首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 120 毫秒
1.
色胺酮对乳腺癌MCF-7细胞凋亡的诱导作用   总被引:1,自引:0,他引:1  
目的:探讨色胺酮(Tryptanthrin,Try)对人乳腺癌MCF-7细胞增殖和凋亡的影响。方法:利用MTT方法检测Try(1.56-100μmol/L)对细胞增殖的影响;透射电镜观察细胞的形态学改变;流式细胞术检测细胞周期、凋亡情况及线粒体跨膜电位等指标。结果:MTT结果显示,Try在12.5-100μmol/L浓度范围内能明显抑制MCF-7细胞的增殖,并具有时间和浓度依赖性;透射电镜下可见Try作用48h后,MCF-7细胞有典型的凋亡样改变。Annexin V-FITC与PI双染,流式细胞仪检测结果显示:50、100μmol/LTry作用后,细胞的凋亡情况明显,与对照组相比差异显著;且影响了MCF-7的细胞周期分布,将细胞阻滞于G1期,抑制其DNA的合成;并导致细胞线粒体跨膜电位下降。结论:色胺酮能明显抑制MCF-7细胞增殖并具有诱导细胞发生凋亡的作用。  相似文献   

2.
破壁灵芝孢子粉诱导MCF-7细胞凋亡的机理研究   总被引:2,自引:0,他引:2  
目的:研究破壁灵芝孢子粉对人乳腺癌细胞系MCF-7的诱导凋亡作用。方法:在体外设定不同浓度的孢子粉处理MCF-7细胞系的实验组,细胞培养24h后,用MTT法测定其细胞活力;碘化丙啶(vI)染色后流式细胞仪检测其凋亡情况;罗丹明123(Rodamine123)标记后于酶标仪530nIn处测定其荧光强度值以检测线粒体膜电位情况。结果:与对照组相比,随孢子粉浓度的上升,MCF-7细胞活力和增殖呈剂量依赖型的下降;流式细胞仪检测PI染色显示,各处理组的MCF-7细胞凋亡率随作用浓度的上升而增强,最高浓度组尤为明显;在高浓度组,罗丹明123荧光强度明显降低。这些结果表明孢子粉能抑制MCF-7细胞的活力扣增殖;诱导其凋亡;罗丹明荧光强度的减少,说明MCF-7线粒体膜电位有倒塌扣去极化的情况发生,提示MCF-7细胞的凋亡与线粒体有关。结论:破壁灵芝孢子粉可明显促进MCF-7细胞的凋亡。  相似文献   

3.
目的:观察藁本内酯对H_2O_2诱导的B16黑素瘤细胞氧化损伤的保护作用并探讨其可能机制。方法:以H_2O_2诱导B16黑素瘤细胞氧化损伤为模型,并以藁本内酯进行干预,采用MTT法测细胞活力,酶标仪检测乳酸脱氢酶(LDH)漏出量,流式细胞术测细胞凋亡率、线粒体膜电位(△Ψm)和细胞内游离钙离子浓度。结果:与H_2O_2诱导的B16黑素瘤细胞比较,应用藁本内酯(5、10、20μmol·L~(-1))处理的B16黑素瘤细胞活力和△Ψm明显提高,LDH漏出量明显减少,细胞凋亡率和细胞内游离钙离子浓度明显降低,差异均具有统计学意义(P0.05)。结论:藁本内酯对H_2O_2诱导的B16黑素瘤细胞氧化损伤具有保护作用,其作用机制可能通过恢复线粒体功能、抑制细胞凋亡有关。  相似文献   

4.
目的观察黄芩甙对肝癌细胞BEL-7402凋亡的影响,同时观察对肝癌细胞形态及超微结构、线粒体超微结构、线粒体膜电位和细胞内Ca^2+的影响,探讨线粒体损伤在黄芩甙诱导肝癌细胞凋亡中的作用及可能的机制。方法应用细胞培养技术培养肝癌细胞BEL-7402,光镜、倒置显微镜、扫描电镜、透射电镜观察细胞形态及超微结构的变化尤其是线粒体的变化,应用流式细胞仪检测细胞凋亡百分率及线粒体膜电位、细胞内Ca^2+的改变,免疫组化法检测细胞Bcl-2、Pax蛋白表达。结果黄芩甙诱导肝癌细胞BEL-7402凋亡呈剂量依赖关系,细胞形态、超微结构及线粒体超微结构出现明显改变,降低肝癌细胞线粒体膜电位,使细胞内Ca^2+增加,细胞Pax表达增加,广泛分布于胞核和胞质中,Bcl-2表达减少。结论黄芩甙诱导肝癌细胞BEL-7402凋亡,线粒体损伤在黄芩甙诱导肝癌细胞凋亡中起重要作用,其机制可能为抑制肝癌细胞Bcl-2蛋白表达,促进Pax蛋白表达及细胞内Ca^2+增加,激发线粒体膜通透性转运孔开放,线粒体跨膜电位降低,使肝癌细胞凋亡。  相似文献   

5.
为探讨亚硒酸钠诱导人结肠癌SW480细胞凋亡的机理,将荧光探针2′,7′-二氯荧光黄乙二脂(2′,7′-DCFH-DA)、罗丹明123(rhodamine123)负载人结肠癌细胞,利用多光子成像系统测定胞内活性氧(ROS)、线粒体跨膜电位(△Ψm)的变化。结果发现(1)Na2SeO3作用SW480细胞,可导致细胞凋亡和胞内的ROS增加。SOD、过氧化氢酶可降低凋亡率并抑制ROS的增加。(2)线粒体电子传递链抑制剂鲁藤酮及氰化钠可抑制OS增加。(3)Na2SeO3可导致线粒体的跨膜电位的下降。表明Na2SeO3作用细胞可导致来源于线粒体的ROS增加,ROS介导亚硒酸钠诱导细胞凋亡。  相似文献   

6.
目的:研究靶向抑制survivin表达对软骨多糖诱导乳腺癌MCF-7细胞凋亡的影响.方法:将survivin-siRNA转染乳腺癌MCF-7细胞.用定量PCR和Western-blotting检测转染后细胞内survivin基因表达水平,流式细胞仪和Hochest染色检测细胞凋亡的改变.结果:软骨多糖可抑制MCF-7细胞的生长,其生长抑制率与药物浓度和作用时间呈依赖关系;软骨多糖作用MCF-7细胞后,survivin表达降低;转染survivin-siRNA能促进软骨多糖诱导MCF-7细胞凋亡.结论:靶向抑制survivin表达对软骨多糖诱导乳腺癌细胞凋亡具有增敏作用.  相似文献   

7.
目的:观察桑葚花色苷提取物对人乳腺癌细胞株MDA-MB-453、MDA-MB-231和MCF-7细胞凋亡及线粒体膜电位的影响.方法:利用超声辅助乙醇萃取法提取桑葚花色苷,pH示差法测定提取物花色苷总含量,以50、100和150 mg/mL桑葚花色苷提取物作用三种乳腺癌细胞MDA-MB-231、MDA-MB-453和MCF-7 24h,采用Annexin V/PI双染流式细胞分析法检测细胞凋亡水平变化,JC-1探针染色激光共聚焦扫描显微镜观察MDA-MB-453细胞线粒体膜电位水平变化.结果:凋亡分析结果表明,桑葚花色苷提取物作用后三种乳腺癌细胞凋亡率均升高,显示出促凋亡效应,且具有剂量-效应关系,100和150 mg/mL组凋亡率显著升高(P<0.05).激光共聚焦扫描显微镜检测结果显示,桑葚花色苷提取物作用24h,可使MDA-MB-453细胞线粒体膜电位显著下降,表现为红色/绿色荧光的比值显著降低(P<0.05).结论:桑葚花色苷提取物可显著降低乳腺癌细胞线粒体膜电位,并促发细胞凋亡.  相似文献   

8.
为探讨虎眼万年青总皂苷(OCA-TS)诱导人乳腺癌MCF-7细胞凋亡的分子机制,本研究采用溴化四氮唑蓝(MTT)法检测OCA-TS对MCF-7细胞增殖的抑制作用,并观察细胞凋亡形态、检测细胞膜电位及凋亡相关蛋白含量变化。实验表明,OCA-TS可显著抑制人乳腺癌MCF-7细胞的增殖(IC_(50)为93.17μg/mL),电镜下细胞呈现典型的凋亡形态;流式细胞仪检测结果显示不同浓度的OCA-TS作用MCF-7细胞48 h后,细胞内线粒体膜电位、Ca~(2+)浓度和Cyt-C的表达水平均无显著变化;细胞内Caspase-8和Caspase-3的活性显著升高,而Caspase-12的活性均未见显著改变,Western blot检测细胞内Fas、FasL和FADD蛋白表达水平显著升高。综上说明OCA-TS诱导MCF-7细胞凋亡的作用可能是通过启动死亡受体途径而不是通过线粒体途径和内质网途径实现的。  相似文献   

9.
目的:探讨Genistein对卵巢癌铂类耐药细胞CP70增殖、凋亡的影响及与细胞内活性氧水平的关系。方法:采用MTT法检测Genistein对CP70细胞增殖的影响;流式细胞仪分析不同药物处理后对细胞凋亡的影响,线粒体膜电位及细胞内ROS水平的变化情况。结果:Genistein对CP70细胞增殖表现出剂量和时间依赖性的抑制作用,并能诱导其凋亡;Genistein作用于CP70细胞后,可使其线粒体膜电位降低,并引发了细胞内ROS水平的显著升高;ROS抑制剂NAC预处理CP70细胞后,有效抑制了ROS的产生,并降低了细胞凋亡率,与未加NAC组相比差异有显著性(P0.05)。结论:Genistein能抑制铂类耐药卵巢癌细胞CP70的增殖,并促进其凋亡,这与细胞内ROS水平的升高有关,可能是Genistein抗肿瘤诱导细胞凋亡的机制之一。  相似文献   

10.
目的:观察西达本胺对胰腺癌细胞BxPC-3和PANC-1生长抑制及诱导细胞凋亡作用,探讨西达本胺抗胰腺癌的机制。方法:西达本胺处理BxPC-3和PANC-1细胞后,用流式细胞术检测细胞的凋亡率,用罗丹明123和DCFH—DA染色方法测定细胞线粒体膜跨膜电位变化和活性氧(ROS)的产生,用Western印迹检测Bcl-2家族和γH2AX蛋白表达的变化。结果:西达本胺对胰腺癌细胞BxPC-3和PANC-1具有生长抑制和诱导细胞凋亡的作用,且呈时间和剂量依赖关系;处理72h后,胰腺癌细胞内ROS产生增强导致DNA损伤发生,且线粒体跨膜电位明显下降;促凋亡蛋白Bax的表达,抑制抑凋亡蛋白Bcl-2和Mcl—1的表达。结论:西达本胺具有抑制胰腺癌细胞增殖,诱导细胞凋亡的作用;西达本胺增强胰腺癌细胞内ROS的产生并导致DNA损伤,最终诱导细胞凋亡的发生。  相似文献   

11.
Dryofragin is a phloroglucinol derivative extracted from Dryopteris fragrans (L.) Schott. In this study, the anticancer activity of dryofragin on human breast cancer MCF-7 cells was investigated. Dryofragin inhibited the growth of MCF-7 cells in a time and concentration-dependent manner. The cell viability was measured using MTT assay. After treatment with dryofragin for 72, 48 and 24h, the IC(50) values were 27.26, 37.51 and 76.10μM, respectively. Further analyses of DNA fragmentation and Annexin V-PI double-labeling indicated an induction of apoptosis. Dryofragin-treatment MCF-7 cells had a significantly accumulation of reactive oxygen species (ROS), as well as an increased percentage of cells with mitochondrial membrane potential (MMP) disruption. These phenomena were blocked by pretreatment for 2h of MCF-7 cells with the antioxidant compound N-acetyl-l-cysteine (NAC, 5mM). These results speak for the involvement of a ROS-mediated mitochondria-dependent pathway in dryofragin-induced apoptosis. Western blot results showed that dryofragin inhibited Bcl-2 and induced Bax expression which led to an activation of caspases-9 and -3 in the cytosol, and further cleavage of poly ADP-ribose polymerase (PARP) in the nucleus, then induced cell apoptosis. In conclusion, the present study provides evidence that dryofragin induces apoptosis in human breast cancer MCF-7 cells through a ROS-mediated mitochondrial pathway.  相似文献   

12.
Acanthopanax sessiliflorus, a small woody shrub has traditionally been referred to have anticancer activity, but it has not been scientifically explored so far. Therefore, to investigate the anticancer effects of A. sessiliflorus stem bark extracts (ASSBE), MDA-MB-231 and MCF-7 human breast cancer cells were treated with one of its bioactive fractions, n-hexane (ASSBE-nHF). Cytotoxicity (24 h) was determined by MTT assay and antiproliferative effect was assessed by counting cell numbers after 72 h treatment using hemocytometer. The role of ASSBE-nHF on apoptosis was analysed by annexin V-FITC/PI, Hoechst 33342 staining, DNA fragmentation pattern and immunoblotting of apoptosis markers. For the assay of enhanced production of ROS and mitochondrial membrane depolarization, specific stains such as DCFH-DA and JC-1 were used, respectively. To understand the mode of action of ASSBE-nHF on MCF-7 cells, cells were pre-treated with antioxidant, n-acetylcysteine. The hexane fraction of ASSBE showed maximum activity towards human breast cancer cells compared to other two fractions at a minimal concentration of 50 μg/ml. The annexin V-FITC/PI, Hoechst 33342 staining, DNA fragmentation and immunoblotting assays showed that ASSBE-nHF induces non-apoptotic cell death in MCF-7 and MDA-MB-231 cells. ASSBE-nHF significantly increased the production of ROS and decreased the mitochondrial membrane potential (MMP) in MCF-7 cells. Similarly, it decreased the MMP in MDA-MB-231 cells, but had no effect on ROS production. Further, the cytotoxic effect of ASSBE-nHF in MCF-7 cells was not significantly reversed even in the presence of n-acetylcysteine, an antioxidant. These findings revealed that ASSBE-nHF induces non-apoptotic cell death via mitochondria associated with both ROS dependent and independent pathways in human breast cancer cells.  相似文献   

13.
Seleno-short-chain chitosan (SSCC) was a synthesized chitosan derivative with the molecular weight of 4826.986 Da. The study is aimed to investigate cytotoxicity of SSCC on human breast cancer MCF-7 and BT-20 cells and explore apoptosis-related mechanism in vitro. The MTT (3- [4,5-Dimethylthiazol-2-yl]-2, 5-diphenylterazolium bromide) assay showed that SSCC exhibited significantly cytotoxic effects on MCF-7 and BT-20 cells in a dose- and time-dependent manner, and the effective inhibitory concentration was 100 μg/ml and 200 μg/ml, respectively. Apoptosis assay of these two kinds of cells was determined by Hoechst 33,342/PI and Annexin V-FITC/PI double staining. The cell cycle assay showed that SSCC triggered S and G2/M phase cell cycle arrest in MCF-7 cells and S phase cell cycle arrest in BT-20 cells in a time-dependent manner. Further studies demonstrated that SSCC led to the generation of reactive oxygen species (ROS) and the disruption of mitochondrial membrane potential (MMP) in these two kinds of cells. N- acetyl-L cysteine (NAC), as a radical scavenger, significantly inhibited the generation of ROS and decreased the apoptosis of MCF-7 and BT-20 cells. Moreover, the expression of mitochondrial apoptosis-related proteins was detected by western blot assay. SSCC up-regulated the expression of Bax, down-regulated the expression of Bcl-2, subsequently increased the release of cytochrome c from mitochondria to cytoplasm, and activated the cleavage of caspase-9 and ?3, which finally induced apoptosis in MCF-7 and BT-20 cells in vitro. Consequently, these data indicated that SSCC could induce apoptosis of MCF-7and BT-20 cells in vitro by mitochondrial pathway.  相似文献   

14.
Breast cancer is a leading cause of death for women. The estrogen receptors (ERs) ratio is important in the maintenance of mitochondrial redox status, and higher levels of ERβ increases mitochondrial functionality, decreasing ROS production. Our aim was to determine the interaction between the ERα/ERβ ratio and the response to cytotoxic treatments such as cisplatin (CDDP), paclitaxel (PTX) and tamoxifen (TAM). Cell viability, apoptosis, autophagy, ROS production, mitochondrial membrane potential, mitochondrial mass and mitochondrial functionality were analyzed in MCF-7 (high ERα/ERβ ratio) and T47D (low ERα/ERβ ratio) breast cancer cell lines. Cell viability decreased more in MCF-7 when treated with CDDP and PTX. Apoptosis was less activated after cytotoxic treatments in T47D than in MCF-7 cells. Nevertheless, autophagy was increased more in CDDP-treated MCF-7, but less in TAM-treated cells than in T47D. CDDP treatment produced a raise in mitochondrial mass in MCF-7, as well as the citochrome c oxidase (COX) and ATP synthase protein levels, however significantly reduced COX activity. In CDDP-treated cells, the overexpression of ERβ in MCF-7 caused a reduction in apoptosis, autophagy and ROS production, leading to higher cell survival; and the silencing of ERβ in T47D cells promoted the opposite effects. In TAM-treated cells, ERβ-overexpression led to less cell viability by an increment in autophagy; and the partial knockdown of ERβ in T47D triggered an increase in ROS production and apoptosis, leading to cell death. In conclusion, ERβ expression plays an important role in the response of cancer cells to cytotoxic agents, especially for cisplatin treatment.  相似文献   

15.
Zhang Z  Teruya K  Eto H  Shirahata S 《PloS one》2011,6(11):e27441

Background

Fucoidan extract (FE), an enzymatically digested compound with a low molecular weight, is extracted from brown seaweed. As a natural compound with various actions, FE is attractive, especially in Asian countries, for improving the therapeutic efficacy and safety of cancer treatment. The present study was carried out to investigate the anti-tumor properties of FE in human carcinoma cells and further examine the underlying mechanisms of its activities.

Methodology/Principal Finding

FE inhibits the growth of MCF-7, MDA-MB-231, HeLa, and HT1080 cells. FE-mediated apoptosis in MCF-7 cancer cells is accompanied by DNA fragmentation, nuclear condensation, and phosphatidylserine exposure. FE induces mitochondrial membrane permeabilization (MMP) through loss of mitochondrial membrane potential (ΔΨm) and regulation of the expression of Bcl-2 family members. Release of apoptosis-inducing factor (AIF) and cytochrome c precedes MMP. AIF release causes DNA fragmentation, the final stage of apoptosis, via a caspase-independent mitochondrial pathway. Additionally, FE was found to induce phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular signal-regulated kinase (ERK) 1/2, and apoptosis was found to be attenuated by inhibition of JNK. Furthermore, FE-mediated apoptosis was found to involve the generation of reactive oxygen species (ROS), which are responsible for the decrease of ΔΨm and phosphorylation of JNK, p38, and ERK1/2 kinases.

Conclusions/Significance

These data suggest that FE activates a caspase-independent apoptotic pathway in MCF-7 cancer cells through activation of ROS-mediated MAP kinases and regulation of the Bcl-2 family protein-mediated mitochondrial pathway. They also provide evidence that FE deserves further investigation as a natural anticancer and cancer preventive agent.  相似文献   

16.
Methanol ingestion is neurotoxic in humans due to its metabolites, formaldehyde and formic acid. Here, we compared the cytotoxicity of methanol and its metabolites on different types of cells. While methanol and formic acid did not affect the viability of the cells, formaldehyde (200–800 μg/mL) was strongly cytotoxic in all cell types tested. We investigated the effects of formaldehyde on oxidative stress, mitochondrial respiratory functions, and apoptosis on the sensitive neuronal SK-N-SH cells. Oxidative stress was induced after 2 h of formaldehyde exposure. Formaldehyde at a concentration of 400 μg/mL for 12 h of treatment greatly reduced cellular adenosine triphosphate (ATP) levels. Confocal microscopy indicated that the mitochondrial membrane potential (MMP) was dose-dependently reduced by formaldehyde. A marked and dose-dependent inhibition of mitochondrial respiratory enzymes, viz., NADH dehydrogenase (complex I), cytochrome c oxidase (complex IV), and oxidative stress-sensitive aconitase was also detected following treatment with formaldehyde. Furthermore, formaldehyde caused a concentration-dependent increase in nuclear fragmentation and in the activities of the apoptosis-initiator caspase-9 and apoptosis-effector caspase-3/-7, indicating apoptosis progression. Our data suggests that formaldehyde exerts strong cytotoxicity, at least in part, by inducing oxidative stress, mitochondrial dysfunction, and eventually apoptosis. Changes in mitochondrial respiratory function and oxidative stress by formaldehyde may therefore be critical in methanol-induced toxicity.  相似文献   

17.
To test the role of caspase 3 in apoptosis and in overall cell lethality caused by the protein kinase inhibitor staurosporine, we compared the responses of MCF-7c3 cells that express a stably transfected CASP-3 gene to parental MCF-7:WS8 cells transfected with vector alone and lacking procaspase-3 (MCF-7v). Cells were exposed to increasing doses (0.15-1 microM) of staurosporine for periods up to 19 h. Apoptosis was efficiently induced in MCF-7c3 cells, as demonstrated by cytochrome c release, processing of procaspase-3, procaspase-8, and Bid, increase in caspase-3-like DEVDase activity, cleavage of the enzyme poly(ADP-ribose) polymerase, DNA fragmentation, changes in nuclear morphology, and TUNEL assay and flow cytometry. For all of these measures except cytochrome c release, little or no activity was detected in MCF-7v cells, confirming that caspase-3 is essential for efficient induction of apoptosis by staurosporine, but not for mitochondrial steps that occur earlier in the pathway. MCF-7c3 cells were more sensitive to staurosporine than MCF-7v cells when assayed for loss of viability by reduction of a tetrazolium dye. However, the two cell lines were equally sensitive to killing by staurosporine when evaluated by a clonogenic assay. A similar distinction between apoptosis and loss of clonogenicity was observed for the cancer chemotherapeutic agent VP-16. These results support our previous conclusions with photodynamic therapy: (a) assessing overall reproductive death of cancer cells requires a proliferation-based assay, such as clonogenicity; and (b) the critical staurosporine-induced lethal event is independent of those mediated by caspase-3.  相似文献   

18.
Continuous exposure of breast cancer cells to adriamycin induces high expression of P-gp and multiple drug resistance. However, the biochemical process and the underlying mechanisms for the gradually induced resistance are not clear. To explore the underlying mechanism and evaluate the anti-tumor effect and resistance of adriamycin, the drug-sensitive MCF-7S and the drug-resistant MCF-7Adr breast cancer cells were used and treated with adriamycin, and the intracellular metabolites were profiled using gas chromatography mass spectrometry. Principal components analysis of the data revealed that the two cell lines showed distinctly different metabolic responses to adriamycin. Adriamycin exposure significantly altered metabolic pattern of MCF-7S cells, which gradually became similar to the pattern of MCF-7Adr, indicating that metabolic shifts were involved in adriamycin resistance. Many intracellular metabolites involved in various metabolic pathways were significantly modulated by adriamycin treatment in the drug-sensitive MCF-7S cells, but were much less affected in the drug-resistant MCF-7Adr cells. Adriamycin treatment markedly depressed the biosynthesis of proteins, purines, pyrimidines and glutathione, and glycolysis, while it enhanced glycerol metabolism of MCF-7S cells. The elevated glycerol metabolism and down-regulated glutathione biosynthesis suggested an increased reactive oxygen species (ROS) generation and a weakened ability to balance ROS, respectively. Further studies revealed that adriamycin increased ROS and up-regulated P-gp in MCF-7S cells, which could be reversed by N-acetylcysteine treatment. It is suggested that adriamycin resistance is involved in slowed metabolism and aggravated oxidative stress. Assessment of cellular metabolomics and metabolic markers may be used to evaluate anti-tumor effects and to screen for candidate anti-tumor agents.  相似文献   

19.
目的:探讨长链非编码RNA SNHG3对人乳腺癌细胞MCF-7增殖、迁移与侵袭的影响。方法:构建SNHG3过表达质粒,实验分别设置阴性对照组(pcDNA-3.1+)与SNHG3基因过表达组(pcDNA-3.1+/SNHG3)。将MCF-7细胞转染对照组质粒和SNHG3过表达质粒,采用实时定量PCR 方法检测 SNHG3 mRNA 转录水平,Western blot 检测MMP9及EMT相关蛋白质水平;集落形成实验检测MCF-7细胞增殖能力;划痕愈合实验检测MCF-7细胞横向迁移能力; Transwell 小室实验检测MCF-7细胞纵向迁移能力及侵袭能力。结果:过表达SNHG3后,MCF-7细胞中SNHG3的mRNA水平显著增高(P<0.001);MCF-7细胞的体外增殖能力明显增加(P<0.01),迁移(P<0.01)与侵袭能力(P<0.001)也显著增强,实时定量PCR, Western blot 结果显示SNHG3可激活EMT相关通路。结论:过表达SNHG3可能通过激活EMT通路促进乳腺癌MCF-7细胞的增殖,迁移与侵袭。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号