首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cellulosilyticum ruminicola H1 is a newly described bacterium isolated from yak (Bos grunniens) rumen and is characterized by its ability to grow on a variety of hemicelluloses and degrade cellulosic materials. In this study, we performed the whole-genome sequencing of C. ruminicola H1 and observed a comprehensive set of genes encoding the enzymes essential for hydrolyzing plant cell wall. The corresponding enzymatic activities were also determined in strain H1; these included endoglucanases, cellobiohydrolases, xylanases, mannanase, pectinases, and feruloyl esterases and acetyl esterases to break the interbridge cross-link, as well as the enzymes that degrade the glycosidic bonds. This bacterium appears to produce polymer hydrolases that act on both soluble and crystal celluloses. Approximately half of the cellulytic activities, including cellobiohydrolase (50%), feruloyl esterase (45%), and one third of xylanase (31%) and endoglucanase (36%) activities were bound to cellulosic fibers. However, only a minority of mannase (6.78%) and pectinase (1.76%) activities were fiber associated. Strain H1 seems to degrade the plant-derived polysaccharides by producing individual fibrolytic enzymes, whereas the majority of polysaccharide hydrolases contain carbohydrate-binding module. Cellulosome or cellulosomelike protein complex was never isolated from this bacterium. Thus, the fibrolytic enzyme production of strain H1 may represent a different strategy in cellulase organization used by most of other ruminal microbes, but it applies the fungal mode of cellulose production.The ruminant rumens are long believed to be the anaerobic environments efficiently degrading the plant-derived polysaccharides, which is attributed to the inhabited abundant rumen microorganisms. They implement the fibrolytic degradation by the combination of the enzymes comprising of cellulases, hemicellulases, and to a lesser extent pectinases and ligninases (12). The rumen bacteria are outnumbered of the other rumen microbes; however, only a few of cellulolytic bacteria have been isolated from rumens. Ruminococcus flavefaciens, Ruminococcus albus, and Fibrobacter succinogenes are considered to be the most important cellulose-degrading bacteria in the rumen (18), and they produce a set of cellulolytic enzymes, including endoglucanases, exoglucanases (generally cellobiohydrolase), and β-glucosidases, as well as hemicellulases. In addition, the predominant ruminal hemicellulose-digesting bacteria such as Butyrivibrio fibrisolvens and Prevotella ruminicola lack the ability to digest cellulose but degrade xylan and pectin and utilize the degraded soluble sugars as substrates (10, 14). Although the robust cellulolytic species F. succinogenes degrades xylan, it cannot use the pentose product as a carbon source (24). Culture-independent approaches indicate that the three cellulolytic bacterial species represent only ∼2% of the ruminal bacterial 16S rRNA (43). Therefore, many varieties of rumen microbes remain uncultured (2). In recent years, rumen metagenomics studies have revealed the vast diversity of fibrolytic enzymes, multiple domain proteins, and the complexity of microbial composition in the ecosystem (9, 17). Hence, it is likely that the entire microbial community is necessary for the implementation of an efficient fibrolytic process in the rumen, including the uncultured species.In the rumen and other fibrolytic ecosystems, cellulolytic bacteria have to cope with the structural complexity of lignocelluloses and the interspecies competition; thus, not only a variety of plant polymer-degrading enzymes but also a noncatalytic assistant strategy, such as including adhesion of cells to substrates by a variety of anchoring domains, is required (8, 33, 38, 39). The (hemi)cellulolytic enzyme systems have been intensively studied for nonrumen anaerobic bacteria, including Clostridium thermocellum (19, 40), Clostridium cellulolyticum (6), Clostridium cellulovorans (13), and Clostridium stercorarium (47), as well as the rumen species, Rumicoccocus albus (35), Ruminococcus flavefaciens (32), and Fibrobacter succinogenes (4). The results indicate that most of them, except for Fibrobacter succinogenes, produce multiple cellulolytic enzymes integrated in a complex, cellulosome, and free individual proteins.The yak (Bos grunniens) is a large ruminant (∼1,000 kg) in the bovine family that lives mainly on the Qinghai-Tibetan Plateau in China at an altitude of 3,000 m above sea level. It is a local species that lives mainly on the world''s highest plateau. Yaks live in a full-grazing style with grasses, straws, and lichens as their exclusive feed, so the yak rumen can harbor a microbial flora distinct from those of other ruminants due to their fiber-component diet, since diet can be a powerful factor in regulating mammalian gut microbiome (27). A very different prokaryote community structure was revealed for yak rumen in our previous work based on the 16S rRNA diversity, which showed fewer phyla than for cattle but that a higher ratio of sequences was related to uncultured bacteria (2).We previously isolated a novel anaerobic fibrolytic bacterium, Cellulosilyticum ruminicola H1, from the rumen of a domesticated yak (11). Strain H1 grew robustly on natural plant fibers such as corn cob, alfalfa, and ryegrass as the sole carbon and energy sources, as well as on a variety of polysaccharides, including cellulose, xylan, mannan, and pectin, but not monosaccharides such as glucose, which is preferred by most ruminal bacteria. In the present study, using a draft of its genome and enzymatic characterization, we analyzed the enzymatic activities and the structures of the polymer hydrolases of strain H1 that were involved in the hydrolysis of complex polysaccharides.  相似文献   

2.
Soil substrate membrane systems allow for microcultivation of fastidious soil bacteria as mixed microbial communities. We isolated established microcolonies from these membranes by using fluorescence viability staining and micromanipulation. This approach facilitated the recovery of diverse, novel isolates, including the recalcitrant bacterium Leifsonia xyli, a plant pathogen that has never been isolated outside the host.The majority of bacterial species have never been recovered in the laboratory (1, 14, 19, 24). In the last decade, novel cultivation approaches have successfully been used to recover “unculturables” from a diverse range of divisions (23, 25, 29). Most strategies have targeted marine environments (4, 23, 25, 32), but soil offers the potential for the investigation of vast numbers of undescribed species (20, 29). Rapid advances have been made toward culturing soil bacteria by reformulating and diluting traditional media, extending incubation times, and using alternative gelling agents (8, 21, 29).The soil substrate membrane system (SSMS) is a diffusion chamber approach that uses extracts from the soil of interest as the growth substrate, thereby mimicking the environment under investigation (12). The SSMS enriches for slow-growing oligophiles, a proportion of which are subsequently capable of growing on complex media (23, 25, 27, 30, 32). However, the SSMS results in mixed microbial communities, with the consequent difficulty in isolation of individual microcolonies for further characterization (10).Micromanipulation has been widely used for the isolation of specific cell morphotypes for downstream applications in molecular diagnostics or proteomics (5, 15). This simple technology offers the opportunity to select established microcolonies of a specific morphotype from the SSMS when combined with fluorescence visualization (3, 11). Here, we have combined the SSMS, fluorescence viability staining, and advanced micromanipulation for targeted isolation of viable, microcolony-forming soil bacteria.  相似文献   

3.
Homoacetogens produce acetate from H2 and CO2 via the Wood-Ljungdahl pathway. Some homoacetogens have been isolated from the rumen, but these organisms are expected to be only part of the full diversity present. To survey the presence of rumen homoacetogens, we analyzed sequences of formyltetrahydrofolate synthetase (FTHFS), a key enzyme of the Wood-Ljungdahl pathway. A total of 275 partial sequences of genes encoding FTHFS were PCR amplified from rumen contents of a cow, two sheep, and a deer. Phylogenetic trees were constructed using these FTHFS gene sequences and the translated amino acid sequences, together with other sequences from public databases and from novel nonhomoacetogenic bacteria isolated from the rumen. Over 90% of the FTHFS sequences fell into 34 clusters defined with good bootstrap support. Few rumen-derived FTHFS sequences clustered with sequences of known homoacetogens. Conserved residues were identified in the deduced FTHFS amino acid sequences from known homoacetogens, and their presence in the other sequences was used to determine a “homoacetogen similarity” (HS) score. A homoacetogen FTHFS profile hidden Markov model (HoF-HMM) was used to assess the homology of rumen and homoacetogen FTHFS sequences. Many clusters had low HS scores and HoF-HMM matches, raising doubts about whether the sequences originated from homoacetogens. In keeping with these findings, FTHFS sequences from nonhomoacetogenic bacterial isolates grouped in these clusters with low scores. However, sequences that formed 10 clusters containing no known isolates but representing 15% of our FTHFS sequences from rumen samples had high HS scores and HoF-HMM matches and so could represent novel homoacetogens.Feed ingested by ruminant animals is fermented in the rumen by a complex community of microbes. This community produces, among other products, the volatile fatty acids acetate, propionate, and butyrate, which are absorbed across the rumen wall and satisfy a large part of the animals'' carbon and energy requirements. Hydrogen gas (H2) is also formed and is the major precursor of the methane (CH4) formed in ruminant animals. This ruminant-derived CH4 is a contributor to global greenhouse gas emissions (46) and also represents an energy loss for the animals (34). Proposed ruminant greenhouse gas mitigation strategies include using feeds that produce less CH4 and more volatile fatty acids (31). Alternative strategies include interventions that slow or halt methanogenesis by vaccination, using natural inhibitors found in plants, and supplementing feed with fats and oils or small-molecule inhibitors (31, 32). In the absence of methanogenesis, accumulation of H2 could lead to a decrease in the rate of feed fermentation (31, 53) and hence a decrease in animal productivity. Other microbes that use H2 without producing methane could be valuable in conjunction with intervention strategies that inhibit methanogens. This possibility has sparked interest in possible inoculation of ruminants with alternative H2 users.Bacteria that use the Wood-Ljungdahl pathway to produce acetate from CO2 are metabolically (6) and phylogenetically (48) diverse and are designated “homoacetogens.” Homoacetogens grow with H2 or other suitable electron donors, such as formate or sugars, plus CO2 as a terminal electron acceptor, heterotrophically with organic substrates such as sugars and methoxylated compounds, or mixotrophically with, e.g., H2 and organic substrates. Homoacetogens have been reported to occur in a normally functioning rumen, but they are unlikely to compete with methanogens for H2 (24, 25, 34). However, homoacetogens could play an important role in the disposal of H2 if methanogens are not established in or are eliminated from the rumen (11, 17). At present, it is not clear whether resident rumen homoacetogens could fulfill the H2 disposal role or whether homoacetogens would have to be added to the rumen to take over this role from the methanogens.Cultivation-based enumeration techniques have shown that the sizes of rumen acetogen populations range from undetectable to 1.2 × 109 per g of rumen contents and that the prevalence of these acetogens depends on diet, animal age, and time of sampling (5, 7, 23, 24). Several homoacetogens, including Acetitomaculum ruminis (15), Eubacterium limosum (14, 17), Blautia schinkii, and Blautia producta (11), have been isolated from ruminants. Homoacetogens have also been isolated from the kangaroo forestomach, whose function is analogous to that of the rumen, which suggests that homoacetogenesis may play a role in hydrogen removal in the low-methane-emission forestomach (37).Because homoacetogens occur in different lineages of bacteria (48), traditional 16S rRNA gene-based surveys provide little information on their prevalence. The formyltetrahydrofolate synthetase (FTHFS) gene (fhs) has been used as a functional marker for homoacetogens, as the enzyme that it encodes catalyzes a key step in the reductive acetogenesis pathway (26). The structure of the enzyme of the homoacetogen Moorella thermoacetica has been reported, and putative functional features have been identified (27, 41, 42). FTHFS sequences from true homoacetogens differ from their homologs in sulfate-reducing bacteria and in other bacteria that degrade purines and amino acids via the glycine synthase-glycine reductase pathway (12, 21, 22, 26). At present, only a limited number of FTHFS sequences have been deposited in databases, and the vast majority of them are partial sequences retrieved from complex microbial communities. FTHFS sequences have been surveyed in sludge (39, 43, 54), termites (40, 44), salt marsh plant roots (21), horse manure (22), cow manure, freshwater sediment, rice field soil, and sewage (54), but so far only one study has investigated bovine ruminal FTHFS sequences (30). The rumen FTHFS sequences had low levels of similarity to the FTHFS sequences of known homoacetogens and could be sequences of novel homoacetogens. To our knowledge, no bacteria with these unique FTHFS sequences have been identified.The aims of this study were to assess the diversity of FTHFS gene sequences retrieved from rumen samples and to screen novel rumen isolates for the presence of FTHFS genes and test their ability to grow as homoacetogens. We used alignments of FTHFS sequences to define a homoacetogen similarity score based on the presence of diagnostic amino acids and developed a hidden Markov model to assess the likelihood that FTHFS sequences of unknown origin are sequences from true homoacetogens that are able to use H2 or alternative electron donors for reductive acetogenesis.  相似文献   

4.
Magnetotactic bacteria comprise a phylogenetically diverse group that is capable of synthesizing intracellular magnetic particles. Although various morphotypes of magnetotactic bacteria have been observed in the environment, bacterial strains available in pure culture are currently limited to a few genera due to difficulties in their enrichment and cultivation. In order to obtain genetic information from uncultured magnetotactic bacteria, a genome preparation method that involves magnetic separation of cells, flow cytometry, and multiple displacement amplification (MDA) using φ29 polymerase was used in this study. The conditions for the MDA reaction using samples containing 1 to 100 cells were evaluated using a pure-culture magnetotactic bacterium, “Magnetospirillum magneticum AMB-1,” whose complete genome sequence is available. Uniform gene amplification was confirmed by quantitative PCR (Q-PCR) when 100 cells were used as a template. This method was then applied for genome preparation of uncultured magnetotactic bacteria from complex bacterial communities in an aquatic environment. A sample containing 100 cells of the uncultured magnetotactic coccus was prepared by magnetic cell separation and flow cytometry and used as an MDA template. 16S rRNA sequence analysis of the MDA product from these 100 cells revealed that the amplified genomic DNA was from a single species of magnetotactic bacterium that was phylogenetically affiliated with magnetotactic cocci in the Alphaproteobacteria. The combined use of magnetic separation, flow cytometry, and MDA provides a new strategy to access individual genetic information from magnetotactic bacteria in environmental samples.Magnetotactic bacteria synthesize nanosized intracellular magnetic particles, also referred to as magnetosomes, by accumulating iron ions from the environment. Since the first report on the identification of magnetotactic bacteria (2), the morphological and phylogenetic diversity of these organisms has been observed in various aquatic environments (12, 25, 27, 30). However, bacterial strains available in pure culture are currently limited to a few genera. Desulfovibrio magneticus strain RS-1 is the only isolate of magnetotactic bacteria that is classified among the Deltaproteobacteria (13, 23), while Magnetospirillum spp., marine magnetic vibrio strain MV-1, and “Magnetococcus strain MC-1” are phylogenetically affiliated within the Alphaproteobacteria group (24, 27). This limitation is mainly because not much is known about their metabolic requirements, culturing conditions, and obligate coculture requirements.Isolation and enrichment of magnetotactic bacteria are generally conducted by applying a magnetic field to a container containing a sediment sample from the environment. The capillary racetrack method is a highly selective enrichment technique that separates magnetotactic bacteria from other contaminants (31). The magnetic separation method that involves the use of a large glass apparatus is efficient and suitable for analyzing samples containing more than 100 ml of sediment and water (12, 16). These techniques have been applied to investigate community structure and phylogenetic diversity of uncultured magnetotactic bacteria in the environment based on 16S rRNA analyses (3, 7, 26, 29). In a recent study, DNA isolation enabling gene cloning was examined by magnetically collecting a large number of magnetotactic cells from environmental samples, and two gene fragments, probably containing parts of magnetosome islands (MAIs) derived from magnetotactic bacteria of the Alphaproteobacteria, were identified (12). However, this approach allows only for sequence gene information to be obtained from a heterogeneous bacterial community in the sample.Multiple displacement amplification (MDA) can generate microgram quantities of high-quality DNA sample from a few femtograms of DNA template (5, 6). We previously revealed that MDA is a powerful tool for whole-genome amplification from the metagenome of an uncultured bacterial community (32). Studies have been conducted to determine the efficacy of MDA for analyzing genomic DNA preparations from a limited number of bacterial cells (14, 17, 21, 22, 28). Complete genomic sequencing of an uncultured gut symbiont in termites has been achieved using MDA products amplified from approximately 1,000 cells (9). Partial genome sequencing using MDA products from a single uncultured cell has also been reported (17, 22). Such targeted genome analyses using MDA products from a single cell or genetically identical microorganisms is advantageous because it allows the assignment of individual genes to the corresponding microorganisms.In this study, an improved genome preparation method involving racetrack purification and flow cytometry followed by MDA was investigated by using a small number of uncultured magnetotactic bacteria. This method can be used for the identification of new genes from rare magnetotactic bacteria in environmental samples.  相似文献   

5.
In order to elucidate the potential mechanisms of U(VI) reduction for the optimization of bioremediation strategies, the structure-function relationships of microbial communities were investigated in microcosms of subsurface materials cocontaminated with radionuclides and nitrate. A polyphasic approach was used to assess the functional diversity of microbial populations likely to catalyze electron flow under conditions proposed for in situ uranium bioremediation. The addition of ethanol and glucose as supplemental electron donors stimulated microbial nitrate and Fe(III) reduction as the predominant terminal electron-accepting processes (TEAPs). U(VI), Fe(III), and sulfate reduction overlapped in the glucose treatment, whereas U(VI) reduction was concurrent with sulfate reduction but preceded Fe(III) reduction in the ethanol treatments. Phyllosilicate clays were shown to be the major source of Fe(III) for microbial respiration by using variable-temperature Mössbauer spectroscopy. Nitrate- and Fe(III)-reducing bacteria (FeRB) were abundant throughout the shifts in TEAPs observed in biostimulated microcosms and were affiliated with the genera Geobacter, Tolumonas, Clostridium, Arthrobacter, Dechloromonas, and Pseudomonas. Up to two orders of magnitude higher counts of FeRB and enhanced U(VI) removal were observed in ethanol-amended treatments compared to the results in glucose-amended treatments. Quantification of citrate synthase (gltA) levels demonstrated a stimulation of Geobacteraceae activity during metal reduction in carbon-amended microcosms, with the highest expression observed in the glucose treatment. Phylogenetic analysis indicated that the active FeRB share high sequence identity with Geobacteraceae members cultivated from contaminated subsurface environments. Our results show that the functional diversity of populations capable of U(VI) reduction is dependent upon the choice of electron donor.Uranium contamination in subsurface environments is a widespread problem at mining and milling sites across North America, South America, and Eastern Europe (1). Uranium in the oxidized state, U(VI), is highly soluble and toxic and thus is a potential contaminant to local drinking-water supplies (46). Nitrate is often a cocontaminant with U(VI) as a result of the use of nitric acid in the processing of uranium and uranium-bearing waste (6, 45). Oxidized uranium can be immobilized in contaminated groundwater through the reduction of U(VI) to insoluble U(IV) by indirect (abiotic) and direct (enzymatic) processes catalyzed by microorganisms. Current remediation practices favor the stimulation of reductive uranium immobilization catalyzed by indigenous microbial communities along with natural attenuation and monitoring (5, 24, 40, 44, 65, 68, 69). Microbial uranium reduction activity in contaminated subsurface environments is often limited by carbon or electron donor availability (13, 24, 44, 69). Previous studies have indicated that U(VI) reduction does not proceed until nitrate is depleted (13, 16, 24, 44, 68, 69), as high nitrate concentrations inhibit the reduction of U(VI) by serving as a competing and more energetically favorable terminal electron acceptor for microorganisms (11, 16). The fate and transport of uranium in groundwater are also strongly linked through sorption and precipitation processes to the bioreduction of Fe minerals, including oxides, layer-silicate clay minerals, and sulfides (7, 23, 53).In order to appropriately design U(VI) bioremediation strategies, the potential function and phylogenetic structure of indigenous subsurface microbial communities must be further understood (24, 34, 46). Conflicting evidence has been presented on which microbial groups, Fe(III)- or sulfate-reducing bacteria (FeRB or SRB), effectively catalyze the reductive immobilization of U(VI) in the presence of amended electron donors (5, 44, 69). The addition of acetate to the subsurface at a uranium-contaminated site in Rifle, Colorado, initially stimulated FeRB within the family Geobacteraceae to reduce U(VI) (5, 65). However, with long-term acetate addition, SRB within the family Desulfobacteraceae, which are not capable of U(VI) reduction, increased in abundance and a concomitant reoxidation of U(IV) was observed (5, 65). At a uranium-contaminated site in Oak Ridge, Tennessee, in situ and laboratory-based experiments successfully employed ethanol amendments to stimulate denitrification followed by the reduction of U(VI) by indigenous microbial communities (13, 24, 44, 48, 50, 57, 68). In these studies, ethanol amendments stimulated both SRB and FeRB, with SRB likely catalyzing the reduction of U(VI). This suggests that the potential for bioremediation will be affected by the choice of electron donor amendment through effects on the functional diversity of U(VI)-reducing microbial populations. As uranium reduction is dependent on the depletion of nitrate, the microbial populations mediating nitrate reduction are also critical to the design of bioremediation strategies. Although nitrate-reducing bacteria (NRB) have been studied extensively in subsurface environments (2, 15, 19, 24, 56, 58, 70), the mechanisms controlling the in situ metabolism of NRB remain poorly understood.The dynamics of microbial populations capable of U(VI) reduction in subsurface sediments are poorly understood, and the differences in the microbial community dynamics during bioremediation have not been explored. Based on the results of previous studies (13, 44, 49, 57, 68, 69), we hypothesized that the activity of nitrate- and Fe(III)-reducing microbial populations, catalyzing the reductive immobilization of U(VI) in subsurface radionuclide-contaminated sediments, would be dependent on the choice of electron donor. The objectives of the present study were (i) to characterize structure-function relationships for microbial groups likely to catalyze or limit U(VI) reduction in radionuclide-contaminated sediments and (ii) to further develop a proxy for the metabolic activity of FeRB. Microbial activity was assessed by monitoring terminal electron-accepting processes (TEAPs), electron donor utilization, and Fe(III) mineral transformations in microcosms conducted with subsurface materials cocontaminated with high levels of U(VI) and nitrate. In parallel, microbial functional groups (i.e., NRB and FeRB) were enumerated and characterized using a combination of cultivation-dependent and -independent methods.  相似文献   

6.
Subacute ruminal acidosis (SARA) is a metabolic disease in dairy cattle that occurs during early and mid-lactation and has traditionally been characterized by low rumen pH, but lactic acid does not accumulate as in acute lactic acid acidosis. It is hypothesized that factors such as increased gut permeability, bacterial lipopolysaccharides, and inflammatory responses may have a role in the etiology of SARA. However, little is known about the nature of the rumen microbiome during SARA. In this study, we analyzed the microbiome of 64 rumen samples taken from eight lactating Holstein dairy cattle using terminal restriction fragment length polymorphisms (TRFLP) of 16S rRNA genes and real-time PCR. We used rumen samples from two published experiments in which SARA had been induced with either grain or alfalfa pellets. The results of TRFLP analysis indicated that the most predominant shift during SARA was a decline in gram-negative Bacteroidetes organisms. However, the proportion of Bacteroidetes organisms was greater in alfalfa pellet-induced SARA than in mild or severe grain-induced SARA (35.4% versus 26.0% and 16.6%, respectively). This shift was also evident from the real-time PCR data for Prevotella albensis, Prevotella brevis, and Prevotella ruminicola, which are members of the Bacteroidetes. The real-time PCR data also indicated that severe grain-induced SARA was dominated by Streptococcus bovis and Escherichia coli, whereas mild grain-induced SARA was dominated by Megasphaera elsdenii and alfalfa pellet-induced SARA was dominated by P. albensis. Using discriminant analysis, the severity of SARA and degree of inflammation were highly correlated with the abundance of E. coli and not with lipopolysaccharide in the rumen. We thus suspect that E. coli may be a contributing factor in disease onset.The bovine rumen is a classical host-microbe symbiotic system, and disturbances in this exquisitely balanced ecosystem may lead to disease in the host. An example is subacute ruminal acidosis (SARA), or non-lactic acid acidosis, which has a disease etiology distinct from that of acute lactic acid acidosis because there is no accumulation of lactic acid (35). Field studies in the United States estimated that 19% of early lactating cows and 26% of mid-lactation cows suffered from SARA (11). In Germany and The Netherlands, approximately 11% of early lactation and 18% of mid-lactation cows suffered from this disease (22). In the acute form, lactic acid accumulates in the rumen, causing metabolic acidosis, and it usually occurs when animals are abruptly transitioned to a high-grain diet from a predominantly forage diet (38). If, however, the adaptation is gradual, slower-growing lactic acid-consuming bacteria, like Megasphaera elsdenii, convert the lactic acid to propionic acid (29). In SARA, lactic acid does not accumulate during low-pH conditions and other factors, like microbial population shifts and immune responses, appear to be associated with the disease etiology (35).In both acute and subacute acidosis, there is an increase in lipopolysaccharide (LPS) concentrations in the rumen (8, 14, 16). LPS and/or the low-pH rumen conditions may increase the permeability of the gut to LPS, which could trigger systemic inflammation (4). We previously developed two animal models of SARA, one based on grain and one based on alfalfa pellets (20, 21). Even though both models resulted in substantial reductions in rumen pH and an accumulation of LPS, only the grain induction model resulted in inflammation and the appearance of LPS in the peripheral blood (20, 21).In contrast to the rumen microbiome during lactic acid acidosis, the rumen microbiome during SARA has not been evaluated (13, 28). Even in acute acidosis, studies are largely culture based, and the uncultured members of the community have not been extensively assessed (31, 46, 49). In this article, we describe the rumen microbiome when two SARA induction models were used. The shifts in microbial community structure were assessed using terminal restriction fragment length polymorphism (TRFLP) analysis and real-time PCR of key microbial populations.  相似文献   

7.
High-grain adaptation programs are widely used with feedlot cattle to balance enhanced growth performance against the risk of acidosis. This adaptation to a high-grain diet from a high-forage diet is known to change the rumen microbial population structure and help establish a stable microbial population within the rumen. Therefore, to evaluate bacterial population dynamics during adaptation to a high-grain diet, 4 ruminally cannulated beef steers were adapted to a high-grain diet using a step-up diet regimen containing grain and hay at ratios of 20:80, 40:60, 60:40, and 80:20. The rumen bacterial populations were evaluated at each stage of the step-up diet after 1 week of adaptation, before the steers were transitioned to the next stage of the diet, using terminal restriction fragment length polymorphism (T-RFLP) analysis, 16S rRNA gene libraries, and quantitative real-time PCR. The T-RFLP analysis displayed a shift in the rumen microbial population structure during the final two stages of the step-up diet. The 16S rRNA gene libraries demonstrated two distinct rumen microbial populations in hay-fed and high-grain-fed animals and detected only 24 common operational taxonomic units out of 398 and 315, respectively. The 16S rRNA gene libraries of hay-fed animals contained a significantly higher number of bacteria belonging to the phylum Fibrobacteres, whereas the 16S rRNA gene libraries of grain-fed animals contained a significantly higher number of bacteria belonging to the phylum Bacteroidetes. Real-time PCR analysis detected significant fold increases in the Megasphaera elsdenii, Streptococcus bovis, Selenomonas ruminantium, and Prevotella bryantii populations during adaptation to the high-concentrate (high-grain) diet, whereas the Butyrivibrio fibrisolvens and Fibrobacter succinogenes populations gradually decreased as the animals were adapted to the high-concentrate diet. This study evaluates the rumen microbial population using several molecular approaches and presents a broader picture of the rumen microbial population structure during adaptation to a high-grain diet from a forage diet.The rumen is a complex microbial ecosystem that is composed of an immense variety of bacteria, protozoa, fungi, and viruses (5). Among these microorganisms, bacteria are the most investigated population and have a significant effect on the animal''s performance. However, our understanding of how rumen bacteria change and adapt to different ruminal environments is in its infancy.In the feedlot cattle industry, when animals on a forage diet are directly put on a high-grain diet, a decrease in ruminal pH due to lactate production has been observed (23, 31, 42), which leads to the possibility of digestive disorders, which can cause a decrease in the animal''s performance (23, 45). Therefore, feeding programs have been implemented to adapt feedlot cattle from a high-forage diet to a high-concentrate diet by gradually increasing the concentration of grain in the diet and decreasing the fiber content (2, 35). During this adaptation to high-grain diets, significant changes in the ruminal environment and rumen bacterial population structure have been reported (17, 46, 48). However, the microbial changes that occur during this transition phase are poorly understood (17, 21, 26, 46). Studies performed to date have utilized culture-based techniques or have looked at the fluctuation of a few indicator bacteria (48, 47) to evaluate bacterial population changes. Due to limitations in culturing rumen bacteria, the use of culture-based techniques to evaluate bacterial populations substantially underestimates the diversity of microorganisms within the rumen. In this study, we have utilized culture-independent approaches to evaluate bacterial population structure and diversity using terminal restriction fragment length polymorphisms (T-RFLPs) and sequence analysis of 16S rRNA gene libraries to compare the rumen bacterial population structure in animals on prairie hay against that in animals adapting to a high-concentrate (high-grain) diet. We have also quantified the fluctuations in the populations of previously reported indicator bacterial species using quantitative real-time PCR (qRT-PCR) to assess the role of these organisms during adaptation to a high-concentrate diet.  相似文献   

8.
Analysis of Lyme borreliosis (LB) spirochetes, using a novel multilocus sequence analysis scheme, revealed that OspA serotype 4 strains (a rodent-associated ecotype) of Borrelia garinii were sufficiently genetically distinct from bird-associated B. garinii strains to deserve species status. We suggest that OspA serotype 4 strains be raised to species status and named Borrelia bavariensis sp. nov. The rooted phylogenetic trees provide novel insights into the evolutionary history of LB spirochetes.Multilocus sequence typing (MLST) and multilocus sequence analysis (MLSA) have been shown to be powerful and pragmatic molecular methods for typing large numbers of microbial strains for population genetics studies, delineation of species, and assignment of strains to defined bacterial species (4, 13, 27, 40, 44). To date, MLST/MLSA schemes have been applied only to a few vector-borne microbial populations (1, 6, 30, 37, 40, 41, 47).Lyme borreliosis (LB) spirochetes comprise a diverse group of zoonotic bacteria which are transmitted among vertebrate hosts by ixodid (hard) ticks. The most common agents of human LB are Borrelia burgdorferi (sensu stricto), Borrelia afzelii, Borrelia garinii, Borrelia lusitaniae, and Borrelia spielmanii (7, 8, 12, 35). To date, 15 species have been named within the group of LB spirochetes (6, 31, 32, 37, 38, 41). While several of these LB species have been delineated using whole DNA-DNA hybridization (3, 20, 33), most ecological or epidemiological studies have been using single loci (5, 9-11, 29, 34, 36, 38, 42, 51, 53). Although some of these loci have been convenient for species assignment of strains or to address particular epidemiological questions, they may be unsuitable to resolve evolutionary relationships among LB species, because it is not possible to define any outgroup. For example, both the 5S-23S intergenic spacer (5S-23S IGS) and the gene encoding the outer surface protein A (ospA) are present only in LB spirochete genomes (36, 43). The advantage of using appropriate housekeeping genes of LB group spirochetes is that phylogenetic trees can be rooted with sequences of relapsing fever spirochetes. This renders the data amenable to detailed evolutionary studies of LB spirochetes.LB group spirochetes differ remarkably in their patterns and levels of host association, which are likely to affect their population structures (22, 24, 46, 48). Of the three main Eurasian Borrelia species, B. afzelii is adapted to rodents, whereas B. valaisiana and most strains of B. garinii are maintained by birds (12, 15, 16, 23, 26, 45). However, B. garinii OspA serotype 4 strains in Europe have been shown to be transmitted by rodents (17, 18) and, therefore, constitute a distinct ecotype within B. garinii. These strains have also been associated with high pathogenicity in humans, and their finer-scale geographical distribution seems highly focal (10, 34, 52, 53).In this study, we analyzed the intra- and interspecific phylogenetic relationships of B. burgdorferi, B. afzelii, B. garinii, B. valaisiana, B. lusitaniae, B. bissettii, and B. spielmanii by means of a novel MLSA scheme based on chromosomal housekeeping genes (30, 48).  相似文献   

9.
The sequestration of iron by mammalian hosts represents a significant obstacle to the establishment of a bacterial infection. In response, pathogenic bacteria have evolved mechanisms to acquire iron from host heme. Bacillus anthracis, the causative agent of anthrax, utilizes secreted hemophores to scavenge heme from host hemoglobin, thereby facilitating iron acquisition from extracellular heme pools and delivery to iron-regulated surface determinant (Isd) proteins covalently attached to the cell wall. However, several Gram-positive pathogens, including B. anthracis, contain genes that encode near iron transporter (NEAT) proteins that are genomically distant from the genetically linked Isd locus. NEAT domains are protein modules that partake in several functions related to heme transport, including binding heme and hemoglobin. This finding raises interesting questions concerning the relative role of these NEAT proteins, relative to hemophores and the Isd system, in iron uptake. Here, we present evidence that a B. anthracis S-layer homology (SLH) protein harboring a NEAT domain binds and directionally transfers heme to the Isd system via the cell wall protein IsdC. This finding suggests that the Isd system can receive heme from multiple inputs and may reflect an adaptation of B. anthracis to changing iron reservoirs during an infection. Understanding the mechanism of heme uptake in pathogenic bacteria is important for the development of novel therapeutics to prevent and treat bacterial infections.Pathogenic bacteria need to acquire iron to survive in mammalian hosts (12). However, the host sequesters most iron in the porphyrin heme, and heme itself is often bound to proteins such as hemoglobin (14, 28, 85). Circulating hemoglobin can serve as a source of heme-iron for replicating bacteria in infected hosts, but the precise mechanisms of heme extraction, transport, and assimilation remain unclear (25, 46, 79, 86). An understanding of how bacterial pathogens import heme will lead to the development of new anti-infectives that inhibit heme uptake, thereby preventing or treating infections caused by these bacteria (47, 68).The mechanisms of transport of biological molecules into a bacterial cell are influenced by the compositional, structural, and topological makeup of the cell envelope. Gram-negative bacteria utilize specific proteins to transport heme through the outer membrane, periplasm, and inner membrane (83, 84). Instead of an outer membrane and periplasm, Gram-positive bacteria contain a thick cell wall (59, 60). Proteins covalently anchored to the cell wall provide a functional link between extracellular heme reservoirs and intracellular iron utilization pathways (46). In addition, several Gram-positive and Gram-negative bacterial genera also contain an outermost structure termed the S (surface)-layer (75). The S-layer is a crystalline array of protein that surrounds the bacterial cell and may serve a multitude of functions, including maintenance of cell architecture and protection from host immune components (6, 7, 18, 19, 56). In bacterial pathogens that manifest an S-layer, the “force field” function of this structure raises questions concerning how small molecules such as heme can be successfully passed from the extracellular milieu to cell wall proteins for delivery into the cell cytoplasm.Bacillus anthracis is a Gram-positive, spore-forming bacterium that is the etiological agent of anthrax disease (30, 33). The life cycle of B. anthracis begins after a phagocytosed spore germinates into a vegetative cell inside a mammalian host (2, 40, 69, 78). Virulence determinants produced by the vegetative cells facilitate bacterial growth, dissemination to major organ systems, and eventually host death (76-78). The release of aerosolized spores into areas with large concentrations of people is a serious public health concern (30).Heme acquisition in B. anthracis is mediated by the action of IsdX1 and IsdX2, two extracellular hemophores that extract heme from host hemoglobin and deliver the iron-porphyrin to cell wall-localized IsdC (21, 45). Both IsdX1 and IsdX2 harbor near iron transporter domains (NEATs), a conserved protein module found in Gram-positive bacteria that mediates heme uptake from hemoglobin and contributes to bacterial pathogenesis upon infection (3, 8, 21, 31, 44, 46, 49, 50, 67, 81, 86). Hypothesizing that B. anthracis may contain additional mechanisms for heme transport, we provide evidence that B. anthracis S-layer protein K (BslK), an S-layer homology (SLH) and NEAT protein (32, 43), is surface localized and binds and transfers heme to IsdC in a rapid, contact-dependent manner. These results suggest that the Isd system is not a self-contained conduit for heme trafficking and imply that there is functional cross talk between differentially localized NEAT proteins to promote heme uptake during infection.  相似文献   

10.
11.
The purpose of the present study was to investigate the inhibition of Vibrio by Roseobacter in a combined liquid-surface system. Exposure of Vibrio anguillarum to surface-attached roseobacters (107 CFU/cm2) resulted in significant reduction or complete killing of the pathogen inoculated at 102 to 104 CFU/ml. The effect was likely associated with the production of tropodithietic acid (TDA), as a TDA-negative mutant did not affect survival or growth of V. anguillarum.Antagonistic interactions among marine bacteria are well documented, and secretion of antagonistic compounds is common among bacteria that colonize particles or surfaces (8, 13, 16, 21, 31). These marine bacteria may be interesting as sources for new antimicrobial drugs or as probiotic bacteria for aquaculture.Aquaculture is a rapidly growing sector, but outbreaks of bacterial diseases are a limiting factor and pose a threat, especially to young fish and invertebrates that cannot be vaccinated. Because regular or prophylactic administration of antibiotics must be avoided, probiotic bacteria are considered an alternative (9, 18, 34, 38, 39, 40). Several microorganisms have been able to reduce bacterial diseases in challenge trials with fish or fish larvae (14, 24, 25, 27, 33, 37, 39, 40). One example is Phaeobacter strain 27-4 (17), which inhibits Vibrio anguillarum and reduces mortality in turbot larvae (27). The antagonism of Phaeobacter 27-4 and the closely related Phaeobacter inhibens is due mainly to the sulfur-containing tropolone derivative tropodithietic acid (TDA) (2, 5), which is also produced by other Phaeobacter strains and Ruegeria mobilis (28). Phaeobacter and Ruegeria strains or their DNA has been commonly found in marine larva-rearing sites (6, 17, 28).Phaeobacter and Ruegeria (Alphaproteobacteria, Roseobacter clade) are efficient surface colonizers (7, 11, 31, 36). They are abundant in coastal and eutrophic zones and are often associated with algae (3, 7, 41). Surface-attached Phaeobacter bacteria may play an important role in determining the species composition of an emerging biofilm, as even low densities of attached Phaeobacter strain SK2.10 bacteria can prevent other marine organisms from colonizing solid surfaces (30, 32).In continuation of the previous research on roseobacters as aquaculture probiotics, the purpose of this study was to determine the antagonistic potential of Phaeobacter and Ruegeria against Vibrio anguillarum in liquid systems that mimic a larva-rearing environment. Since production of TDA in liquid marine broth appears to be highest when roseobacters form an air-liquid biofilm (5), we addressed whether they could be applied as biofilms on solid surfaces.  相似文献   

12.
13.
14.
Tripartite efflux pumps found in Gram-negative bacteria are involved in antibiotic resistance and toxic-protein secretion. In this study, we show, using site-directed mutational analyses, that the conserved residues located in the tip region of the α-hairpin of the membrane fusion protein (MFP) AcrA play an essential role in the action of the tripartite efflux pump AcrAB-TolC. In addition, we provide in vivo functional data showing that both the length and the amino acid sequence of the α-hairpin of AcrA can be flexible for the formation of a functional AcrAB-TolC pump. Genetic-complementation experiments further indicated functional interrelationships between the AcrA hairpin tip region and the TolC aperture tip region. Our findings may offer a molecular basis for understanding the multidrug resistance of pathogenic bacteria.The tripartite efflux pumps that are found in Gram-negative bacteria have been implicated in their intrinsic resistance to diverse antibiotics, as well as their secretion of protein toxins (10, 12, 24, 31). The bacterial efflux pump is typically assembled from three essential components: an inner membrane transporter (IMT), an outer membrane factor (OMF), and a periplasmic membrane fusion protein (MFP) (10, 12, 24, 31). The IMT provides energy for transporters, like the resistance nodulation cell division (RND) type and the ATP-binding cassette (ABC) type (18). The OMF connects to the IMT in the periplasm, providing a continuous conduit to the external medium. This conduit uses the central channel, which is opened only when in complex with other components (11, 18). The third essential component of the pump is the MFP, which is an adapter protein for the direct interaction between the IMT and OMF in the periplasm (32). The MFP consists of four linearly arranged domains: the membrane-proximal (MP) domain, the β-barrel domain, the lipoyl domain, and the α-hairpin domain (1, 6, 16, 22, 30). The MFP α-hairpin domain is known to interact with OMF, while the other domains are related to interaction with the IMT (15, 22).The Escherichia coli AcrAB-TolC pump, comprised of RND-type IMT-AcrB, MFP-AcrA, and OMF-TolC, is the major contributor to the multidrug resistance phenotype of the bacteria (7, 8, 25). The AcrAB-TolC pump, together with its homolog, the Pseudomonas aeruginosa MexAB-OprM pump (7, 13), has primarily been studied in order to elucidate the molecular mechanisms underlying the actions of the tripartite efflux pumps. Whereas the crystal structures of these proteins have revealed that RND-type IMTs (AcrB and MexB) and OMFs (TolC and OprM) are homotrimeric in their functional states (1, 6, 11, 16, 22, 30), the oligomeric state of MFP remains a topic of debate, despite the presence of crystal structures (3, 5, 17, 18, 22, 27, 30).MacAB-TolC, which was identified as a macrolide-specific extrusion pump (9), has also been implicated in E. coli enterotoxin secretion (29). While MFP-MacA shares high sequence similarity with AcrA and MexA, IMT-MacB is a homodimeric ABC transporter that uses ATP hydrolysis as the driving force (9, 14). MacA forms hexamers, and the funnel-like hexameric structure of MacA is physiologically relevant for the formation of a functional MacAB-TolC pump (30). Although the α-hairpins from AcrA and MacA are commonly involved in the interaction with TolC (30, 32), the interaction mode between AcrA and TolC remains to be elucidated. In this study, we provide experimental evidence showing that the conserved amino acid residues in the AcrA hairpin tip region is important for the action of the AcrAB-TolC efflux pump and is functionally related to the TolC aperture tip region.  相似文献   

15.
16.
Bacteria often infect their hosts from environmental sources, but little is known about how environmental and host-infecting populations are related. Here, phylogenetic clustering and diversity were investigated in a natural community of rhizobial bacteria from the genus Bradyrhizobium. These bacteria live in the soil and also form beneficial root nodule symbioses with legumes, including those in the genus Lotus. Two hundred eighty pure cultures of Bradyrhizobium bacteria were isolated and genotyped from wild hosts, including Lotus angustissimus, Lotus heermannii, Lotus micranthus, and Lotus strigosus. Bacteria were cultured directly from symbiotic nodules and from two microenvironments on the soil-root interface: root tips and mature (old) root surfaces. Bayesian phylogenies of Bradyrhizobium isolates were reconstructed using the internal transcribed spacer (ITS), and the structure of phylogenetic relatedness among bacteria was examined by host species and microenvironment. Inoculation assays were performed to confirm the nodulation status of a subset of isolates. Most recovered rhizobial genotypes were unique and found only in root surface communities, where little bacterial population genetic structure was detected among hosts. Conversely, most nodule isolates could be classified into several related, hyper-abundant genotypes that were phylogenetically clustered within host species. This pattern suggests that host infection provides ample rewards to symbiotic bacteria but that host specificity can strongly structure only a small subset of the rhizobial community.Symbiotic bacteria often encounter hosts from environmental sources (32, 48, 60), which leads to multipartite life histories including host-inhabiting and environmental stages. Research on host-associated bacteria, including pathogens and beneficial symbionts, has focused primarily on infection and proliferation in hosts, and key questions about the ecology and evolution of the free-living stages have remained unanswered. For instance, is host association ubiquitous within a bacterial lineage, or if not, do host-infecting genotypes represent a phylogenetically nonrandom subset? Assuming that host infection and free-living existence exert different selective pressures, do bacterial lineages diverge into specialists for these different lifestyles? Another set of questions addresses the degree to which bacteria associate with specific host partners. Do bacterial genotypes invariably associate with specific host lineages, and is such specificity controlled by one or both partners? Alternatively, is specificity simply a by-product of ecological cooccurrence among bacteria and hosts?Rhizobial bacteria comprise several distantly related proteobacterial lineages, most notably the genera Azorhizobium, Bradyrhizobium, Mesorhizobium, Rhizobium, and Sinorhizobium (52), that have acquired the ability to form nodules on legumes and symbiotically fix nitrogen. Acquisition of nodulation and nitrogen fixation loci has likely occurred through repeated lateral transfer of symbiotic loci (13, 74). Thus, the term “rhizobia” identifies a suite of symbiotic traits in multiple genomic backgrounds rather than a taxonomic classification. When rhizobia infect legume hosts, they differentiate into specialized endosymbiotic cells called bacteroids, which reduce atmospheric nitrogen in exchange for photosynthates from the plant (35, 60). Rhizobial transmission among legume hosts is infectious. Rhizobia can spread among hosts through the soil (60), and maternal inheritance (through seeds) is unknown (11, 43, 55). Nodule formation on hosts is guided by reciprocal molecular signaling between bacteria and plant (5, 46, 58), and successful infection requires a compatible pairing of legume and rhizobial genotypes. While both host and symbiont genotypes can alter the outcome of rhizobial competition for adsorption (34) and nodulation (33, 39, 65) of legume roots, little is known about how this competition plays out in nature.Rhizobia can achieve reproductive success via multiple lifestyles (12), including living free in the soil (14, 44, 53, 62), on or near root surfaces (12, 18, 19, 51), or in legume nodules (60). Least is known about rhizobia in bulk soil (not penetrated by plant roots). While rhizobia can persist for years in soil without host legumes (12, 30, 61), it appears that growth is often negligible in bulk soil (4, 10, 14, 22, 25). Rhizobia can also proliferate in the rhizosphere (soil near the root zone) of legumes (4, 10, 18, 19, 22, 25, 51). Some rhizobia might specialize in rhizosphere growth and infect hosts only rarely (12, 14, 51), whereas other genotypes are clearly nonsymbiotic because they lack key genes (62) and must therefore persist in the soil. The best-understood rhizobial lifestyle is the root nodule symbiosis with legumes, which is thought to offer fitness rewards that are superior to life in the soil (12). After the initial infection, nodules grow and harbor increasing populations of bacteria until the nodules senesce and the rhizobia are released into the soil (11, 12, 38, 40, 55). However, rhizobial fitness in nodules is not guaranteed. Host species differ in the type of nodules they form, and this can determine the degree to which differentiated bacteroids can repopulate the soil (11, 12, 38, 59). Furthermore, some legumes can hinder the growth of nodules with ineffective rhizobia, thus punishing uncooperative symbionts (11, 27, 28, 56, 71).Here, we investigated the relationships between environmental and host-infecting populations of rhizobia. A main objective was to test the hypothesis that rhizobia exhibit specificity among host species as well as among host microenvironments, specifically symbiotic nodules, root surfaces, and root tips. We predicted that host infection and environmental existence exert different selective pressures on rhizobia, leading to divergent patterns of clustering, diversity, and abundance of rhizobial genotypes.  相似文献   

17.
Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding to CD4 and a chemokine receptor, most commonly CCR5. CXCR4 is a frequent alternative coreceptor (CoR) in subtype B and D HIV-1 infection, but the importance of many other alternative CoRs remains elusive. We have analyzed HIV-1 envelope (Env) proteins from 66 individuals infected with the major subtypes of HIV-1 to determine if virus entry into highly permissive NP-2 cell lines expressing most known alternative CoRs differed by HIV-1 subtype. We also performed linear regression analysis to determine if virus entry via the major CoR CCR5 correlated with use of any alternative CoR and if this correlation differed by subtype. Virus pseudotyped with subtype B Env showed robust entry via CCR3 that was highly correlated with CCR5 entry efficiency. By contrast, viruses pseudotyped with subtype A and C Env proteins were able to use the recently described alternative CoR FPRL1 more efficiently than CCR3, and use of FPRL1 was correlated with CCR5 entry. Subtype D Env was unable to use either CCR3 or FPRL1 efficiently, a unique pattern of alternative CoR use. These results suggest that each subtype of circulating HIV-1 may be subject to somewhat different selective pressures for Env-mediated entry into target cells and suggest that CCR3 may be used as a surrogate CoR by subtype B while FPRL1 may be used as a surrogate CoR by subtypes A and C. These data may provide insight into development of resistance to CCR5-targeted entry inhibitors and alternative entry pathways for each HIV-1 subtype.Human immunodeficiency virus type 1 (HIV-1) infects target cells by binding first to CD4 and then to a coreceptor (CoR), of which C-C chemokine receptor 5 (CCR5) is the most common (6, 53). CXCR4 is an additional CoR for up to 50% of subtype B and D HIV-1 isolates at very late stages of disease (4, 7, 28, 35). Many other seven-membrane-spanning G-protein-coupled receptors (GPCRs) have been identified as alternative CoRs when expressed on various target cell lines in vitro, including CCR1 (76, 79), CCR2b (24), CCR3 (3, 5, 17, 32, 60), CCR8 (18, 34, 38), GPR1 (27, 65), GPR15/BOB (22), CXCR5 (39), CXCR6/Bonzo/STRL33/TYMSTR (9, 22, 25, 45, 46), APJ (26), CMKLR1/ChemR23 (49, 62), FPLR1 (67, 68), RDC1 (66), and D6 (55). HIV-2 and simian immunodeficiency virus SIVmac isolates more frequently show expanded use of these alternative CoRs than HIV-1 isolates (12, 30, 51, 74), and evidence that alternative CoRs other than CXCR4 mediate infection of primary target cells by HIV-1 isolates is sparse (18, 30, 53, 81). Genetic deficiency in CCR5 expression is highly protective against HIV-1 transmission (21, 36), establishing CCR5 as the primary CoR. The importance of alternative CoRs other than CXCR4 has remained elusive despite many studies (1, 30, 70, 81). Expansion of CoR use from CCR5 to include CXCR4 is frequently associated with the ability to use additional alternative CoRs for viral entry (8, 16, 20, 63, 79) in most but not all studies (29, 33, 40, 77, 78). This finding suggests that the sequence changes in HIV-1 env required for use of CXCR4 as an additional or alternative CoR (14, 15, 31, 37, 41, 57) are likely to increase the potential to use other alternative CoRs.We have used the highly permissive NP-2/CD4 human glioma cell line developed by Soda et al. (69) to classify virus entry via the alternative CoRs CCR1, CCR3, CCR8, GPR1, CXCR6, APJ, CMKLR1/ChemR23, FPRL1, and CXCR4. Full-length molecular clones of 66 env genes from most prevalent HIV-1 subtypes were used to generate infectious virus pseudotypes expressing a luciferase reporter construct (19, 57). Two types of analysis were performed: the level of virus entry mediated by each alternative CoR and linear regression of entry mediated by CCR5 versus all other alternative CoRs. We thus were able to identify patterns of alternative CoR use that were subtype specific and to determine if use of any alternative CoR was correlated or independent of CCR5-mediated entry. The results obtained have implications for the evolution of env function, and the analyses revealed important differences between subtype B Env function and all other HIV-1 subtypes.  相似文献   

18.
19.
Human fecal matter contains a large number of viruses, and current bacterial indicators used for monitoring water quality do not correlate with the presence of pathogenic viruses. Adenoviruses and enteroviruses have often been used to identify fecal pollution in the environment; however, other viruses shed in fecal matter may more accurately detect fecal pollution. The purpose of this study was to develop a baseline understanding of the types of viruses found in raw sewage. PCR was used to detect adenoviruses, enteroviruses, hepatitis B viruses, herpesviruses, morbilliviruses, noroviruses, papillomaviruses, picobirnaviruses, reoviruses, and rotaviruses in raw sewage collected throughout the United States. Adenoviruses and picobirnaviruses were detected in 100% of raw sewage samples and 25% and 33% of final effluent samples, respectively. Enteroviruses and noroviruses were detected in 75% and 58% of raw sewage samples, respectively, and both viral groups were found in 8% of final effluent samples. This study showed that adenoviruses, enteroviruses, noroviruses, and picobirnaviruses are widespread in raw sewage. Since adenoviruses and picobirnaviruses were detected in 100% of raw sewage samples, they are potential markers of fecal contamination. Additionally, this research uncovered previously unknown sequence diversity in human picobirnaviruses. This baseline understanding of viruses in raw sewage will enable educated decisions to be made regarding the use of different viruses in water quality assessments.Millions of viruses and bacteria are excreted in human fecal matter (5, 17, 82), and current methods of sewage treatment do not always effectively remove these organisms (74, 76-78). The majority of treated wastewater, as well as untreated sewage, drains into the marine environment (1) and has the potential to threaten environmental (e.g., nutrients and chemicals) (45) and public (e.g., pathogen exposure via swimming and seafood consumption) (1, 24, 28, 29, 33, 44, 57, 63) health. Currently, the U.S. Environmental Protection Agency (EPA) mandates the use of bacterial indicators such as fecal coliforms and enterococci to assess water quality (75). Although monitoring of these bacteria is simple and inexpensive, it has been shown that fecal-associated bacteria are not ideal indicators of fecal pollution.Since fecal-associated bacteria are able to live in sediments in the absence of fecal pollution (18, 32, 55), their resuspension into the water column can result in false-positive results and mask correlations between their concentrations and the extent of recent fecal pollution. Another unfavorable characteristic of current bacterial indicators is their inability to predict or correlate with the presence of pathogenic viruses (25, 40, 41, 64, 80). Human-pathogenic viruses associated with feces are generally more robust than enteric bacteria and are not as easily eliminated by current methods of wastewater treatment (43, 80). For example, adenoviruses are more resilient to tertiary wastewater treatment and UV disinfection than are bacterial indicators of fecal pollution (74). Since bacterial indicators cannot accurately depict the risks to human health from fecal pollution, several studies have proposed the use of a viral indicator of wastewater contamination (35, 41, 61).While it is impractical to monitor the presence of all viral pathogens related to wastewater pollution, the development of an accurate viral indicator of sewage contamination is needed for enhanced water quality monitoring. Enteric viruses (including viruses belonging to the families Adenoviridae, Caliciviridae, Picornaviridae, and Reoviridae) are transmitted via the fecal-oral route and are known to be abundant in raw sewage. These viruses have been used to identify fecal pollution in coastal environments throughout the world (27, 35, 39, 40, 48, 50, 56, 57, 63, 64, 67-69, 71, 80). To determine which viruses are effective indicators of fecal pollution, it is first necessary to establish a broad, baseline understanding of the many diverse groups of eukaryotic viruses in raw sewage. Several studies have identified adenoviruses, noroviruses, reoviruses, rotaviruses, and other enteroviruses (e.g., polioviruses, coxsackie viruses, and echoviruses) in raw sewage in Australia, Europe, and South Africa (30, 47, 58, 76-78). However, no broad baseline data on the presence of eukaryotic viruses in raw sewage in the United States currently exist.This study determined the presence of 10 viral groups (adenoviruses, enteroviruses, hepatitis B viruses, herpesviruses, morbilliviruses, noroviruses, papillomaviruses, picobirnaviruses, reoviruses, and rotaviruses) in raw sewage samples collected throughout the United States. All viral groups that were detected in raw sewage were then examined further to determine if they were also present in final treated wastewater effluent. These 10 viral groups were chosen because of their potential to be transmitted via the fecal-oral route, suggesting that they might be found in raw sewage. Many of these viruses (excluding adenoviruses, enteroviruses, noroviruses, reoviruses, and rotaviruses) have not been studied in sewage despite their likely presence. Picobirnaviruses have been detected in individual fecal samples (12, 70, 79, 82); however, their presence has never been analyzed in collective waste, nor have they been proposed to be potential markers of fecal pollution. This study identified potential viral indicators of fecal pollution and will have important applications to water quality monitoring programs throughout the country.  相似文献   

20.
The essential cell division protein FtsL is a substrate of the intramembrane protease RasP. Using heterologous coexpression experiments, we show here that the division protein DivIC stabilizes FtsL against RasP cleavage. Degradation seems to be initiated upon accessibility of a cytosolic substrate recognition motif.Cell division in bacteria is a highly regulated process (1). The division site selection as well as assembly and disassembly of the divisome have to be strictly controlled (1, 4). Although the spatial control of the divisome is relatively well understood (2, 4, 14, 17), mechanisms governing the temporal control of division are still mainly elusive. Regulatory proteolysis was thought to be a potential modulatory mechanism (8, 9). The highly unstable division protein FtsL was shown to be rate limiting for division and would make an ideal candidate for a regulatory factor in the timing of bacterial cell division (7, 9). In Bacillus subtilis, FtsL is an essential protein of the membrane part of the divisome (5, 7, 8). It is necessary for the assembly of the membrane-spanning division proteins, and a knockout is lethal (8, 9, 12). We have previously reported that FtsL is a substrate of the intramembrane protease RasP (5).These findings raised the question of whether RasP can regulate cell division by cleaving FtsL from the division complex. In order to mimic the situation in which FtsL is bound to at least one of its interaction partners, we used a heterologous coexpression system in which we synthesized FtsL and DivIC. It has been reported before that DivIC and FtsL are intimate binding partners in various organisms (6, 9, 15, 21, 22, 26) and that FtsL and DivIC (together with DivIB) can form complexes even in the absence of the other divisome components (6, 21). We therefore asked whether RasP is able to cleave FtsL in the presence of its major interaction partner DivIC, which would argue for the possibility that RasP could cleave FtsL within a mature divisome. In contrast, if interaction with DivIC could stabilize FtsL against RasP cleavage, this result would bring such a model into question. An alternative option for the role of RasP might be the removal of FtsL from the membrane. It has been shown that divisome disassembly and prevention of reassembly are crucial to prevent minicell formation close to the new cell poles (3, 16).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号