding of how environmental stresses and microbial competition influence the survival and growth of L. monocytogenes in pure and mixed-culture biofilms.A prominent food-borne pathogen, Listeria monocytogenes can cause severe infections in humans, primarily in high-risk populations, though the disease (listeriosis) is relatively rare (11, 30, 43). Outbreaks of listeriosis have resulted from the contamination of a variety of foods by L. monocytogenes, especially meat and dairy products (27). L. monocytogenes is ubiquitous in the environment, able to grow at refrigeration temperature, and tolerant of the low pHs (3 to 4) typical of acidified foods (28, 32, 44). The capacity to produce biofilms confers protection against stresses common in the food-processing environment (13, 33).Biofilms are characterized by dense clusters of bacterial cells embedded in extracellular polymeric substances which are secreted by cells to aid in adhesion to surfaces and to other cells (4, 5). Strains of L. monocytogenes have been known to persist for years in food-processing environments, presumably in biofilms. Of the 13 known serotypes of L. monocytogenes, three (1/2a, 1/2b, and 4b) account for >95% of the isolates from human illness (21). Serotype 1/2a accounts for >50% of the L. monocytogenes isolates recovered from foods and the environment, while most major outbreaks of human listeriosis have been caused by serotype 4b strains (1, 3, 14, 15, 17, 22, 29, 31, 41, 47, 49,). No correlation between L. monocytogenes strain fitness and serotype has been identified (16, 19). Some studies have reported that strains repeatedly isolated from food and environmental samples (defined as persistent strains) had a higher adherence capacity than strains that were sporadically isolated (2, 36), while this phenomenon was not observed by others (7). Serotype 4b strains exhibited a higher capacity for biofilm formation than did serotype 1/2a strains (36), whereas this was not observed by Di Bonaventura and colleagues (6). It has been suggested that serotype 1/2a strains could be more robust than serotype 4b strains in biofilm formation under a variety of environmental conditions. Furthermore, strains of these serotypes differ in terms of the medium that promotes biofilm formation. Biofilm formation by serotype 4b strains was higher in full-strength tryptic soy broth than in diluted medium, whereas the opposite was observed with serotype 1/2a strains, which produced more biofilm in diluted medium (12).There is limited information on microbial competition between strains of different serotypes in biofilms or on how the environmental stresses present in food-processing environments may affect the biofilm formation and survival of L. monocytogenes of different serotypes. In food-processing plants, the environmental stresses encountered by bacteria are more complex and variable than most laboratory systems used for microbial ecology and biofilm studies. A simulated food-processing (SFP) system has been developed to address this issue (38). The SFP system incorporates several stresses that may affect bacteria in biofilms in the food-processing environment, including exposure to sanitizing agents, dehydration, and starvation. When biofilms were subjected to the SFP regimen over a period of several weeks, the cell numbers of L. monocytogenes strains in the biofilms initially were reduced and then increased as the culture adapted (38). The development of resistance to sanitizing agents was specific to the biofilm-associated cells and was not apparent in the detached cells (38). This suggested that extracellular polymeric substances present in the biofilm matrix were responsible for the resistance to sanitizing agents. It was subsequently found that real-time PCR, in combination with propidium monoazide (PMA) treatment of samples prior to DNA isolation, was an effective method for enumerating viable cells in biofilms (37).The objective of this study was to determine if strains of serotype 1/2a or 4b have a selective advantage under stress conditions. We investigated and compared the initial attachment and biofilm formation capabilities of L. monocytogenes strains of these two serotypes and analyzed the survival and growth of bacteria of each serotype in mixed-serotype biofilms in the SFP system by using PMA with quantitative PCR.  相似文献   

2.
Contamination of food by Listeria monocytogenes is thought to occur most frequently in food-processing environments where cells persist due to their ability to attach to stainless steel and other surfaces. Once attached these cells may produce multicellular biofilms that are resistant to disinfection and from which cells can become detached and contaminate food products. Because there is a correlation between virulence and serotype (and thus phylogenetic division) of L. monocytogenes, it is important to determine if there is a link between biofilm formation and disease incidence for L. monocytogenes. Eighty L. monocytogenes isolates were screened for biofilm formation to determine if there is a robust relationship between biofilm formation, phylogenic division, and persistence in the environment. Statistically significant differences were detected between phylogenetic divisions. Increased biofilm formation was observed in Division II strains (serotypes 1/2a and 1/2c), which are not normally associated with food-borne outbreaks. Differences in biofilm formation were also detected between persistent and nonpersistent strains isolated from bulk milk samples, with persistent strains showing increased biofilm formation relative to nonpersistent strains. There were no significant differences detected among serotypes. Exopolysaccharide production correlated with cell adherence for high-biofilm-producing strains. Scanning electron microscopy showed that a high-biofilm-forming strain produced a dense, three-dimensional structure, whereas a low-biofilm-forming strain produced a thin, patchy biofilm. These data are consistent with data on persistent strains forming biofilms but do not support a consistent relationship between enhanced biofilm formation and disease incidence.  相似文献   

3.
4.
Listeria monocytogenes contamination of ready-to-eat foods has been implicated in numerous outbreaks of food-borne listeriosis. However, the health hazards posed by L. monocytogenes detected in foods may vary, and speculations exist that strains actually implicated in illness may constitute only a fraction of those that contaminate foods. In this study, examination of 34 serogroup 4 (putative or confirmed serotype 4b) isolates of L. monocytogenes obtained from various foods and food-processing environments, without known implication in illness, revealed that many of these strains had methylation of cytosines at GATC sites in the genome, rendering their DNA resistant to digestion by the restriction endonuclease Sau3AI. These strains also harbored a gene cassette with putative restriction-modification system genes as well as other, genomically unlinked genetic markers characteristic of the major epidemic-associated lineage of L. monocytogenes (epidemic clone I), implicated in numerous outbreaks in Europe and North America. This may reflect a relatively high fitness of strains with these genetic markers in foods and food-related environments relative to other serotype 4b strains and may partially account for the repeated involvement of such strains in human food-borne listeriosis.  相似文献   

5.
We used whole-genome sequencing to determine evolutionary relationships among 20 outbreak-associated clinical isolates of Listeria monocytogenes serotypes 1/2a and 1/2b. Isolates from 6 of 11 outbreaks fell outside the clonal groups or “epidemic clones” that have been previously associated with outbreaks, suggesting that epidemic potential may be widespread in L. monocytogenes and is not limited to the recognized epidemic clones. Pairwise comparisons between epidemiologically related isolates within clonal complexes showed that genome-level variation differed by 2 orders of magnitude between different comparisons, and the distribution of point mutations (core versus accessory genome) also varied. In addition, genetic divergence between one closely related pair of isolates from a single outbreak was driven primarily by changes in phage regions. The evolutionary analysis showed that the changes could be attributed to horizontal gene transfer; members of the diverse bacterial community found in the production facility could have served as the source of novel genetic material at some point in the production chain. The results raise the question of how to best utilize information contained within the accessory genome in outbreak investigations. The full magnitude and complexity of genetic changes revealed by genome sequencing could not be discerned from traditional subtyping methods, and the results demonstrate the challenges of interpreting genetic variation among isolates recovered from a single outbreak. Epidemiological information remains critical for proper interpretation of nucleotide and structural diversity among isolates recovered during outbreaks and will remain so until we understand more about how various population histories influence genetic variation.  相似文献   

6.
Listeria monocytogenes is a food-borne pathogen that is capable of living in harsh environments. It is believed to do this by forming biofilms, which are surface-associated multicellular structures encased in a self-produced matrix. In this paper we show that in L. monocytogenes extracellular DNA (eDNA) may be the only central component of the biofilm matrix and that it is necessary for both initial attachment and early biofilm formation for 41 L. monocytogenes strains that were tested. DNase I treatment resulted in dispersal of biofilms, not only in microtiter tray assays but also in flow cell biofilm assays. However, it was also demonstrated that in a culture without eDNA, neither Listeria genomic DNA nor salmon sperm DNA by itself could restore the capacity to adhere. A search for additional necessary components revealed that peptidoglycan (PG), specifically N-acetylglucosamine (NAG), interacted with the DNA in a manner which restored adhesion. If a short DNA fragment (less than approximately 500 bp long) was added to an eDNA-free culture prior to addition of genomic or salmon sperm DNA, adhesion was prevented, indicating that high-molecular-weight DNA is required for adhesion and that the number of attachment sites on the cell surface can be saturated.The food-borne pathogen Listeria monocytogenes is known to persist in food processing plants (28, 48), and it has been reported that some strains of this species are capable of forming biofilms (2, 16). The mechanisms of biofilm formation have not been elucidated, but this process seems to depend on factors such as temperature and inducing compounds (14). One inducing compound is NaCl (22), but ethanol, isopropanol (14), quorum sensing (36), and an increasing temperature (8, 14, 38) also seem to enhance attachment and biofilm formation, whereas an acidic pH reduces adhesion (17, 38, 43). Furthermore, at 30°C flagellum-based motility seems to be a specific determinant for the initial adhesion (23, 42) and biofilm formation (23); however, it has recently been reported that in time nonflagellated mutants can produce hyperbiofilms (42).Since bacteria adhering to surfaces, both in biofilms and as single cells, exhibit increased resistance to sanitizers and antimicrobial agents (10, 41), examining the essential steps in adhesion and biofilm formation is important in order to develop new and improved sanitation processes.Extracellular DNA (eDNA) is a ubiquitous component of the organic matter pool in soil, marine, and freshwater habitats (26), but it is also found in environments as diverse as tissue cultures and the blood of mammals (11, 25). The presence of eDNA in the matrix of multicellular structures has recently been reported to influence the initial attachment and/or biofilm structure of Pseudomonas (1, 47), Streptococcus (29), and Staphylococcus (21, 33, 34) species.The prevalence of eDNA in nature appears to be associated with both lysis of cells and active secretion. The concentrations of eDNA released can be up to 2 μg g−1 soil (30) and up to 0.5 g (m2)−1 in the top few centimeters of deep-sea sediment (where more than 90% of the DNA is extracellular) (5). In the deep sea eDNA plays a key role in the ecosystem, functioning as a nitrogen and phosphorus reservoir (5). At present, there are different theories concerning both the function and the release of eDNA in multicellular structures. The presence of eDNA could be a result of either cell lysis (33, 34) or vesicle release (47), whereas active transport is a more speculative explanation. The role of eDNA in biofilm structure has not been revealed yet, but various functions, including a role as a structural component, an energy and nutrition source, or a gene pool for horizontal gene transfer (HGT) in naturally competent bacteria, can be envisaged.Until now there have been no studies of L. monocytogenes eDNA as a possible matrix component in relation to adhesion and biofilm development. In this study, we determined for the first time the presence of L. monocytogenes eDNA, its origin, and its role as a matrix component for both single-cell adhesion and biofilm formation using static assays, as well as flow cell systems. Furthermore, we showed that an additional component is necessary for eDNA-mediated adhesion.  相似文献   

7.
This is the first report of generalized transduction in the gram-positive, food-borne pathogen Listeria monocytogenes. Bacteriophages were isolated from the environment and from lysogens, or were obtained from other laboratories. Of the 59 bacteriophages tested, 34 proved to be capable of transduction. We exploited the ability of L. monocytogenes to grow at room temperature and isolated bacteriophages that were incapable of growth at 37 degrees C. Transductions at this temperature therefore eliminated transductant killing and lysogeny, as did inclusion of citrate and the use of a low multiplicity of infection. Transducing bacteriophages were found for each of the well-characterized L. monocytogenes strains: EGD, 10403, Mack (serotype1/2a), L028 (serotype 1/2c), Scott A (serotype 4b) and strains from the Jalisco and Halifax, Nova Scotia outbreaks (serotype 4b). P35 (phiLMUP35) is a particularly useful generalized transducing bacteriophage with a wide host range (75% of all serotype 1/2 strains tested). Its disadvantages are that it is small and transduction is relatively infrequent. U153(phiCU-SI153/95) is larger than P35 and transduction frequency increased 100-fold, but it has a very narrow host range. We demonstrated interstrain transduction and used transduction to test linkage between transposon insertions and mutant phenotypes in a variety of strains.  相似文献   

8.
Thirteen different serotypes of the food-borne pathogen Listeria monocytogenes have been described. Serotype 4b strains are most often associated with illness, and serotype 1/2a strains are most often isolated from foods and processing plants. Different abilities to respond to stresses have been described for serotype 4b and 1/2a strains. One of the common enrichment protocols used to test foods for the presence L. monocytogenes is described in the U.S. Food and Drug Administration (FDA) Bacterial Analytical Manual (BAM). We compared three strains of L. monocytogenes serotype 4b and five strains of serotype 1/2a in direct competition with each other in two-strain mixed cultures by using the FDA BAM enrichment protocol, which includes both enrichment broth and selective agar, with and without added food to mimic the conditions that occur during attempts to isolate Listeria species from contaminated foods. Using a colony immunoblot procedure and analyzing over 112,000 colonies, we observed differences in strain fitness, but these differences were not attributable to serotype or genetic lineage.  相似文献   

9.
We have identified a novel gene, gtcA, involved in the decoration of cell wall teichoic acid of Listeria monocytogenes serotype 4b with galactose and glucose. Insertional inactivation of gtcA brought about loss of reactivity with the serotype 4b-specific monoclonal antibody c74.22 and was accompanied by a complete lack of galactose and a marked reduction in the amounts of glucose on teichoic acid. Interestingly, the composition of membrane-associated lipoteichoic acid was not affected. Complementation of the mutants with the cloned gtcA in trans restored galactose and glucose on teichoic acid to wild-type levels. The complemented strains also recovered reactivity with c74.22. Within L. monocytogenes, sequences homologous to gtcA were found in all serogroup 4 isolates but not in strains of any other serotypes. In serotype 4b, gtcA appears to be the first member of a bicistronic operon which includes a gene with homology to Bacillus subtilis rpmE, encoding ribosomal protein L31. In contrast to gtcA, the latter gene appears conserved among all screened serotypes of L. monocytogenes.  相似文献   

10.
11.
Listeria monocytogenes was previously shown to form biofilms composed of a network of knitted chains under continuous-flow conditions. Here we show that the SOS response is activated under these conditions and that deletion of its regulon member yneA results in diminished biofilm formation under continuous-flow conditions.The food-borne pathogen Listeria monocytogenes is widely distributed in the environment and is able to grow in soil and on plant materials, thereby facilitating environmental transmission of this pathogen. L. monocytogenes is therefore frequently encountered in food processing facilities, on food contact surfaces, in pipelines, on floors, and in drains, which in turn may result in contamination of food products. It is expected that the formation of biofilms and subsequent dispersal plays an important role in recontamination processes. Biofilms are structured communities of microorganisms adhering to a surface that may be encapsulated within a self-produced protective and adhesive matrix of extracellular polymeric substances (EPS) (9). Most studies of L. monocytogenes biofilm formation focus on biofilm formation under static conditions on polystyrene, glass, or stainless steel surfaces. L. monocytogenes biofilms on polystyrene and glass consist of a homogeneous layer, while on stainless steel L. monocytogenes biofilms consist of single attached cells or microcolonies (2, 6, 11). The small, rod-shaped morphology of these static biofilm cells is very similar to the morphology of planktonic cells. However, L. monocytogenes biofilms formed under continuous-flow conditions, conceivably encountered in industrial pipelines, consist of a dense network of knitted chains composed of elongated cells and surrounding ball-shaped microcolonies (10). Recently, it has been shown that activation of the L. monocytogenes SOS response factor YneA resulted in cell elongation (14). The SOS response is involved in DNA repair, restart of stalled replication forks (3, 8), and mutagenesis (12). It is regulated by RecA (activator) and LexA (repressor) and furthermore contains DNA repair systems and translesion DNA polymerases such as DinB (15). To prevent transaction of the genome during replication fork stalling, septum formation at the midcell is inhibited by YneA, which results in cell elongation (7, 14). Recently, RecA-dependent genetic recombination was described for Pseudomonas aeruginosa biofilm cells harvested from a drip flow reactor, pointing to activation of the SOS response under these conditions (1). In this study, we investigated whether the SOS response is activated during L. monocytogenes EGD-e biofilm formation and whether there is a role for YneA in knitted chain biofilm formation.L. monocytogenes EGD-e (5), its isogenic in-frame ΔrecA and ΔyneA deletion mutants, its yneA complementation mutant, and its recA and yneA promoter reporter mutants (14) were grown in brain heart infusion (BHI; Difco) broth. No significant difference in planktonic growth between wild-type and mutant cultures was observed (results not shown). Continuous-flow biofilm formation experiments were performed as described previously (10) with small modifications. Biofilms were grown in a flow cell (BST FC 281; Biosurface Technologies Corporation) at 20°C, using BHI with a flow rate of 10 ml/h. Static biofilm experiments were performed as described previously (4) with small modifications. Biofilms were grown in BHI in 12-well polystyrene microtiter plates (Greiner) using a 1% inoculum of an overnight-grown culture. For quantification, the biofilm cells were harvested in phosphate-buffered saline (PBS), serially diluted in PBS, and plated on BHI agar. Colonies were enumerated after 2 days of incubation at 30°C. Quantitative real-time PCR analysis was performed as described previously (13) using primers shown in appendix S1 in the supplemental material. Shortly, biofilms were quenched in RNAprotect (Qiagen) following the manufacturer''s protocol and harvested. Expression levels were normalized using the housekeeping genes tpi, rpoB, and 16S rRNA. Biofilm formation experiments and quantitative PCR (Q-PCR) analysis were performed in two independent biological experiments using two replicates each. Statistically significant differences were identified using a two-tailed Student t test (P < 0.05).To investigate activation of L. monocytogenes EGD-e SOS response during continuous-flow biofilm formation, Q-PCR analysis of the SOS response genes recA, lexA, yneA, and dinB and promoter reporter studies using the promoters for recA and yneA were performed (Fig. (Fig.1).1). Compared with the reference (planktonic cells from a 48-h liquid culture), all four tested SOS response genes were upregulated in wild-type strain cells isolated from a 48-h continuous-flow biofilm (P < 0.05, t test), but not in cells isolated from a 48-h static biofilm (Fig. (Fig.1A).1A). Furthermore, the ΔrecA mutant strain did not show upregulation of yneA and the other SOS response genes during continuous-flow biofilm formation, indicating that RecA is required for activation of the SOS response during continuous-flow biofilm formation. Furthermore, continuous-flow biofilm formation also resulted in visible expression of enhanced green fluorescent protein (EGFP) for both yneA and recA promoter reporters (Fig. 1B and C). Expression of EGFP was not observed for these promoter reporters in planktonic cells grown in liquid culture or during static biofilm formation (results not shown). These results indicate that the SOS response is specifically activated during continuous-flow biofilm formation.Open in a separate windowFIG. 1.Activation of the SOS response during biofilm formation. (A) The graph shows differential expression of four SOS response genes in the wild-type and ΔrecA mutant strain between 48-h stationary-phase cultures (black), 48-h static biofilms (light gray), and 48-h continuous-flow biofilms (dark gray). Expression for each SOS response gene in the wild-type 48-h stationary-phase cultures is set at 1. (B and C) Micrographs show fluorescence (1) and phase-contrast (2) pictures of cells expressing EGFP from the recA (B) and yneA (C) promoters after 48 h of biofilm formation in BHI at 20°C under continuous-flow conditions.The impact of RecA and YneA on biofilm formation was assessed using the wild-type strain and in-frame ΔyneA and ΔrecA strains (Fig. (Fig.2).2). Both ΔrecA and ΔyneA mutants showed a significant deficiency in total biofilm produced under continuous-flow conditions (P < 0.05, t test), which was approximately 100-fold lower than that of the wild-type strain. No significant difference in static biofilm formation between wild-type and mutant strains was observed. Apparently, YneA and RecA are not required for static biofilm formation, which is in line with the lack of activation of the SOS response under these conditions. The wild-type, ΔyneA, and ΔrecA strains were microscopically examined during continuous-flow biofilm formation (Fig. (Fig.3).3). Analysis of the number of adherent cells 1 h after the start of the experiment did not reveal differences between the wild-type strain and the two mutants, which indicates that initial attachment is similar. After 24 h, the wild-type strain biofilm appeared to be composed of a complex structure of elongated cells forming a network of knitted chains, which after 48 h had developed into a denser network containing ball-shaped microcolonies. These results are in concordance with the study by Rieu et al. (10). However, both ΔyneA and ΔrecA mutant strains showed only some patches of adherent cells after 24 h, which developed into very small microcolonies after 48 h. Thus, formation of elongated cells in a network of knitted chains was not observed for these mutants. These results indicate that RecA and YneA are required to form this type of biofilm. To verify the specific role of YneA in continuous-flow biofilm formation, a yneA complementation mutant was constructed, which indeed showed biofilm formation capacity similar to that of the wild type, under both continuous-flow and static conditions (results not shown).Open in a separate windowFIG. 2.Comparative analysis of biofilm formation between wild-type strain and ΔrecA and ΔyneA mutants under continuous-flow and static conditions. The graph shows the amount of biofilm produced by wild-type and mutant strains after 48 h of biofilm formation at 20°C under continuous-flow (dark gray) and static (light gray) conditions. *, significantly different from wild-type strain (P < 0.05, t test).Open in a separate windowFIG. 3.Knitted chain biofilm formation under continuous-flow conditions is dependent on RecA and YneA. The micrographs show biofilms formed after 1, 24, and 48 h in BHI at 20°C for the wild-type strain (A), the ΔrecA mutant strain (B), and the ΔyneA mutant strain (C).This study established a clear link between the SOS response and knitted chain biofilm formation under continuous-flow conditions. RecA-dependent activation of the SOS response and in particular of yneA under continuous-flow conditions resulted in cell elongation and the formation of knitted chain biofilms. The signals that activate the L. monocytogenes SOS response are currently being studied and may provide tools for control of biofilm formation under continuous-flow conditions.   相似文献   

12.
A small number of closely related strains of Listeria monocytogenes serotype 4b, designated epidemic clone I (ECI), have been implicated in numerous outbreaks of food-borne listeriosis described during the past two decades in Europe and North America. In 1998 to 1999, a multistate outbreak traced to contaminated hot dogs involved a different strain type of serotype 4b, with genetic fingerprints rarely encountered before. In spite of the profound economic and public health impact of this outbreak, the implicated bacteria (designated epidemic clone II [ECII]) have remained poorly characterized genetically, and nucleotide sequences specific for these strains have not been reported. Using genome sequence information, PCR, and Southern blots, we identified DNA fragments which appeared to be either absent or markedly divergent in the hot dog outbreak strains but conserved among other serotype 4b strains. PCR with primers derived from these fragments as well as Southern blots with the amplicons as probes readily differentiated ECII from other serotype 4b strains. The serotype 4b-specific region harboring these fragments was adjacent to inlA, which encodes a well-characterized virulence determinant. The findings suggest that ECII strains have undergone divergence in portions of a serotype-specific region that is conserved in other serotype 4b strains. Although the mechanisms that drive this divergence remain to be identified, DNA-based tools from this region can facilitate the detection and further characterization of strains belonging to this lineage.  相似文献   

13.
Biofilms from drains in food processing facilities with a recent history of no detectable Listeria monocytogenes in floor drains were cultured for microorganisms producing antilisterial metabolites. A total of 413 microbial isolates were obtained from 12 drain biofilm samples and were assayed at 15 and 37°C for activities that were bactericidal or inhibitory to L. monocytogenes, by two agar plate assays. Twenty-one of 257 bacterial isolates and 3 of 156 yeast isolates had antilisterial activity. All 24 isolates which produced metabolites inhibitory to L. monocytogenes were assayed for antilisterial activity in coinoculated broth cultures containing tryptic soy broth with yeast extract (TSB-YE). A five-strain mixture of 103 CFU of L. monocytogenes/ml and 105 CFU of the candidate competitive-exclusion microorganism/ml was combined in TSB-YE and incubated at 37°C for 24 h, 15°C for 14 days, 8°C for 21 days, and 4°C for 28 days. Substantial inhibition of L. monocytogenes growth (4 to 5 log CFU/ml) was observed for nine bacterial isolates at 37°C, two at 15 and 8°C, and three at 4°C. The inhibitory isolates were identified as Enterococcus durans (six isolates), Lactococcus lactis subsp. lactis (two isolates), and Lactobacillus plantarum (one isolate). The anti-L. monocytogenes activity of these isolates was evaluated in biofilms of L. monocytogenes on stainless steel coupons at 37, 15, 8, and 4°C. Results revealed that two isolates (E. durans strain 152 and L. lactis subsp. lactis strain C-1-92) were highly inhibitory to L. monocytogenes (growth inhibition of >5 log10 CFU of L. monocytogenes/cm2). These two bacterial isolates appear to be excellent competitive-exclusion candidates to control L. monocytogenes in biofilms at environmental temperatures of 4 to 37°C.  相似文献   

14.
An insertion mutant of gtcA, responsible for serotype-specific glycosylation of the cell wall teichoic acid in serotype 4b strains of Listeria monocytogenes, was also resistant to both Listeria genus- and serotype 4b-specific phages. The sugar substituents on teichoic acid appeared essential for the adsorption of phages A500 (serotype 4b specific) and A511 (Listeria genus specific) to serotype 4b L. monocytogenes.  相似文献   

15.
Altogether, 100 strains of Listeria monocytogenes serovar 1/2a isolated from humans, animals, food, and the environment were typed by a combination of PCR and restriction enzyme analysis (REA). A PCR product of 2,916 bp, containing the downstream end of the gene inlA (955 bp), the space between inlA and inlB (85 bp), and 1,876 bp of the gene inlB, was cleaved with the enzyme AluI, and the fragments generated were separated by gel electrophoresis. By this method two different cleavage patterns were obtained. Seventy of the 100 strains shared one restriction profile, and the remaining 30 strains shared the second one. No relation was found between the types differentiated by PCR-REA and the origins of the strains.  相似文献   

16.
A total of 39 Listeria monocytogenes strains isolated from raw milk, smoked meat, chicken carcass and reference strains, belonging to serovars 1/2a, 4a, 1/2b, 3b and 4b, were analysed by RAPD and by polymorphisms of the virulent genes inlAB and iap. Ten isolates, belonging to serovars 1/2a and 1/2b and, collected from raw milk and smoked meat, were further tested for pathogenicity by IP injection into mice. The clustering of the 39 L. monocytogenes strains in 3 groups at 0.45 similarity level, based on molecular typing, was observed. Distribution of serovars in these clusters was in agreement with the proposed three Listeria monocytogenes lineages. Within serovar 1/2b, the 50% lethal dose (LD50) ranged from 8.4 x 10(4) to 1.7 x 10(6) cfu.ml(-1). One of the serovar 1/2b strains, isolated from smoked meat, exhibited the lowest virulence potential evaluated by LD50 and by mean time to death (MTD) and, from this point of view, was completely different from the other strains. Our results suggest the existence of heterogeneity in virulence levels within serovars 1/2a and 1/2b. However, when comparing the isolates based on genotyping, virulence indicators and food origin, no relation could be assessed.  相似文献   

17.
Listeria monocytogenes is a food-borne pathogen with a clonal population structure and apparently limited gene flow between strains of different lineages. Strains of epidemic clone I (ECI) have been responsible for numerous outbreaks and invariably have DNA that is resistant to digestion by Sau3AI, suggesting methylation of cytosine at GATC sites. A putative restriction-modification (RM) gene cassette has been identified in the genome of the ECI strain F2365 and all other tested ECI strains but is absent from other strains of the same serotype (4b). Homologous RM cassettes have not been reported among L. monocytogenes isolates of other serotypes. Furthermore, conclusive evidence for the involvement of this RM cassette in the Sau3AI resistance phenotype of ECI strains has been lacking. In this study, we describe a highly conserved RM cassette in certain strains of serotypes 1/2a and 4a that have Sau3AI-resistant DNA. In these strains the RM cassette was in the same genomic location as in the ECI reference strain F2365. The cassette included a gene encoding a putative recombinase, suggesting insertion via site-specific recombination. Deletion of the RM cassette in the ECI strain F2365 and the serotype 1/2a strain A7 rendered the DNA of both strains susceptible to Sau3AI digestion, providing conclusive evidence that the cassette includes a gene required for methylation of cytosine at GATC sites in both strains. The findings suggest that, in addition to its presence in ECI strains, this RM cassette and the accompanying genomic DNA methylation is also encountered among selected strains of other lineages.Listeria monocytogenes is a Gram-positive, facultative intracellular food-borne pathogen capable of causing severe disease (listeriosis) in animals and humans. Listeriosis most often affects pregnant women and their fetuses, neonates, the elderly, and immunocompromised individuals. The disease is predominantly transmitted via the consumption of contaminated foods and has a ca. 20% fatality rate (12, 27). Application of numerous genotyping methods has consistently shown that the organism has a clonal population structure with three major phylogenetic lineages: lineage I consists of strains of serotypes 1/2b, 3b, and 4b, while those of serotypes 1/2a, 1/2c, 3a, and 3c are clustered in lineage II; strains of serotypes 4a and 4c, along with certain serotype 4b strains, constitute lineage III (37, 38).Most epidemics of human listeriosis have involved a small number of closely related strains (epidemic clones), predominantly of serotype 4b (7, 35). The earliest identified clone, epidemic clone I (ECI), has been responsible for several major outbreaks in Europe and North America. In addition, strains of this clonal group are frequently encountered in sporadic illness (10, 28, 29). ECI strains have also been found to comprise a significant portion of the serotype 4b strains from foods and from the environments of food processing plants (10, 11, 40).Genomic DNA of ECI strains has been long known to resist digestion with Sau3AI, suggesting methylation of cytosine at GATC sites (41). Genome sequencing of the ECI strain F2365, implicated in the 1985 California outbreak of listeriosis, revealed a putative restriction-modification (RM) gene cassette with specificity for GATC sites (25). This RM cassette was harbored by all tested serotype 4b strains with Sau3AI-resistant DNA and was absent from those with DNA that could be digested with Sau3AI (40). These findings were in agreement with previous evidence that a fragment of the putative methyltransferase gene was specific to ECI and absent from other strains (14).In spite of extensive documentation for the presence of this putative RM cassette in ECI strains, and its apparent absence among other serotype 4b strains, limited information is available about the possible presence of the cassette among other lineages of L. monocytogenes. Furthermore, conclusive evidence for involvement of the cassette in the resistance of the DNA of ECI strains to Sau3AI digestion has been lacking. In this study, we investigated a panel of food-derived serotype 1/2a strains with Sau3AI-resistant DNA and characterized the genetic content and genomic localization of the RM cassette harbored by these strains. Furthermore, we employed deletion mutagenesis to assess the involvement of the RM cassette in Sau3AI resistance of the DNA of the ECI strain F2365, as well as of a serotype 1/2a strain harboring the cassette.  相似文献   

18.
19.
LuxS is responsible for the production of autoinducer 2 (AI-2), which is involved in the quorum-sensing response of Vibrio harveyi. AI-2 is found in several other gram-negative and gram-positive bacteria and is therefore considered a good candidate for an interspecies communication signal molecule. In order to determine if this system is functional in the gastrointestinal pathogen Listeria monocytogenes EGD-e, an AI-2 bioassay was performed with culture supernatants. The results indicated that this bacterium produces AI-2 like molecules. A potential ortholog of V. harveyi luxS, lmo1288, was found by performing sequence similarity searches and complementation experiments with Escherichia coli DH5α, a luxS null strain. lmo1288 was found to be a functional luxS ortholog involved in AI-2 synthesis. Indeed, interruption of lmo1288 resulted in loss of the AI-2 signal. Although no significant differences were observed between Lux1 and EGD-e with regard to planktonic growth (at 10°C, 15°C, 25°C, and 42°C), swimming motility, and phospholipase and hemolytic activity, biofilm culture experiments showed that under batch conditions between 25% and 58% more Lux1 cells than EGD-e cells were attached to the surface depending on the incubation time. During biofilm growth in continuous conditions after 48 h of culture, Lux1 biofilms were 17 times denser than EGD-e biofilms. Finally, our results showed that Lux1 accumulates more S-adenosyl homocysteine (SAH) and S-ribosyl homocysteine (SRH) in culture supernatant than the parental strain accumulates and that SRH, but not SAH or AI-2, is able to modify the number of attached cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号