共查询到20条相似文献,搜索用时 0 毫秒
1.
As with the budding yeast Saccharomyces cerevisiae, the completion of the Schizosaccharomyces pombe genome sequence has opened new opportunities to investigate the functional organization of a eukaryotic cell. These include analysis of gene expression patterns, comprehensive gene knockout and synthetic lethal screens, global protein localization analysis, and direct protein interaction mapping. We describe here the tandem affinity purification or TAP approach combined with DALPC mass spectrometry to identify components of protein complexes as we have applied it to S. pombe. This approach can theoretically be applied to the entire proteome as has been done in S. cerevisiae to gain insight into functional protein assemblies and to elucidate functions of uncharacterized proteins. 相似文献
2.
3.
4.
Tandem affinity purification has become a valuable tool for the isolation of protein complexes. Here we describe the construction and use of a series of plasmid vectors for Gram positive bacteria. The vectors utilize the SPA tag as well as variants containing a 3C rather than the TEV protease site as 3C protease has been shown to work efficiently at the low temperatures (4 degrees C) used to isolate protein complexes. In addition, a further vector incorporates a GST moiety in place of the 3xFLAG of the SPA tag which provides an additional tagging option for situations where SPA binding may be inefficient. The vectors are all compatible with previously constructed fluorescent protein fusion vectors enabling construction of a suite of affinity and fluorescently tagged genes using a single PCR product. 相似文献
5.
6.
Tandem affinity purification (TAP) has been widely used for the analysis of protein complexes. We investigated the parameters of the recently developed TAP method (GS-TAP) and its application in Drosophila. This new tag combination includes two Protein G modules and a streptavidin binding peptide (SBP), separated by one or two TEV protease cleavage sites. We made pMK33-based GS-TAP vectors to allow for generation of stable cell lines using hygromycin selection and inducible expression from a metallothionein promoter, as well as pUAST-based vectors that can be used for inducible expression in flies. Rescue experiments in flies demonstrated that the GS-TAP tag preserves the function of the tagged protein. We have done parallel purifications of proteins tagged with the new GS-TAP tag or with the conventional TAP tag (containing the Protein A and calmodulin binding peptide domains) at the amino terminus, using both cultured cells and embryos. A major difference between the two tags was in the levels of contaminating proteins, which were significantly lower in the GS-TAP purifications. The GS-TAP procedure also resulted in higher yield of the bait protein. Overall, GS-TAP is an improved method of protein complex purification because it provides a superior signal-to-noise ratio of the bait protein relative to contaminants in purified material. 相似文献
7.
One-step affinity purification of the yeast ribosome and its associated proteins and mRNAs 总被引:6,自引:0,他引:6
下载免费PDF全文

We describe a one-step affinity method for purifying ribosomes from the budding yeast Saccharomyces cerevisiae. Extracts from yeast strains expressing only C-terminally tagged Rpl25 protein or overexpressing this protein in the presence of endogenous Rpl25p were used as the starling materials. The purification was specific for tagged 60S subunits, and resulted in the copurification of 80S subunits and polysomes, as well as ribosome-associated proteins and mRNAs. Two of these associated proteins, Mpt4p and Asc1p, were nearly stoichiometrically bound to the ribosome. In addition, the degree of mRNA association with the purified ribosomes was found to reflect the mRNA's translational status within the cell. The one-step purification of ribosome and its associated components from a crude extract should provide an important tool for future structural and biochemical studies of the ribosome, as well as for expression profiling of translated mRNAs. 相似文献
8.
Antibodies to DNA define an important autospecificity that arises in systemic lupus erythematosus (SLE). To elucidate the molecular features that may explain the pathogenesis of SLE, a heterologous system for expression of cloned V genes is often desirable. Here, a single-chain Fv coding domain was constructed by using the heavy- and light-chain V genes of a high-affinity site-directed mutant of the murine anti-dsDNA autoantibody, 3H9. This scFv was joined in frame to the c-jun leucine zipper for dimerization, and to two affinity tags, domain B of the staphylococcal protein A and a pentahistidine peptide, for purification. Dimerization of the scFv was determined by size-exclusion chromatography. The yields of the scFv following affinity purification on IgG agarose or Ni-NTA agarose were compared, and the activities of the resulting protein fractions were determined. A two-step purification of periplasmic extracts on Ni-NTA agarose and IgG agarose, followed by elution with 3.5 M MgCl(2), yielded scFv with the highest specific activity. The final purified material bound DNA by ELISA, electrophoretic mobility shift assay, and immunofluorescence of fixed Hep-2 cells. Antibodies purified in this fashion should have applications in structure/function studies in which it is essential to generate highly purified antigen-combining sites. 相似文献
9.
U Zehavi J C Abrahams R Granoth C L Greenblatt G M Slutzky J El-On 《Zeitschrift für Parasitenkunde (Berlin, Germany)》1983,69(6):695-701
Leishmania species grown in culture excrete a polyanionic, carbohydrate-rich factor (EF) which binds to antibodies produced in rabbits against the parent Leishmania species. EF, previously purified by physical and chemical methods, was purified by affinity chromatography on a Ricinus lectin column. The purified samples were characterised and analysed. The results show a notable proportion of galactose in EF and clarify the reasons for its polyanionic properties. Heterogenicity of EF is demonstrated and discussed. 相似文献
10.
The tandem affinity purification (TAP) method: a general procedure of protein complex purification 总被引:59,自引:0,他引:59
Puig O Caspary F Rigaut G Rutz B Bouveret E Bragado-Nilsson E Wilm M Séraphin B 《Methods (San Diego, Calif.)》2001,24(3):218-229
Identification of components present in biological complexes requires their purification to near homogeneity. Methods of purification vary from protein to protein, making it impossible to design a general purification strategy valid for all cases. We have developed the tandem affinity purification (TAP) method as a tool that allows rapid purification under native conditions of complexes, even when expressed at their natural level. Prior knowledge of complex composition or function is not required. The TAP method requires fusion of the TAP tag, either N- or C-terminally, to the target protein of interest. Starting from a relatively small number of cells, active macromolecular complexes can be isolated and used for multiple applications. Variations of the method to specifically purify complexes containing two given components or to subtract undesired complexes can easily be implemented. The TAP method was initially developed in yeast but can be successfully adapted to various organisms. Its simplicity, high yield, and wide applicability make the TAP method a very useful procedure for protein purification and proteome exploration. 相似文献
11.
The method for purification of biomolecules by a combination of affinity interactions and membrane filtration for separation of unwanted material has been found to be of interest for large-scale work. This study examines the suitability of silica nanoparticles as carriers in the process. Alcohol dehydrogenase and lactate dehydrogenases were chosen as target molecules to be purified. The binding capacity was found to be comparative to what is obtained for high-performance liquid chromatography (HPLC) packing material. Both binding and desorption of the enzymes were found to be effective. The limiting factor of the process was the filtration flow rate. 相似文献
12.
de Marco A 《Nature protocols》2006,1(3):1538-1543
The present purification protocol applies to target proteins that are fused to a double tag, such as NusA-His6, through a linker that includes a protease-recognition sequence. It involves two steps of immobilized metal ion affinity chromatography (IMAC). NusA stabilizes the passenger protein during translation, whereas the His-tag enables affinity purification of the fusion. The eluate resulting from the first IMAC is buffer-exchanged to remove the imidazole and to achieve optimal conditions for the enzymatic cleavage performed by a His-tagged recombinant protease. The digested sample is loaded directly for a second IMAC step and the target protein is selectively recovered in the flow-through. The resin binds residual non-digested fusion protein, double-tagged moiety, protease and any contaminant that bound the affinity resin and was eluted from the first IMAC. The purity of the target protein usually makes a further purification step unnecessary for most of the lab applications. It takes less than 5 hours to purify the protein from a 5 g pellet. 相似文献
13.
Perçin I Sağlar E Yavuz H Aksöz E Denizli A 《International journal of biological macromolecules》2011,48(4):577-582
The aim of this study is to prepare supermacroporous pseudospecific cryogel which can be used for the purification of plasmid DNA (pDNA) from bacterial lysate. N-methacryloyl-(l)-histidine methyl ester (MAH) was chosen as the pseudospecific ligand and/or comonomer. Poly(hydroxyethyl methacrylate-N-methacryloyl-(l)-histidine methyl ester) [PHEMAH] cryogel was produced by free radical polymerization initiated by N,N,N',N'-tetramethylene diamine (TEMED) and ammonium persulfate (APS) pair in an ice bath. Compared with the PHEMA cryogel (50 μg/g polymer), the pDNA adsorption capacity of the PHEMAH cryogel (13,350 μg/g polymer) was improved significantly due to the MAH incorporation into the polymeric matrix. The amount of pDNA bound onto the PHEMAH cryogel disks first increased and then reached a saturation value (i.e., 13,350μg/g) at around 300 μg/ml pDNA concentration. pDNA adsorption amount decreased from 1137 μg/g to 160 μg/g with the increasing NaCl concentration. The maximum pDNA adsorption was achieved at 25 °C. The overall recovery of pDNA was calculated as 90%. The PHEMAH cryogel could be used 3 times without decreasing the pDNA adsorption capacity significantly. The results indicate that the PHEMAH cryogel disks promise high selectivity for pDNA. 相似文献
14.
ceRNAs: miRNA target mimic mimics 总被引:1,自引:0,他引:1
15.
An affinity matrix for the purification of poly(ADP-ribose) glycohydrolase. 总被引:1,自引:0,他引:1
下载免费PDF全文

H Thomassin M K Jacobson J Guay A Verreault N Aboul-ela L Menard G G Poirier 《Nucleic acids research》1990,18(16):4691-4694
The preparation of quantities of poly(ADP-ribose) glycohydrolase sufficient for detailed structural and enzymatic characterizations has been difficult due to the very low tissue content of the enzyme and its lability in late stages of purification. To date, the only purification of this enzyme to apparent homogeneity has involved a procedure requiring 6 column chromatographic steps. Described here is the preparation of an affinity matrix which consists of ADP-ribose polymers bound to dihydroxyboronyl sepharose. An application is described for the purification of poly(ADP-ribose) glycohydrolase from calf thymus in which a single rapid affinity step was used to replace 3 column chromatographic steps yielding enzyme of greater than 90% purity with a 3 fold increase in yield. This matrix should also prove useful for other studies of ADP-ribose polymer metabolism and related clinical conditions. 相似文献
16.
De novo fatty acid synthesis in plants occurs primarily in the plastids and is catalysed by a type-II fatty acid synthase (FAS) in which separate enzymes catalyse sequential reactions. Genes encoding all of the plant FAS components have been identified, following enzyme purification or by homology to Escherichia coli genes, and the structure of a number of the individual proteins determined. There are several lines of biochemical evidence indicating that FAS enzymes form a multi-protein complex and both in vitro and in vivo strategies can be used to investigate the association and interactions between them. To investigate protein interactions in vivo, tandem affinity purification-tagged FAS components are being used to purify complexes from both Arabidopsis thaliana and Synechocystis PCC6803. Here, the development of the tandem affinity purification method, its modification, and its use in plants is described and the experimental results achieved so far are reported. 相似文献
17.
Wyler E Zimmermann M Widmann B Gstaiger M Pfannstiel J Kutay U Zemp I 《RNA (New York, N.Y.)》2011,17(1):189-200
Tandem affinity purification (TAP) is an efficient method for the purification and characterization of large macromolecular complexes. To elucidate the role of specific components of such complexes, it is important to address the question of how loss of a specific factor affects complex composition. Here, we introduce a method that combines TAP of large macromolecular assemblies with inducible shRNA-mediated protein depletion in human somatic cells. As a proof of principle, we have applied this method to the purification of human pre-ribosomal particles. Using inducible expression of ribosome assembly factors as bait proteins, different pre-40S particles could be isolated and characterized, revealing high conservation of the ribosome biogenesis pathway from yeast to human cells. Besides known ribosome maturation factors, C21orf70 was identified as a novel pre-40S component. By combining TAP of pre-40S particles with shRNA-mediated depletion of the pre-40S-associated protein kinase Rio2, we observed that increased levels of the nuclear HEAT-repeat protein Rrp12 are associated with 40S precursors in absence of Rio2. Further analyses revealed that Rrp12 is partially mislocalized to the cytoplasm and trapped on late 40S precursors upon loss of Rio2, and therefore fails to efficiently recycle to the nucleus. Thus, the combination of tandem affinity purification and shRNA induction provided further insights into late cytoplasmic 40S maturation steps, demonstrating the high potential of this method. 相似文献
18.
Grimson A 《Nature methods》2010,7(10):795-797
19.
Vandecaetsbeek I Christensen SB Liu H Van Veldhoven PP Waelkens E Eggermont J Raeymaekers L Møller JV Nissen P Wuytack F Vangheluwe P 《Biochimica et biophysica acta》2011,1813(5):1118-1127
The ubiquitous sarco(endo)plasmic reticulum (SR/ER) Ca(2+) ATPase (SERCA2b) and secretory-pathway Ca(2+) ATPase (SPCA1a) belong both to the P(2A)-type ATPase subgroup of Ca(2+) transporters and play a crucial role in the Ca(2+) homeostasis of respectively the ER and Golgi apparatus. They are ubiquitously expressed, but their low abundance precludes purification for crystallization. We have developed a new strategy for purification of recombinant hSERCA2b and hSPCA1a that is based on overexpression in yeast followed by a two-step affinity chromatography method biasing towards properly folded protein. In a first step, these proteins were purified with the aid of an analogue of the SERCA inhibitor thapsigargin (Tg) coupled to a matrix. Wild-type (WT) hSERCA2b bound efficiently to the gel, but its elution was hampered by the high affinity of SERCA2b for Tg. Therefore, a mutant was generated carrying minor modifications in the Tg-binding site showing a lower affinity for Tg. In a second step, reactive dye chromatography was performed to further purify and concentrate the properly folded pumps and to exchange the detergent to one more suitable for crystallization. A similar strategy was successfully applied to purify WT SPCA1a. This study shows that it is possible to purify functionally active intracellular Ca(2+) ATPases using successive thapsigargin and reactive dye affinity chromatography for future structural studies. This article is part of a Special Issue entitled: 11th European Symposium on Calcium. 相似文献
20.
It has long-been hypothesized that changes in non-protein-coding genes and the regulatory sequences controlling expression could undergo positive selection. Here we identify 402 putative microRNA (miRNA) target sequences that have been mutated specifically in the human lineage and show that genes containing such deletions are more highly expressed than their mouse orthologs. Our findings indicate that some miRNA target mutations are fixed by positive selection and might have been involved in the evolution of human-specific traits. 相似文献