首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Rearrangement of RNA secondary structure is crucial for numerous biological processes. RNA helicases participate in these rearrangements through the unwinding of duplex RNA. We report here that the redox-regulated cyanobacterial RNA helicase, CrhR, is a bona fide RNA helicase possessing both RNA-stimulated ATPase and bidirectional ATP-stimulated RNA helicase activity. The processivity of the unwinding reaction appears to be low, because RNA substrates containing duplex regions of 41 bp are not unwound. CrhR also catalyzes the annealing of complementary RNA into intermolecular duplexes. Uniquely and in contrast to other proteins that perform annealing, the CrhR-catalyzed reactions require ATP hydrolysis. Through a combination of the unwinding and annealing activities, CrhR also catalyzes RNA strand exchange resulting in the formation of RNA secondary structures that are too stable to be resolved by helicase activity. RNA strand exchange most probably occurs through the CrhR-dependent formation and resolution of an RNA branch migration structure. Demonstration that another cyanobacterial RNA helicase, CrhC, does not catalyze annealing indicates that this activity is not a general biochemical characteristic of RNA helicases. Biochemically, CrhR resembles RecA and related proteins that catalyze strand exchange and branch migration on DNA substrates, a characteristic that is reflected in the recently reported structural similarities between these proteins. The data indicate the potential for CrhR to catalyze dynamic RNA secondary structure rearrangements through a combination of RNA helicase and annealing activities.  相似文献   

4.
Linder P  Lasko P 《Cell》2006,125(2):219-221
RNA helicases of the DEAD-box family are involved in essentially all RNA-dependent cellular processes. In this issue of Cell, Sengoku et al. (2006) solve the structure of the DEAD-box protein Vasa in the presence of RNA and a nonhydrolyzable ATP analog and provide important insights into how this family of helicases unwinds RNA.  相似文献   

5.
Cooperative binding of ATP and RNA to DEAD-box helicases induces the closed conformation of their helicase core, with extensive interactions across the domain interface. The bound RNA is bent, and its distortion may constitute the first step towards RNA unwinding. To dissect the role of the conformational change in the helicase core for RNA unwinding, we characterized the RNA-stimulated ATPase activity, RNA unwinding and the propensity to form the closed conformer for mutants of the DEAD box helicase YxiN. The ATPase-deficient K52Q mutant forms a closed conformer upon binding of ATP and RNA, but is deficient in RNA unwinding. A mutation in motif III slows down the catalytic cycle, but neither affects the propensity for the closed conformer nor its global conformation. Hence, the closure of the cleft in the helicase core is necessary but not sufficient for RNA unwinding. In contrast, the G303A mutation in motif V prevents a complete closure of the inter-domain cleft, affecting ATP binding and hydrolysis and is detrimental to unwinding. Possibly, the K52Q and motif III mutants still introduce a kink into the backbone of bound RNA, whereas G303A fails to kink the RNA substrate.  相似文献   

6.
The kinetic constants for cleavage of the tRNA(Tyr)Su3 precursor by the M1 RNA of E. coli RNase P were determined in the absence and presence of the C5 protein under single and multiple (steady state) turnover conditions. The rate constant of cleavage in the reaction catalyzed by M1 RNA alone was 5 times higher in single turnover than in multiple turnovers, suggesting that a rate-limiting step is product release. Cleavage by M1 RNA alone and by the holoenzyme under identical buffer conditions demonstrated that C5 facilitated product release. Addition of different product-like molecules under single turnover reaction conditions inhibited cleavage both in the absence and presence of C5. In the presence of C5, the Ki value for matured tRNA was approximately 20 times higher than in its absence, suggesting that C5 also reduces the interaction between the 5'-matured tRNA and the enzyme. In a growing cell the number of tRNA molecules is approximately 1000 times higher than the number of RNase P molecules. A 100-fold excess of matured tRNA over enzyme clearly inhibited cleavage in vitro. We discuss the possibility that RNase P is involved in the regulation of tRNA expression under certain growth conditions.  相似文献   

7.
The superfamily 1 helicase nonstructural protein 13 (nsp13) is required for SARS-CoV-2 replication. The mechanism and regulation of nsp13 has not been explored at the single-molecule level. Specifically, force-dependent unwinding experiments have yet to be performed for any coronavirus helicase. Here, using optical tweezers, we find that nsp13 unwinding frequency, processivity, and velocity increase substantially when a destabilizing force is applied to the RNA substrate. These results, along with bulk assays, depict nsp13 as an intrinsically weak helicase that can be activated >50-fold by piconewton forces. Such force-dependent behavior contrasts the known behavior of other viral monomeric helicases, such as hepatitis C virus NS3, and instead draws stronger parallels to ring-shaped helicases. Our findings suggest that mechanoregulation, which may be provided by a directly bound RNA-dependent RNA polymerase, enables on-demand helicase activity on the relevant polynucleotide substrate during viral replication.  相似文献   

8.
Kawasaki H  Taira K 《EMBO reports》2002,3(5):443-450
Novel ribozymes that couple the cleavage activity of hammerhead ribozymes with the unwinding activity of RNA helicase eIF4AI were constructed. This leads to extremely efficient cleavage of the target mRNA, regardless of the secondary structure of the RNA, and eliminates one of the major problems: many target sites on the RNA were previously inaccessible to cleavage due to secondary and/or tertiary structure formation. Moreover, libraries of hybrid ribozymes with randomized binding arms were introduced into cells. This procedure made it possible to readily identify the relevant genes associated with phenotype. Specifically, four genes known to be in the Fas-mediated apoptosis pathway were identified along with additional genes. This application of a randomized library of hybrid ribozymes represents a simple, powerful method for the identification of genes associated with specific phenotypes in the post-genome era.  相似文献   

9.
10.
TWINKLE is a nucleus-encoded human mitochondrial (mt)DNA helicase. Point mutations in TWINKLE are associated with heritable neuromuscular diseases characterized by deletions in the mtDNA. To understand the biochemical basis of these diseases, it is important to define the roles of TWINKLE in mtDNA metabolism by studying its enzymatic activities. To this end, we purified native TWINKLE from Escherichia coli. The recombinant TWINKLE assembles into hexamers and higher oligomers, and addition of MgUTP stabilizes hexamers over higher oligomers. Probing into the DNA unwinding activity, we discovered that the efficiency of unwinding is greatly enhanced in the presence of a heterologous single strand-binding protein or a single-stranded (ss) DNA that is complementary to the unwound strand. We show that TWINKLE, although a helicase, has an antagonistic activity of annealing two complementary ssDNAs that interferes with unwinding in the absence of gp2.5 or ssDNA trap. Furthermore, only ssDNA and not double-stranded (ds)DNA competitively inhibits the annealing activity, although both DNAs bind with high affinities. This implies that dsDNA binds to a site that is distinct from the ssDNA-binding site that promotes annealing. Fluorescence anisotropy competition binding experiments suggest that TWINKLE has more than one ssDNA-binding sites, and we speculate that a surface-exposed ssDNA-specific site is involved in catalyzing DNA annealing. We propose that the strand annealing activity of TWINKLE may play a role in recombination-mediated replication initiation found in the mitochondria of mammalian brain and heart or in replication fork regression during repair of damaged DNA replication forks.  相似文献   

11.
Mycobacterial UvrD2 is a DNA-dependent ATPase with 3' to 5' helicase activity. UvrD2 is an atypical helicase, insofar as its N-terminal ATPase domain resembles the superfamily I helicases UvrD/PcrA, yet it has a C-terminal HRDC domain, which is a feature of RecQ-type superfamily II helicases. The ATPase and HRDC domains are connected by a CxxC-(14)-CxxC tetracysteine module that defines a new clade of UvrD2-like bacterial helicases found only in Actinomycetales. By characterizing truncated versions of Mycobacterium smegmatis UvrD2, we show that whereas the HRDC domain is not required for ATPase or helicase activities in vitro, deletion of the tetracysteine module abolishes duplex unwinding while preserving ATP hydrolysis. Replacing each of the CxxC motifs with a double-alanine variant AxxA had no effect on duplex unwinding, signifying that the domain module, not the cysteines, is crucial for function. The helicase activity of a truncated UvrD2 lacking the tetracysteine and HRDC domains was restored by the DNA-binding protein Ku, a component of the mycobacterial NHEJ system and a cofactor for DNA unwinding by the paralogous mycobacterial helicase UvrD1. Our findings indicate that coupling of ATP hydrolysis to duplex unwinding can be achieved by protein domains acting in cis or trans. Attempts to disrupt the M. smegmatis uvrD2 gene were unsuccessful unless a second copy of uvrD2 was present elsewhere in the chromosome, indicating that UvrD2 is essential for growth of M. smegmatis.  相似文献   

12.
p68 RNA helicase, a nuclear RNA helicase, was identified 2 decades ago. The protein plays very important roles in cell development and organ maturation. However, the biological functions and enzymology of p68 RNA helicase are not well characterized. We report the expression and purification of recombinant p68 RNA helicase in a bacterial system. The recombinant p68 is an ATP-dependent RNA helicase. ATPase assays demonstrated that double-stranded RNA (dsRNA) is much more effective than single-stranded RNA in stimulating ATP hydrolysis by the recombinant protein. Consistently, RNA-binding assays showed that p68 RNA helicase binds single-stranded RNA weakly in an ATP-dependent manner. On the other hand, the recombinant protein has very high affinity for dsRNA. Binding of the protein to dsRNA is ATP-independent. The data indicate that p68 may directly target dsRNA as its natural substrate. Interestingly, the recombinant p68 RNA helicase unwinds dsRNA in both 3' --> 5' and 5' --> 3' directions. This is the second example of a Asp-Glu-Ala-Asp (DEAD) box RNA helicase that unwinds RNA duplexes in a bi-directional manner.  相似文献   

13.
Human Suv3 is a unique homodimeric helicase that constitutes the major component of the mitochondrial degradosome to work cooperatively with exoribonuclease PNPase for efficient RNA decay. However, the molecular mechanism of how Suv3 is assembled into a homodimer to unwind RNA remains elusive. Here, we show that dimeric Suv3 preferentially binds to and unwinds DNA–DNA, DNA–RNA, and RNA–RNA duplexes with a long 3′ overhang (≥10 nucleotides). The C‐terminal tail (CTT)‐truncated Suv3 (Suv3ΔC) becomes a monomeric protein that binds to and unwinds duplex substrates with ~six to sevenfold lower activities relative to dimeric Suv3. Only dimeric Suv3, but not monomeric Suv3ΔC, binds RNA independently of ATP or ADP, and is capable of interacting with PNPase, indicating that dimeric Suv3 assembly ensures its continuous association with RNA and PNPase during ATP hydrolysis cycles for efficient RNA degradation. We further determined the crystal structure of the apo‐form of Suv3ΔC, and SAXS structures of dimeric Suv3 and PNPase–Suv3 complex, showing that dimeric Suv3 caps on the top of PNPase via interactions with S1 domains, and forms a dumbbell‐shaped degradosome complex with PNPase. Overall, this study reveals that Suv3 is assembled into a dimeric helicase by its CTT for efficient and persistent RNA binding and unwinding to facilitate interactions with PNPase, promote RNA degradation, and maintain mitochondrial genome integrity and homeostasis.  相似文献   

14.
Lo YH  Liu SW  Sun YJ  Li HW  Hsiao CD 《PloS one》2011,6(12):e29016
Replicative helicases are essential molecular machines that utilize energy derived from NTP hydrolysis to move along nucleic acids and to unwind double-stranded DNA (dsDNA). Our earlier crystal structure of the hexameric helicase from Geobacillus kaustophilus HTA426 (GkDnaC) in complex with single-stranded DNA (ssDNA) suggested several key residues responsible for DNA binding that likely play a role in DNA translocation during the unwinding process. Here, we demonstrated that the unwinding activities of mutants with substitutions at these key residues in GkDnaC are 2-4-fold higher than that of wild-type protein. We also observed the faster unwinding velocities in these mutants using single-molecule experiments. A partial loss in the interaction of helicase with ssDNA leads to an enhancement in helicase efficiency, while their ATPase activities remain unchanged. In strong contrast, adding accessory proteins (DnaG or DnaI) to GkDnaC helicase alters the ATPase, unwinding efficiency and the unwinding velocity of the helicase. It suggests that the unwinding velocity of helicase could be modulated by two different pathways, the efficiency of ATP hydrolysis or protein-DNA interaction.  相似文献   

15.
The non-structural protein 13 (nsp13) of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) is a helicase that separates double-stranded RNA (dsRNA) or DNA (dsDNA) with a 5' → 3' polarity, using the energy of nucleotide hydrolysis. We determined the minimal mechanism of helicase function by nsp13. We showed a clear unwinding lag with increasing length of the double-stranded region of the nucleic acid, suggesting the presence of intermediates in the unwinding process. To elucidate the nature of the intermediates we carried out transient kinetic analysis of the nsp13 helicase activity. We demonstrated that the enzyme unwinds nucleic acid in discrete steps of 9.3 base-pairs (bp) each, with a catalytic rate of 30 steps per second. Therefore the net unwinding rate is ~280 base-pairs per second. We also showed that nsp12, the SARS-CoV RNA-dependent RNA polymerase (RdRp), enhances (2-fold) the catalytic efficiency of nsp13 by increasing the step size of nucleic acid (RNA/RNA or DNA/DNA) unwinding. This effect is specific for SARS-CoV nsp12, as no change in nsp13 activity was observed when foot-and-mouth-disease virus RdRp was used in place of nsp12. Our data provide experimental evidence that nsp13 and nsp12 can function in a concerted manner to improve the efficiency of viral replication and enhance our understanding of nsp13 function during SARS-CoV RNA synthesis.  相似文献   

16.
Vaccinia virus RNA helicase (NPH-II) catalyzes nucleoside triphosphate-dependent unwinding of duplex RNAs containing a single-stranded 3' RNA tail. In this study, we examine the structural features of the nucleic acid substrate that are important for helicase activity. Strand displacement was affected by the length of the 3' tail. Whereas NPH-II efficiently unwound double-stranded RNA substrates with 19- or 11-nucleotide (nt) 3' tails, shortening the 3' tail to 4 nt reduced unwinding by an order of magnitude. Processivity of the helicase was inferred from its ability to unwind a tailed RNA substrate containing a 96-bp duplex region. NPH-II exhibited profound asymmetry in displacing hybrid duplexes composed of DNA and RNA strands. A 34-bp RNA-DNA hybrid with a 19-nt 3' RNA tail was unwound catalytically, whereas a 34-bp DNA-RNA hybrid containing a 19-nt 3' DNA tail was 2 orders of magnitude less effective as a helicase substrate. NPH-II was incapable of displacing a 34-bp double-stranded DNA substrate of identical sequence. 3'-Tailed DNA molecules with 24- or 19-bp duplex regions were also inert as helicase substrates. On the basis of current models for RNA-DNA hybrid structures, we suggest the following explanation for these findings. (i) Unwinding of duplex nucleic acids by NPH-II is optimal when the polynucleotide strand of the duplex along which the enzyme translocates has adopted an A-form secondary structure, and (ii) a B-form secondary structure impedes protein translocation through DNA duplexes.  相似文献   

17.
Tetrapyrroles play fundamental roles in crucial processes including photosynthesis, respiration, and catalysis. In plants, 5-aminolevulinic acid (ALA) is the common precursor of tetrapyrroles. ALA is synthesized from activated glutamate by the enzymes glutamyl-tRNA reductase (GluTR) and glutamate-1-semialdehyde aminotransferase (GSAAT). ALA synthesis is recognized as the rate-limiting step in this pathway. We aimed to explore the contribution of GSAAT to the control of ALA synthesis and the formation of a protein complex with GluTR. In Arabidopsis thaliana, two genes encode GSAAT isoforms: GSA1 and GSA2. A comparison of two GSA knockout mutants with the wild-type revealed the correlation of reduced GSAAT activity and ALA-synthesizing capacity in leaves with lower chlorophyll content. Growth and green pigmentation were more severely impaired in gsa2 than in gsa1, indicating the predominant role of GSAAT2 in ALA synthesis. Interestingly, GluTR accumulated to higher levels in gsa2 than in the wild-type and was mainly associated with the plastid membrane. We propose that the GSAAT content modulates the amount of soluble GluTR available for ALA synthesis. Several different biochemical approaches revealed the GSAAT–GluTR interaction through the assistance of GluTR-binding protein (GBP). A modeled structure of the tripartite protein complex indicated that GBP mediates the stable association of GluTR and GSAAT for adequate ALA synthesis.

A mechanism is described that maintains adequate 5-aminolevulinic acid activity via a tripartite protein complex, representing the rate-limiting step in the synthesis of vital tetrapyrrole pigments.  相似文献   

18.
19.
Helicases unwind dsDNA during replication, repair and recombination in an ATP-dependent reaction. The mechanism for helicase activity can be studied using oligonucleotide substrates to measure formation of single-stranded (ss) DNA from double-stranded (ds) DNA. This assay provides an 'all-or-nothing' readout because partially unwound intermediates are not detected. We have determined conditions under which an intermediate in the reaction cycle of Dda helicase can be detected by trapping a partially unwound substrate. The appearance of this intermediate supports a model in which each ssDNA product interacts with the helicase after unwinding has occurred. Kinetic analysis indicates that the intermediate appears during a slow step in the reaction cycle that is flanked by faster steps for unwinding. These observations demonstrate a complex mechanism containing nonuniform steps for a monomeric helicase. The potential biological significance of such a mechanism is discussed.  相似文献   

20.
Hepatitis C virus (HCV) infects over 170 million persons worldwide. It is the leading cause of liver disease in the U.S. and is responsible for most liver transplants. Current treatments for this infectious disease are inadequate; therefore, new therapies must be developed. Several labs have obtained evidence for a protein complex that involves many of the nonstructural (NS) proteins encoded by the virus. NS3, NS4A, NS4B, NS5A, and NS5B appear to interact structurally and functionally. In this study, we investigated the interaction between the helicase, NS3, and the RNA polymerase, NS5B. Pull-down experiments and surface plasmon resonance data indicate a direct interaction between NS3 and NS5B that is primarily mediated through the protease domain of NS3. This interaction reduces the basal ATPase activity of NS3. However, NS5B stimulates product formation in RNA unwinding experiments under conditions of excess nucleic acid substrate. When the concentrations of NS3 and NS5B are in excess of nucleic acid substrate, NS5B reduces the rate of NS3-catalyzed unwinding. Under pre-steady-state conditions, in which NS3 and substrate concentrations are similar, product formation increased in the presence of NS5B. The increase was consistent with 1:1 complex formed between the two proteins. A fluorescently labeled form of NS3 was used to investigate this interaction through fluorescence polarization binding assays. Results from this assay support interactions that include a 1:1 complex formed between NS3 and NS5B. The modulation of NS3 by NS5B suggests that these proteins may function together during replication of the HCV genome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号