首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
When the model polynucleotide poly(dG-dC)?poly(dG-dC) [polyGC] is titrated with a strong acid (HCl) in unbuffered aqueous solutions containing the chlorides of the alkali metals in the concentration range 0.010?M-0.600?M, two transitions in the absorbance vs. pH plots are evidenced, characterized by the constants pK(a(?)) and pK(a(?)). The limiting values at infinite saline concentrations of these two constants, namely pK(∞)(a(?)) and pK(∞)(a(?)) obtained making use of the "one site saturation constant" equation or, in turn, of the double logarithmic plot: pK(a) vs. log([salt]?1), exhibit a clear dependence on the nature of the cations. The effects of the different alkali cations on the pK(∞)(a) values follow the Hofmeister series. In fact, the pK(∞)(a(?)) and the pK(∞)(a(?)) values are smaller for Li+ and Na+ than for Rb+ and Cs+, with K+ at the border between the two, showing that the transitions require higher concentrations of protons to occur in the presence of high concentrations of the cosmotropic ions.  相似文献   

2.
3.
This work compared circular dichroism and phosphorus n.m.r. of poly(dA-dU)·poly(dA-dU), poly(dA-dT)·poly(dA-dT), poly(dA-ethyl5dU)·poly(dA-ethyl5dU), and poly(dA-butyl5dU)·poly(dA-butyl5dU) at low-salt and in concentrated caesium chloride and caesium fluoride solutions. It is demonstrated that growing bulk of the substituent increases the conformationl anomaly residing in the purine(3′–5′)pyrimidine steps while the backbone is less affected in the pyrimidine (3′–5′)purine steps. As the length of the substituent increases, conformation of the polynucleotides alters more dramatically at increasing concentrations of caesium cations. At high CsF concentrations, all the polynucleotides adopt a novel conformer which we call X-DNA and its formation is promoted by larger substituents. The X-DNA conformation of poly(dA-butyl5dU)·poly(dA-butyl5dU) gives two phosphorus n.m.r. resonances separated as much as in the case of the left-handed zig-zag Z-DNA double helix of poly(dG-dC)·poly(dG-dC) but X-DNA and Z-DNA differ qualitatively by an opposite dinucleotide repeat. Phosphorus n.m.r. spectra of poly(dA-dT)·poly(dA-dT) and poly(dA-butyl5dU)-poly(dA-butyl5dU) differ quantitatively at high CsF concentrations, which may reflect conformational variability of the X-DNA backbone. Poly(dA-butyl5dU)·poly(dA-butyl5dU), but not poly(dA-ethyl5dU)·poly(dA-ethyl5dU) and the related polynucleotides with shorter substituents in position 5 of uracil, exhibits one more reversible transition at very high caesium fluoride concentrations. It is accompanied by polynucleotide associations and has a slow kinetics. This transition may involve one more radical change in the double helix architecture from X-DNA into another conformation.  相似文献   

4.
X-ray diffraction analyses of fibers of polydeoxyadenylic acid · polydeoxythymidylic acid show that this molecule exists as a 10-fold double-helix with axial rise per nucleotide h = 3.24 to 3.29 A?. The structure is very similar to B-DNA (h = 3.37 A?) in having C3-exo furanose rings and base-pairs positioned centrally on the helix axis, but distinctive enough to have two packing modes, neither of which has been observed for B-DNA. Although the triple-stranded poly(dT) · poly(dA) · poly(dT) also has a large value of h(3.26 Å), each of the chains is a 12-fold helix of the A-genus with C3-endo furanose rings and bases displaced several Angstrom units from the helix axis.  相似文献   

5.
The influence of Cd2+ ions on the conformational equilibrium of single-stranded (poly(U), poly(A), poly(I)) and triple-stranded polyribonucleotides (A2I, A2U) in aqueous solutions (0.1 M Na+ pH 7) has been investigated using difference UV spectroscopy and thermal denaturation. Analysis of the shape and intensity of the DUV spectra of poly(A), poly(I), and A2I has revealed the presence of two types of complex formed as a result of (i) interaction between Cd2+ and the N7 atoms of purines, producing macrochelates; and (ii) binding of Cd2+ to the N1 atoms of poly(A) and poly(I). Since Cd2+ ions are not bound to heteroatoms of the bases in A2U, the conformation of the structure remains stable up to 0.02 M Cd2+. There is a critical Cd2+ concentration (~1.5?10?4 M) above which A2I assumes a new helical conformation with lower thermal stability. It is supposed that, upon the formation of the “metallized” A2I triplex, the Cd2+ ions are located inside the triple helix and form bridges between the hypoxanthine and adenine of the homopolynucleotide strands.  相似文献   

6.
Monomeric bis-benzimidazole (MB) is an analog of the Hoechst 33258 dye. The enthalpy and entropy of MB binding were evaluated by analyzing the calorimetric data on MB reverse titration with poly(dA) · poly(dT). A mathematical model was developed to estimate the thermodynamic parameters of binding on the basis of calorimetric data. The results agree well with spectrophotometric data on the binding of analogous compounds. The model was used to estimate the parameters of binding with poly(dA) · poly(dT) for dimeric bis-benzimidazole (DB), which consists of two bis-benzimidazole monomers linked via a flexible chain. The ligand was assumed to produce different types of complexes with the polymer.  相似文献   

7.
8.
Streptomyces albulus PD-1 can co-produce antimicrobial homo-polymers poly(ε-lysine) (ε-PL) and poly(l-diaminopropionic acid) (PDAP). In this study, a novel feeding strategy of citric acid coupled with glucose-(NH4)2SO4 feeding was employed to S. albulus PD-1. When the pH of the culture broth dropped to 4.0, the feeding solution was added continuously to maintain the concentrations of glucose and citric acid at 10 and 4 g L?1, respectively. As a result, the final concentration of ε-PL increased from 21.7 to 29.7 g L?1 and the final concentration of PDAP decreased from 4.8 to 3.2 g L?1. Assays on intracellular nucleotide levels and key enzyme activities were performed to elucidate the underlying regulation mechanism. The addition of citric acid increased NADH/NAD+ ratio and decreased intracellular ATP level; meanwhile, the activities of pyruvate kinase, citrate synthase and isocitrate dehydrogenase decreased while aspartate aminotransferase activity increased. Therefore, we deduced that citric acid feeding resulted in metabolic flux redistribution at the node of phosphoenolpyruvate; the metabolic pathway from phosphoenolpyruvate directed into tricarboxylic acid cycle was weakened and thus PDAP production was inhibited. On the other hand, the metabolic pathway from phosphoenolpyruvate directed into oxaloacetate and l-aspartate was enhanced, thereby improving ε-PL production. This fermentation strategy may be potentially useful in ε-PL production because it can effectively inhibit the formation of by-products, such as PDAP.  相似文献   

9.
The binding properties of [RuL2(mip)]2+ {where L is 1,10-phenanthroline (phen) or 4,7-dimethyl-1,10-phenanthrollne (4,7-dmp) and mip is 2′-(3″,4″-methylenedioxyphenyl)imidazo[4′,5′-f][1,10]phenanthroline} with regard to the triplex RNA poly(U)·poly(A)*poly(U) were investigated using various biophysical techniques and quantum chemistry calculations. In comparison with [Ru(4,7-dmp)2(mip)]2+, remarkably higher binding affinity of [Ru(phen)2(mip)]2+ for the triplex RNA poly(U)·poly(A)*poly(U) was achieved by changing the ancillary ligands. The stabilization of the Hoogsteen-base-paired third strand was improved by about 10.9 °C by [Ru(phen)2(mip)]2+ against 6.6 °C by [Ru(4,7-dmp)2(mip)]2+. To the best of our knowledge, [Ru(phen)2(mip)]2+ is the first metal complex able to raise the third-strand stabilization of poly(U)·poly(A)*poly(U) from 37.5 to 48.4 °C. The results reveal that the ancillary ligands have an important effect on third-strand stabilization of the triplex RNA poly(U)·poly(A)*poly(U) when metal complexes contain the same intercalative ligands.  相似文献   

10.
The binding of a dimeric distamycin analog (Pt–bis–Dst) to poly[d(A–T)]poly[d(A–T)], poly(dA)poly(dT), and duplex O23 with the sequence 5’-GCCAATATATATATATTATTAGG-3’, which occurs at the origin of replication (OriS) of the herpes simplex virus, was studied via UV and CD spectroscopy. The synthetic polyamide differs from the natural antibiotic in having two distamycin moieties that are linked via a glycine cis-diamino platinum group. The Pt–bis–Dst binding to poly[d(A–T)]poly[d(A–T)] and poly(dA)poly(dT) reached saturation at approximately one ligand molecule per eight bp. As the ligand–base pair ratio further increased, the maximum wavelength band tended to shift toward longer wavelengths in the CD spectra of complexes with poly[d(A–T)]poly[d(A–T)] and a shoulder appeared in the 290–310 nm spectral region that was absent from the CD spectra of complexes with lower ligand coverages. At higher ligand–oligonucleotide molar ratios, Pt–bis–Dst could bind to poly[d(A–T)]poly[d(A–T)] in the form of hairpins or associations that result from interactions between the distamycin moieties of two neighbor Pt–bis–Dst molecules. The structures of the complexes were stabilized by interactions between the pirrolcarboxamide moieties of two Pt–bis–Dst molecules absorbed on adjacent overlapping binding sites. The interactions could also be responsible for the concentration-dependent spectral changes that were observed during the formation of a complex between Pt–bis–Dst and poly[d(A–T)]poly[d(A–T)]. Spectral changes were almost absent in the case of Pt–bis–Dst binding to poly(dA)poly(dT). The binding of Pt–bis–Dst to duplex O23 reached saturation at two ligand molecules per duplex, which contained a cluster of 18 AT pairs. At higher molar-concentration ratios, duplex CD spectra underwent changes similar to those that were observed for Pt–bis–Dst binding to poly[d(A–T)]poly[d(A–T)]. Testing Pt–bis–Dst for antiviral activity identified 1.5 μg/mL as a concentration that halved the cytopathic effect of the herpes simplex virus on Vero E6 cells; the selectivity index of antiviral action was 65; cytotoxicity was relatively low. The Pt–bis–Dst concentration that caused the death of approximately half of the cells was estimated at 100 μg/mL.  相似文献   

11.
An HPLC procedure is described for the separation and identification of some hydrosoluble by-products resulting from the hydrolytic degradation of poly(α-hydroxyacid)s having biomedical interest: poly(l-lactide), poly(dl-lactide), poly-(glycolide) and poly(lactide-co-glycolide). Peak identification was performed by comparing the respective retention times with those of pure standards. It was observed that optimum shape and separation of peaks are considerably affected by the composition of the mobile phase, consisting of acetonitrile (A) and a 0.006 M K2HPO4 buffer (B), and, in particular, its pH and A:B ratio, which had to be adjusted to around 5.8 and 75:25 (v/v), respectively. Under the investigated experimental conditions (aqueous suspension, 100°C for 12 h under stirring), poly(l-lactide) is quite stable, poly(glycolide) degrades easily to glycolic acid, whereas poly(dl-lactide) and poly(dl-lactide-co-glycolide) exhibit intermediate behaviour. Upon hydrolytic decomposition, these poly(α-hydroxyacid)s yield not only the corresponding acids, but also their linear dimers and, possibly, trimers, tetramers and higher oligomers.  相似文献   

12.
The analysis of the kinetic data of the B-Z conformational changes induced by salt in sized double-stranded poly[d(G-C)].poly[d(G-C)] and poly[d(G-m5C)].poly[d(G-m5C)] polymers indicated that there exists a salt threshold which reveals some largely, as yet, unrecognised characteristics of the transition. It was observed that there is a direct correlation between the length of the polymer and the rate of the B-Z transition when the salt concentration in the polymer solution is lower than the salt threshold. The correlation is inverse when the salt concentration is higher than the salt threshold. Thus, the molecular mechanism of the B- to Z-DNA transition varies depending on whether the salt concentration is higher or lower than the threshold. In this context, we have found that the contrasting results reported in the literature describing the rate of the B-Z transition are not contradictory but complementary. The finding of a salt threshold leads to the establishment of a relationship between the cooperativity index of the B-Z transition and the polymer chain length. That relationship is dependent on the chemical structure of the polymer but is temperature independent.  相似文献   

13.
Isoquinoline alkaloids and their analogs represent an important class of molecules for their broad range of clinical and pharmacological utility. These compounds are of current interest owing to their low toxicity and excellent chemo preventive properties. These alkaloids can play important role in stabilising the nucleic acid triple helices. The present study has focused on the interaction of five 9-O-(ω-amino) alkyl ether berberine analogs with the DNA triplex poly(dT)·poly(dA)*poly(dT) and the parent duplex poly(dA)·poly(dT) studied using various biophysical techniques. Scatchard analysis of the spectral data indicated that the analogs bind both to the duplex and triplex in a non-cooperative manner in contrast to the cooperative binding of berberine to the DNA triplex. Strong intercalative binding to the DNA triplex structure was revealed from ferrocyanide quenching, fluorescence polarization and viscosity results. Thermal melting studies demonstrated higher stabilization of the Hoogsteen base paired third strand of the DNA triplex compared to the Watson–Crick strand. Circular dichroism studies suggested a stronger perturbation of the DNA triplex conformation by the alkaloid analogs compared to the duplex. The binding was entropy-driven in each case and the entropy contribution to free energy increased as the length of the alkyl side chain increased. The analogs exhibited stronger binding affinity to the triple helical structure compared to the parent double helical structure.  相似文献   

14.
Santra S  Perez JM 《Biomacromolecules》2011,12(11):3917-3927
The development of functional amino acid-based polymeric materials is emerging as a platform to create biodegradable and nontoxic nanomaterials for medical and biotechnology applications. In particular, facile synthetic routes for these polymers and their corresponding polymeric nanomaterials would have a positive impact in the development of novel biomaterials and nanoparticles. However, progress has been hampered by the need to use complex protection-deprotection methods and toxic phase transfer catalysts. In this study, we report a facile, single-step approach for the synthesis of an N-alkylated amino acid as an AB-type functional monomer to generate a novel pseudo-poly(amino acid), without using the laborious multistep, protection-deprotection methods. This synthetic strategy is reproducible, easy to scale up, and does not produce toxic byproducts. In addition, the synthesized amino acid-based polymer is different from conventional linear polymers as the butyl pendants enhance its solubility in common organic solvents and facilitate the creation of hydrophobic nanocavities for the effective encapsulation of hydrophobic cargos upon nanoparticle formation. Within the nanoparticles, we have encapsulated a hydrophobic DiI dye and a therapeutic drug, Taxol. In addition, we have conjugated folic acid as a folate receptor-targeting ligand for the targeted delivery of the nanoparticles to cancer cells expressing the folate receptor. Cell cytotoxicity studies confirm the low toxicity of the polymeric nanoparticles, and drug-release experiments with the Taxol-encapsulated nanoparticles only exhibit cytotoxicity upon internalization into cancer cells expressing the folate receptor. Taken together, these results suggested that our synthetic strategy can be useful for the one-step synthesis of amino acid-based small molecules, biopolymers, and theranostic polymeric nanoagents for the targeted detection and treatment of cancer.  相似文献   

15.
16.
The paper reports the fractionation of functional polystyrenes (PSs) and poly(ethylene oxide)s (PEOs) as well as their block copolymers, by liquid chromatography at the exclusion adsorption transition point (EATP–LC), also called “critical conditions” mode. In this specific elution mode (EATP–LC), the fractionation is only governed by the nature and the number of functions attached to the polymer backbone, independent of the molar mass distribution of the whole sample. Functional polystyrenes (α- and/or α,ω-alcohol-, acetal-, aldehyde- and acidic-PS) could be readily separated from non-functional polystyrenes under various chromatographic conditions. The technique also allowed the fractionation of poly(ethylene oxide)s and PS–PEO block copolymers. In the latter cases, moderately polar columns (grafted silica) and water-based polar eluents were required to obtain a satisfactory fractionation.  相似文献   

17.
Core histones, (H2A,H2B,H3,H4)2, were reconstituted with the synthethic polynucleotides poly(dA-dT)·poly(dA-dT) and poly(dG-dC)·poly(dG-dC) to yield synthetic chromatins containing 200 basepairs per octamer. These synthetic chromatins displayed a 36% decrease in the circular dichroism (CD) peak ellipticity from the value of the polynucleotide free in solution; the poly(dA-dT)·poly(dA-dT)/chromatin showed an increase in the complexity of the thermal denaturation profile compared to that of the polynucleotide. Both the temperature of maximum dhdT for each transition (Tm) and the relative amount of poly(dA-dT)·poly(dA-dT) in the synthetic chromatin melting in each of the four thermal transitions is a function of the ionic strength over the 0–5 mM sodium phosphate range (0.25 mM EDTA, pH 7.0); a shift of material toward higher melting transitions was observed with increasing ionic strength. The CD peak ellipticity value for both synthetic chromatins was ionic strength-independent over the 0–5 mM sodium phosphate range. These results are in contrast to those observed with H1H5 stripped chicken erythrocyte chromatin (Fulmer, A. and Fasman, G.D. (1979) Biopolymers 18, 2875–2891), where an ionic strength dependence was found. Differences in the CD spectra between poly(dA-dT)·poly(dA-dT)/chromatin, poly(dG-dC)·poly(dG-dC)/chromatin and H1H5 stripped chicken erythrocyte chromatin suggest subtle differences in assembly. Finally, the temperature dependence of the CD spectra of poly(dA-dT)·poly(dA-dT)-containing synthetic chromatin, which is similar to that for the polynucleotide, suggests the core histone bound polynucleotide has a large degree of conformational flexibility allowing it to undergo the premelt transition.  相似文献   

18.
Energy optimizations are carried out on packages of Nα-helices of poly(l-alanine) from N = 3−7, starting from an initial arrangement of the helices at the vertices of various polygonal prisms, in view of the possible formation of channel-making bundles in membranes. The results show: that, for each N, a number of stable packages exist; that the presence of one pair (and even two) of adjacent parallel helices in a package is not incompatible with its stability, due to the overcompensation of its unfavorable electrostatic energy by the sum of the corresponding favorable terms for the antiparallel pairs; and that some packages provide ready-made pores in their interior. The energy profile computed for Na+ inside one of the pores (resulting from five helices) shows a favorable energy all the way through, in spite of the methyl groups protruding into the channel. Similarly one water molecule interacts favorably with this pore throughout.  相似文献   

19.
The effects of different oxygen vectors on the synthesis and molecular weight of poly(γ-glutamic acid) (PGA) were investigated in the batch fermentation of Bacillus subtilis NX-2. n-Hexane, n-heptane, and n-hexadecane enhanced the PGA concentration and molecular weight. The PGA concentration reached a maximum of 39.4 ± 0.19 g L?1, and the highest molecular weight obtained was (19.0 ± 0.02) × 105 Da with the addition of 0.3% n-heptane. However, n-dodecane decreased the PGA concentration and molecular weight to final values of 20.1 ± 0.10 g L?1 and (8.4 ± 0.02) × 105 Da, respectively. Analysis of the intracellular nucleotide levels of B. subtilis NX-2 with n-heptane and n-dodecane additives showed that the lowest NADH/NAD+ ratio and ATP levels were obtained with the n-dodecane additives, which can explain the decreased PGA yield and molecular weight. The metabolic flux distribution of B. subtilis NX-2 with n-heptane and n-dodecane additives was also investigated. Flux distribution was primarily directed to the EMP and TCA cycles with n-heptane additives. The flux of 2-oxoglutarate to intracellular glutamate and the flux distribution from extracellular to intracellular glutamate both increased to improve PGA production.  相似文献   

20.
Three plant high expression vectors harboring 25, 50 and 100 deoxyadenylate (dA) residues respectively in 3' untranslated region (3'-UTR) were constructed by inserting poly(dA) sequence into the primary vector containing CaMV 35S promoter doubled with region B and II which is a leader sequence derived from tobacco mosaic virus, within 5'-UTR. Transient expression of chimeric GUS gene in transgenic tobacco (Nicotiana tabacum L. ) mesophyll protoplasts showed that:doubled enhancer, Ω and poly (dA) increasd GUS expression. When both Ω and poly (dA) were present, the level of expression increased further, compared to that when only Ω was present. Moreover, when Ω was present, doubling the length of poly (dA) resulted in a further increase in GUS expression, which suggested a positive relationship between poly(dA) length and the level of expression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号