首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hepatitis A virus (HAV), an atypical member of the Picornaviridae, grows poorly in cell culture. To define determinants of HAV growth, we introduced a blasticidin (Bsd) resistance gene into the virus genome and selected variants that grew at high concentrations of Bsd. The mutants grew fast and had increased rates of RNA replication and translation but did not produce significantly higher virus yields. Nucleotide sequence analysis and reverse genetic studies revealed that a T6069G change resulting in a F42L amino acid substitution in the viral polymerase (3Dpol) was required for growth at high Bsd concentrations whereas a silent C7027T mutation enhanced the growth rate. Here, we identified a novel determinant(s) in 3Dpol that controls the kinetics of HAV growth.Hepatitis A virus (HAV) is an atypical member of the Picornaviridae that replicates poorly in cell culture and generally does not cause cytopathic effect (CPE). The HAV positive-strand RNA genome of about 7.5 kb is encapsidated in a 27- to 32-nm icosahedral shell (12). The HAV genome contains a long open reading frame (ORF) that codes for a polyprotein of approximately 250 kDa, which undergoes co- and posttranslational processing by the virus-encoded protease 3Cpro into structural (VP0, VP3, and VP1-2A) and nonstructural proteins (11, 13, 14, 18). VP0 undergoes structural cleavage into VP2 and VP4, and an unknown cellular protease cleaves the VP1-2A precursor (9, 23).HAV replicates inefficiently in cell culture and in general establishes persistent infections (3, 4, 7, 8) without causing CPE. However, some strains of HAV that replicate quickly can induce cell death (5, 19, 27). Due to the growth limitations, experimentation with HAV is difficult and the biology of this virus is poorly understood. To facilitate genetic studies, we recently introduced a blasticidin (Bsd) resistance gene at the 2A-2B junction of wild-type (wt) HAV (16). Bsd, an antibiotic that blocks translation in prokaryotes and eukaryotes and thus affects HAV translation, is inactivated by the Bsd-deaminase encoded in the Bsd resistance gene (15). Cells infected with the wt HAV construct carrying the Bsd resistance gene (HAV-Bsd) grew in the presence of Bsd. We have recently used the wt HAV-Bsd construct to select human hepatoma cell lines that support the stable growth of wt HAV (16) and to establish simple and rapid neutralization and virus titration assays (17). In this study, we developed a genetic approach to study determinants of HAV replication based on the selection of HAV-Bsd variants grown under increased concentrations of Bsd. We hypothesized that by increasing the concentration of Bsd, we would select HAV variants that grew better and allowed the survival of persistently infected cells at higher concentrations of the antibiotic. We also reasoned that we would need a robust HAV-Bsd replication system to provide enough Bsd-deaminase for cell survival. Therefore, we used attenuated HAV grown in rhesus monkey fetal kidney FRhK4 cells as an experimental system because (i) the virus grows 100-fold better in this system than wt HAV in human hepatoma cells (16), and (ii) it already contains cell culture-adapting mutations (3, 4, 7, 8) that are likely to accumulate during passage of wt HAV at high concentrations of Bsd and confound our analysis.  相似文献   

2.
3.
4.
Spores of Bacillus subtilis contain a number of small, acid-soluble spore proteins (SASP) which comprise up to 20% of total spore core protein. The multiple α/β-type SASP have been shown to confer resistance to UV radiation, heat, peroxides, and other sporicidal treatments. In this study, SASP-defective mutants of B. subtilis and spores deficient in dacB, a mutation leading to an increased core water content, were used to study the relative contributions of SASP and increased core water content to spore resistance to germicidal 254-nm and simulated environmental UV exposure (280 to 400 nm, 290 to 400 nm, and 320 to 400 nm). Spores of strains carrying mutations in sspA, sspB, and both sspA and sspB (lacking the major SASP-α and/or SASP-β) were significantly more sensitive to 254-nm and all polychromatic UV exposures, whereas the UV resistance of spores of the sspE strain (lacking SASP-γ) was essentially identical to that of the wild type. Spores of the dacB-defective strain were as resistant to 254-nm UV-C radiation as wild-type spores. However, spores of the dacB strain were significantly more sensitive than wild-type spores to environmental UV treatments of >280 nm. Air-dried spores of the dacB mutant strain had a significantly higher water content than air-dried wild-type spores. Our results indicate that α/β-type SASP and decreased spore core water content play an essential role in spore resistance to environmentally relevant UV wavelengths whereas SASP-γ does not.Spores of Bacillus spp. are highly resistant to inactivation by different physical stresses, such as toxic chemicals and biocidal agents, desiccation, pressure and temperature extremes, and high fluences of UV or ionizing radiation (reviewed in references 33, 34, and 48). Under stressful environmental conditions, cells of Bacillus spp. produce endospores that can stay dormant for extended periods. The reason for the high resistance of bacterial spores to environmental extremes lies in the structure of the spore. Spores possess thick layers of highly cross-linked coat proteins, a modified peptidoglycan spore cortex, a low core water content, and abundant intracellular constituents, such as the calcium chelate of dipicolinic acid and α/β-type small, acid-soluble spore proteins (α/β-type SASP), the last two of which protect spore DNA (6, 42, 46, 48, 52). DNA damage accumulated during spore dormancy is also efficiently repaired during spore germination (33, 47, 48). UV-induced DNA photoproducts are repaired by spore photoproduct lyase and nucleotide excision repair, DNA double-strand breaks (DSB) by nonhomologous end joining, and oxidative stress-induced apurinic/apyrimidinic (AP) sites by AP endonucleases and base excision repair (15, 26-29, 34, 43, 53, 57).Monochromatic 254-nm UV radiation has been used as an efficient and cost-effective means of disinfecting surfaces, building air, and drinking water supplies (31). Commonly used test organisms for inactivation studies are bacterial spores, usually spores of Bacillus subtilis, due to their high degree of resistance to various sporicidal treatments, reproducible inactivation response, and safety (1, 8, 19, 31, 48). Depending on the Bacillus species analyzed, spores are 10 to 50 times more resistant than growing cells to 254-nm UV radiation. In addition, most of the laboratory studies of spore inactivation and radiation biology have been performed using monochromatic 254-nm UV radiation (33, 34). Although 254-nm UV-C radiation is a convenient germicidal treatment and relevant to disinfection procedures, results obtained by using 254-nm UV-C are not truly representative of results obtained using UV wavelengths that endospores encounter in their natural environments (34, 42, 50, 51, 59). However, sunlight reaching the Earth''s surface is not monochromatic 254-nm radiation but a mixture of UV, visible, and infrared radiation, with the UV portion spanning approximately 290 to 400 nm (33, 34, 36). Thus, our knowledge of spore UV resistance has been constructed largely using a wavelength of UV radiation not normally reaching the Earth''s surface, even though ample evidence exists that both DNA photochemistry and microbial responses to UV are strongly wavelength dependent (2, 30, 33, 36).Of recent interest in our laboratories has been the exploration of factors that confer on B. subtilis spores resistance to environmentally relevant extreme conditions, particularly solar UV radiation and extreme desiccation (23, 28, 30, 34 36, 48, 52). It has been reported that α/β-type SASP but not SASP-γ play a major role in spore resistance to 254-nm UV-C radiation (20, 21) and to wet heat, dry heat, and oxidizing agents (48). In contrast, increased spore water content was reported to affect B. subtilis spore resistance to moist heat and hydrogen peroxide but not to 254-nm UV-C (12, 40, 48). However, the possible roles of SASP-α, -β, and -γ and core water content in spore resistance to environmentally relevant solar UV wavelengths have not been explored. Therefore, in this study, we have used B. subtilis strains carrying mutations in the sspA, sspB, sspE, sspA and sspB, or dacB gene to investigate the contributions of SASP and increased core water content to the resistance of B. subtilis spores to 254-nm UV-C and environmentally relevant polychromatic UV radiation encountered on Earth''s surface.  相似文献   

5.
6.
7.
Phenoxyalkanoic acid (PAA) herbicides are widely used in agriculture. Biotic degradation of such herbicides occurs in soils and is initiated by α-ketoglutarate- and Fe2+-dependent dioxygenases encoded by tfdA-like genes (i.e., tfdA and tfdAα). Novel primers and quantitative kinetic PCR (qPCR) assays were developed to analyze the diversity and abundance of tfdA-like genes in soil. Five primer sets targeting tfdA-like genes were designed and evaluated. Primer sets 3 to 5 specifically amplified tfdA-like genes from soil, and a total of 437 sequences were retrieved. Coverages of gene libraries were 62 to 100%, up to 122 genotypes were detected, and up to 389 genotypes were predicted to occur in the gene libraries as indicated by the richness estimator Chao1. Phylogenetic analysis of in silico-translated tfdA-like genes indicated that soil tfdA-like genes were related to those of group 2 and 3 Bradyrhizobium spp., Sphingomonas spp., and uncultured soil bacteria. Soil-derived tfdA-like genes were assigned to 11 clusters, 4 of which were composed of novel sequences from this study, indicating that soil harbors novel and diverse tfdA-like genes. Correlation analysis of 16S rRNA and tfdA-like gene similarity indicated that any two bacteria with D > 20% of group 2 tfdA-like gene-derived protein sequences belong to different species. Thus, data indicate that the soil analyzed harbors at least 48 novel bacterial species containing group 2 tfdA-like genes. Novel qPCR assays were established to quantify such new tfdA-like genes. Copy numbers of tfdA-like genes were 1.0 × 106 to 65 × 106 per gram (dry weight) soil in four different soils, indicating that hitherto-unknown, diverse tfdA-like genes are abundant in soils.Phenoxyalkanoic acid (PAA) herbicides such as MCPA (4-chloro-2-methyl-phenoxyacetic acid) and 2,4-D (2,4-dichlorophenoxyacetic acid) are widely used to control broad-leaf weeds in agricultural as well as nonagricultural areas (19, 77). Degradation occurs primarily under oxic conditions in soil, and microorganisms play a key role in the degradation of such herbicides in soil (62, 64). Although relatively rapidly degraded in soil (32, 45), both MCPA and 2,4-D are potential groundwater contaminants (10, 56, 70), accentuating the importance of bacterial PAA herbicide-degrading bacteria in soils (e.g., references 3, 5, 6, 20, 41, 59, and 78).Degradation can occur cometabolically or be associated with energy conservation (15, 54). The first step in the degradation of 2,4-D and MCPA is initiated by the product of cadAB or tfdA-like genes (29, 30, 35, 67), which constitutes an α-ketoglutarate (α-KG)- and Fe2+-dependent dioxygenase. TfdA removes the acetate side chain of 2,4-D and MCPA to produce 2,4-dichlorophenol and 4-chloro-2-methylphenol, respectively, and glyoxylate while oxidizing α-ketoglutarate to CO2 and succinate (16, 17).Organisms capable of PAA herbicide degradation are phylogenetically diverse and belong to the Alpha-, Beta-, and Gammproteobacteria and the Bacteroidetes/Chlorobi group (e.g., references 2, 14, 29-34, 39, 60, 68, and 71). These bacteria harbor tfdA-like genes (i.e., tfdA or tfdAα) and are categorized into three groups on an evolutionary and physiological basis (34). The first group consists of beta- and gammaproteobacteria and can be further divided into three distinct classes based on their tfdA genes (30, 46). Class I tfdA genes are closely related to those of Cupriavidus necator JMP134 (formerly Ralstonia eutropha). Class II tfdA genes consist of those of Burkholderia sp. strain RASC and a few strains that are 76% identical to class I tfdA genes. Class III tfdA genes are 77% identical to class I and 80% identical to class II tfdA genes and linked to MCPA degradation in soil (3). The second group consists of alphaproteobacteria, which are closely related to Bradyrhizobium spp. with tfdAα genes having 60% identity to tfdA of group 1 (18, 29, 34). The third group also harbors the tfdAα genes and consists of Sphingomonas spp. within the alphaproteobacteria (30).Diverse PAA herbicide degraders of all three groups were identified in soil by cultivation-dependent studies (32, 34, 41, 78). Besides CadAB, TfdA and certain TfdAα proteins catalyze the conversion of PAA herbicides (29, 30, 35). All groups of tfdA-like genes are potentially linked to the degradation of PAA herbicides, although alternative primary functions of group 2 and 3 TfdAs have been proposed (30, 35). However, recent cultivation-independent studies focused on 16S rRNA genes or solely on group 1 tfdA sequences in soil (e.g., references 3-5, 13, and 41). Whether group 2 and 3 tfdA-like genes are also quantitatively linked to the degradation of PAA herbicides in soils is unknown. Thus, tools to target a broad range of tfdA-like genes are needed to resolve such an issue. Primers used to assess the diversity of tfdA-like sequences used in previous studies were based on the alignment of approximately 50% or less of available sequences to date (3, 20, 29, 32, 39, 47, 58, 73). Primers specifically targeting all major groups of tfdA-like genes to assess and quantify a broad diversity of potential PAA degraders in soil are unavailable. Thus, the objectives of this study were (i) to develop primers specific for all three groups of tfdA-like genes, (ii) to establish quantitative kinetic PCR (qPCR) assays based on such primers for different soil samples, and (iii) to assess the diversity and abundance of tfdA-like genes in soil.  相似文献   

8.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

9.
10.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

11.
12.
13.
14.
Recently, methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus pseudintermedius (MRSP) have been increasingly isolated from veterinarians and companion animals. With a view to preventing the spread of MRSA and MRSP, we evaluated the occurrence and molecular characteristics of each in a veterinary college. MRSA and MRSP were isolated from nasal samples from veterinarians, staff members, and veterinary students affiliated with a veterinary hospital. Using stepwise logistic regression, we identified two factors associated with MRSA carriage: (i) contact with an identified animal MRSA case (odds ratio [OR], 6.9; 95% confidence interval [95% CI], 2.2 to 21.6) and (ii) being an employee (OR, 6.2; 95% CI, 2.0 to 19.4). The majority of MRSA isolates obtained from individuals affiliated with the veterinary hospital and dog patients harbored spa type t002 and a type II staphylococcal cassette chromosome mec (SCCmec), similar to the hospital-acquired MRSA isolates in Japan. MRSA isolates harboring spa type t008 and a type IV SCCmec were obtained from one veterinarian on three different sampling occasions and also from dog patients. MRSA carriers can also be a source of MRSA infection in animals. The majority of MRSP isolates (85.2%) carried hybrid SCCmec type II-III, and almost all the remaining MRSP isolates (11.1%) carried SCCmec type V. MRSA and MRSP were also isolated from environmental samples collected from the veterinary hospital (5.1% and 6.4%, respectively). The application of certain disinfection procedures is important for the prevention of nosocomial infection, and MRSA and MRSP infection control strategies should be adopted in veterinary medical practice.Methicillin-resistant Staphylococcus aureus (MRSA) is an important cause of nosocomial infections in human hospitals. The prevalence of hospital-acquired MRSA (HA-MRSA) infection among inpatients in intensive care units (ICUs) continues to increase steadily in Japan. Recently, cases of community-acquired MRSA (CA-MRSA) have been documented in persons without an established risk factor for HA-MRSA infection (14, 32, 36, 49).There has also been an increase in the number of reports of the isolation of MRSA from veterinarians and companion animals (5, 21, 23-26, 28, 31, 34, 38, 44, 50, 51, 53). Values reported for the prevalence of MRSA among veterinary staff include 17.9% in the United Kingdom (21), 10% in Japan (38), 3.9% in Scotland (13), and 3.0% in Denmark (28). Loeffler et al. reported that the prevalence of MRSA among dog patients and healthy dogs owned by veterinary staff members was 8.9% (21). In Japan, an MRSA isolate was detected in only one inpatient dog (3.8%) and could not be detected in any of 31 outpatient dogs (38). In the United States, MRSA isolates were detected in both dog (0.1%) and cat (0.1%) patients (31). The prevalence of MRSA among healthy dogs has been reported to be 0.7% (5). Hanselman et al. suggested that MRSA colonization may be an occupational risk for large-animal veterinarians (12). Recently, Burstiner et al. reported that the frequency of MRSA colonization among companion-animal veterinary personnel was equal to the frequency among large-animal veterinary personnel (6).In addition, other methicillin-resistant coagulase-positive staphylococci (MRCPS), such as methicillin-resistant Staphylococcus pseudintermedius (MRSP) and methicillin-resistant Staphylococcus schleiferi (MRSS), isolated from dogs, cats, and a veterinarian have been reported (11, 31, 38, 40, 52). MRSP isolates have also been detected among inpatient dogs (46.2%) and outpatient dogs (19.4%) in a Japanese veterinary teaching hospital (38). In Canada, however, MRSP and MRSS isolates were detected in only 2.1% and 0.5% of dog patients, respectively (11).Methicillin-resistant staphylococci produce penicillin-binding protein 2′, which reduces their affinity for β-lactam antibiotics. This protein is encoded by the mecA gene (48), which is carried on the staphylococcal cassette chromosome mec (SCCmec). SCCmec is a mobile genetic element characterized by the combination of the mec and ccr complexes (16), and it is classified into subtypes according to differences in the junkyard regions (43). SCCmec typing can be used as a molecular tool (22, 27, 30, 33, 36, 55) for examining the molecular epidemiology of methicillin-resistant staphylococci.In this study, we investigated the occurrence and characteristics of MRCPS isolates in a veterinary hospital in order to establish the transmission route of MRCPS in a veterinary hospital and with a view to preventing the spread of MRCPS infection. In addition, we evaluated the factors associated with MRCPS. Further, as Heller et al. have reported the distribution of MRSA within veterinary hospital environments and suggested the necessity to review cleaning protocols of hospital environments (13), we also attempted to isolate MRCPS from environmental samples collected in a veterinary hospital for an evaluation of MRSA transmission cycle though environmental surfaces in the veterinary hospital.  相似文献   

15.
The cationic lytic peptide cecropin B (CB), isolated from the giant silk moth (Hyalophora cecropia), has been shown to effectively eliminate Gram-negative and some Gram-positive bacteria. In this study, the effects of chemically synthesized CB on plant pathogens were investigated. The S50s (the peptide concentrations causing 50% survival of a pathogenic bacterium) of CB against two major pathogens of the tomato, Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria, were 529.6 μg/ml and 0.29 μg/ml, respectively. The CB gene was then fused to the secretory signal peptide (sp) sequence from the barley α-amylase gene, and the new construct, pBI121-spCB, was used for the transformation of tomato plants. Integration of the CB gene into the tomato genome was confirmed by PCR, and its expression was confirmed by Western blot analyses. In vivo studies of the transgenic tomato plant demonstrated significant resistance to bacterial wilt and bacterial spot. The levels of CB expressed in transgenic tomato plants (∼0.05 μg in 50 mg of leaves) were far lower than the S50 determined in vitro. CB transgenic tomatoes could therefore be a new mode of bioprotection against these two plant diseases with significant agricultural applications.Bacterial plant diseases are a source of great losses in the annual yields of most crops (5). The agrochemical methods and conventional breeding commonly used to control these bacterially induced diseases have many drawbacks. Indiscriminate use of agrochemicals has a negative impact on human, as well as animal, health and contributes to environmental pollution. Conventional plant-breeding strategies have limited scope due to the paucity of genes with these traits in the usable gene pools and their time-consuming nature. Consequently, genetic engineering and transformation technology offer better tools to test the efficacies of genes for crop improvement and to provide a better understanding of their mechanisms. One advance is the possibility of creating transgenic plants that overexpress recombinant DNA or novel genes with resistance to pathogens (36). In particular, strengthening the biological defenses of a crop by the production of antibacterial proteins with other origins (not from plants) offers a novel strategy to increase the resistance of crops to diseases (35, 39, 41). These antimicrobial peptides (AMPs) include such peptides as cecropins (2, 15, 20, 23-24, 27, 31, 42, 50), magainins (1, 9, 14, 29, 47), sarcotoxin IA (35, 40), and tachyplesin I (3). The genes encoding these small AMPs in plants have been used in practice to enhance their resistance to bacterial and fungal pathogens (8, 22, 40). The expression of AMPs in vivo (mostly cecropins and a synthetic analog of cecropin and magainin) with either specific or broad-spectrum disease resistance in tobacco (14, 24, 27), potato (17, 42), rice (46), banana (9), and hybrid poplar (32) have been reported. The transgenic plants showed considerably greater resistance to certain pathogens than the wild types (4, 13, 24, 27, 42, 46, 50). However, detailed studies of transgenic tomatoes expressing natural cecropin have not yet been reported.The tomato (Solanum lycopersicum) is one of the most commonly consumed vegetables worldwide. The annual yield of tomatoes, however, is severely affected by two common bacterial diseases, bacterial wilt and bacterial spot, which are caused by infection with the Gram-negative bacteria Ralstonia solanacearum and Xanthomonas campestris pv. vesicatoria, respectively. Currently available pesticides are ineffective against R. solanacearum, and thus bacterial wilt is a serious problem.Cecropins, one of the natural lytic peptides found in the giant silk moth, Hyalophora cecropia (25), are synthesized in lipid bodies as proteins consisting of 31 to 39 amino acid residues. They adopt an α-helical structure on interaction with bacterial membranes, resulting in the formation of ion channels (12). At low concentrations (0.1 μM to 5 μM), cecropins exhibit lytic antibacterial activity against a number of Gram-negative and some Gram-positive bacteria, but not against eukaryotic cells (11, 26, 33), thus making them potentially powerful tools for engineering bacterial resistance in crops. Moreover, cecropin B (CB) shows the strongest activity against Gram-negative bacteria within the cecropin family and therefore has been considered an excellent candidate for transformation into plants to improve their resistance against bacterial diseases.The introduction of genes encoding cecropins and their analogs into tobacco has been reported to have contradictory results regarding resistance against pathogens (20). However, subsequent investigations of these tobacco plants showed that the expression of CB in the plants did not result in accumulation of detectable levels of CB, presumably due to degradation of the peptide by host peptidases (20, 34). Therefore, protection of CB from cellular degradation is considered to be vital for the exploitation of its antibacterial activity in transgenic plants. The secretory sequences of several genes are helpful, because they cooperate with the desired genes to enhance extracellular secretion (24, 40, 46). In the present study, a natural CB gene was successfully transferred into tomatoes. The transgenic plants showed significant resistance to the tomato diseases bacterial wilt and bacterial spot, as well as with a chemically synthesized CB peptide.  相似文献   

16.
17.
18.
A bioinformatic analysis of nearly 400 genomes indicates that the overwhelming majority of bacteria possess homologs of the Escherichia coli proteins FtsL, FtsB, and FtsQ, three proteins essential for cell division in that bacterium. These three bitopic membrane proteins form a subcomplex in vivo, independent of the other cell division proteins. Here we analyze the domains of E. coli FtsL that are involved in the interaction with other cell division proteins and important for the assembly of the divisome. We show that FtsL, as we have found previously with FtsB, packs an enormous amount of information in its sequence for interactions with proteins upstream and downstream in the assembly pathway. Given their size, it is likely that the sole function of the complex of these two proteins is to act as a scaffold for divisome assembly.The division of an Escherichia coli cell into two daughter cells requires a complex of proteins, the divisome, to coordinate the constriction of the three layers of the Gram-negative cell envelope. In E. coli, there are 10 proteins known to be essential for cell division; in the absence of any one of these proteins, cells continue to elongate and to replicate and segregate their chromosomes but fail to divide (29). Numerous additional nonessential proteins have been identified that localize to midcell and assist in cell division (7-9, 20, 25, 34, 56, 59).A localization dependency pathway has been determined for the 10 essential division proteins (FtsZ→FtsA/ZipA→FtsK→FtsQ→FtsL/FtsB→FtsW→FtsI→FtsN), suggesting that the divisome assembles in a hierarchical manner (29). Based on this pathway, a given protein depends on the presence of all upstream proteins (to the left) for its localization and that protein is then required for the localization of the downstream division proteins (to the right). While the localization dependency pathway of cell division proteins suggests that a sequence of interactions is necessary for divisome formation, recent work using a variety of techniques reveals that a more complex web of interactions among these proteins is necessary for a functionally stable complex (6, 10, 19, 23, 24, 30-32, 40). While numerous interactions have been identified between division proteins, further work is needed to define which domains are involved and which interactions are necessary for assembly of the divisome.One subcomplex of the divisome, composed of the bitopic membrane proteins FtsB, FtsL, and FtsQ, appears to be the bridge between the predominantly cytoplasmic cell division proteins and the predominantly periplasmic cell division proteins (10). FtsB, FtsL, and FtsQ share a similar topology: short amino-terminal cytoplasmic domains and larger carboxy-terminal periplasmic domains. This tripartite complex can be divided further into a subcomplex of FtsB and FtsL, which forms in the absence of FtsQ and interacts with the downstream division proteins FtsW and FtsI in the absence of FtsQ (30). The presence of an FtsB/FtsL/FtsQ subcomplex appears to be evolutionarily conserved, as there is evidence that the homologs of FtsB, FtsL, and FtsQ in the Gram-positive bacteria Bacillus subtilis and Streptococcus pneumoniae also assemble into complexes (18, 52, 55).The assembly of the FtsB/FtsL/FtsQ complex is important for the stabilization and localization of one or more of its component proteins in both E. coli and B. subtilis (11, 16, 18, 33). In E. coli, FtsB and FtsL are codependent for their stabilization and for localization to midcell, while FtsQ does not require either FtsB or FtsL for its stabilization or localization to midcell (11, 33). Both FtsL and FtsB require FtsQ for localization to midcell, and in the absence of FtsQ the levels of full-length FtsB are significantly reduced (11, 33). The observed reduction in full-length FtsB levels that occurs in the absence of FtsQ or FtsL results from the degradation of the FtsB C terminus (33). However, the C-terminally degraded FtsB generated upon depletion of FtsQ can still interact with and stabilize FtsL (33).While a portion of the FtsB C terminus is dispensable for interaction with FtsL and for the recruitment of the downstream division proteins FtsW and FtsI, it is required for interaction with FtsQ (33). Correspondingly, the FtsQ C terminus also appears to be important for interaction with FtsB and FtsL (32, 61). The interaction between FtsB and FtsL appears to be mediated by the predicted coiled-coil motifs within the periplasmic domains of the two proteins, although only the membrane-proximal half of the FtsB coiled coil is necessary for interaction with FtsL (10, 32, 33). Additionally, the transmembrane domains of FtsB and FtsL are important for their interaction with each other, while the cytoplasmic domain of FtsL is not necessary for interaction with FtsB, which has only a short 3-amino-acid cytoplasmic domain (10, 33).In this study, we focused on the interaction domains of FtsL. We find that, as with FtsB, the C terminus of FtsL is required for the interaction of FtsQ with the FtsB/FtsL subcomplex while the cytoplasmic domain of FtsL is involved in recruitment of the downstream division proteins. Finally, we provide a comprehensive analysis of the presence of FtsB, FtsL, and FtsQ homologs among bacteria and find that the proteins of this complex are likely more widely distributed among bacteria than was previously thought.  相似文献   

19.
Mutations in the internal ribosome entry site (IRES) of hepatitis A virus (HAV) have been associated with enhanced in vitro replication and viral attenuation in animal models. To address the possible role of IRES variability in clinical presentation, IRES sequences were obtained from HAV isolates associated with benign (n = 8) or severe (n = 4) hepatitis. IRES activity was assessed using a bicistronic dual-luciferase expression system in adenocarcinoma (HeLa) and hepatoma (HuH7) cell lines. Activity was higher in HuH7 than in HeLa cells, except for an infrequently isolated genotype IIA strain. Though globally low, significant variation in IRES-dependent translation efficiency was observed between field isolates, reflecting the low but significant genetic variability of this region (94.2% ± 0.5% nucleotide identity). No mutation was exclusive of benign or severe hepatitis, and variations in IRES activity were not associated with a clinical phenotype, indirectly supporting the preponderance of host factors in determining the clinical presentation.Hepatitis A virus (HAV) is a nonenveloped RNA virus of the Picornaviridae family. The viral genome consists of an approximately 7,500-nucleotide (nt)-long, positive-stranded RNA divided in three parts: a 5′ untranslated region (5′ UTR), a single open reading frame that encodes both structural and nonstructural proteins, and a 3′ UTR with a short poly(A) tail. By sequencing of the VP1-2A junction and the VP1 gene, 3 genotypes (I, II, and III) divided into A and B subtypes have been described in humans (7, 27). HAV is the main cause of acute viral hepatitis worldwide. The majority of cases follow a benign course, but some may be present with fulminant forms, characterized by acute liver failure (factor V levels of <50% and encephalopathy). HAV-induced liver disease appears to result primarily from immunologic mechanisms, chiefly on the basis of in vitro studies. Most HAV strains have no detectable cytopathic effect in cell culture and no apparent effect on cell growth or metabolism (16), and HAV-infected cells are lysed by cytotoxic T cells isolated from the liver of acutely infected patients (30, 31). Clinical studies have suggested that host factors such as age and underlying liver disease were involved in the severity of liver diseases (32, 33) and that the host immune response also played a role in the fulminant forms of hepatitis A, as evidenced by markedly low viral loads (26).Nevertheless, the existence of viral determinants of hepatitis A severity is suggested by both experimental and clinical studies. Indeed, mutations within the VP1-2A and 2C genes have been shown to enhance virulence in tamarins (9). It has also been suggested that 5′ UTR mutations associated with viral adaptation to cell culture were also responsible for viral attenuation in vivo (15). The 5′ UTR of HAV is about 735 nucleotides long and is considered the most conserved region of the genome. The 5′ UTR is involved in genome replication and translation initiation. Folding predictions and biochemical probing showed that this region forms a highly ordered secondary structure containing a pyrimidine-rich tract (PRT) and an internal ribosomal entry site (IRES) with 10 to 12 AUG triplets upstream of the initiator codon (18). The IRES allows the initiation of the cap-independent translation of the viral genome. Most knowledge of HAV IRES activity is derived from studies of the HM-175 reference strain and its cell culture-adapted variants (4, 5, 36). These experiments have shown that HAV presents the lowest IRES-dependent translation initiation activity among picornaviruses both in reticulocyte lysates and in a variety of cell lines, including the human hepatoma cell line HepG2 (type III IRES) (3, 6). These features have been attributed to a lower affinity of the HAV 5′ UTR for translation factors (6). The hypothesis that the slow growth of HAV in cell culture could be related to this inefficient translation is supported by the emergence of 5′ UTR mutations in cell culture-adapted variants with enhanced viral replication (8). The finding that these mutations were associated with viral attenuation in vivo supports the hypothesis of viral determinants of virulence in the 5′ UTR (15). Among the few clinical studies which have addressed this question, Fujiwara et al., by comparing full-length HAV genomes obtained from Japanese patients with benign or fulminant hepatitis, found less nucleotide variation in the 5′ UTRs from patients with fulminant hepatitis (12, 13) and suggested that two IRES mutations (G324A and C372G/T) might influence the course of HAV infection (14).The aim of the present study was to further examine the genetic variability of 5′ UTR sequences from field isolates, to assess the potential impact of nucleotide variations on IRES activity by using validated techniques, and to search for a relationship with disease severity by comparing isolates obtained from patients with benign or fulminant forms of hepatitis A.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号