首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stress due to reactive oxygen species (ROS) may lead to neonatal diseases, such as necrotizing enterocolitis and respiratory distress. Enteral supplements for premature infants (PREM) added to human milk (HM) to increase nutrient content may induce lipid oxidation due to free radical formation via Fenton chemistry. We hypothesized that ferrous iron and vitamin C-containing supplements added to HM in vitro cause oxidation of milk fats, affect intracellular redox balance, and induce DNA damage. Lipid peroxidation in HM was measured by FOX-2 and TBARS assays; fatty acid composition of supplemented HM was measured by gas chromatography. Two cell culture bioassays were used for assessing either intracellular oxidative stress or DNA damage: the former involved Caco-2BBe cells, a secondary differentiated cell line, and the latter utilized FHS-74 Int cells, a primary fetal small intestinal culture. Lipid oxidation products of HM increased after the addition of iron alone, iron and vitamin C, or iron and a vitamin C-containing supplement (Trivisol, TVS). A reduced content of mono and polyunsaturated fatty acids in HM was also observed. Iron, not iron+vitamin C, but iron+TVS induced significant intracellular oxidative stress in FHS-74 Int cells. In contrast, iron, either alone or in combination with TVS or vitamin C, increased DNA damage in Caco-2BBE cells. Iron supplementation may increase oxidative stress in PREM infants and should be given separately from vitamin C-containing supplements.  相似文献   

2.
Selected biological effects of 1,4-naphthoquinone, menadione (2-methyl-1,4-naphthoquinone) and structurally related quinones from natural sources - the 5-hydroxy-naphthoquinones juglone, plumbagin and the 2-hydroxy-naphthoquinones lawsone and lapachol - were studied in human keratinocytes (HaCaT). 1,4-naphthoquinone and menadione as well as juglone and plumbagin were highly cytotoxic, strongly induced reactive oxygen species (ROS) formation and depleted cellular glutathione. Moreover, they induced oxidative DNA base damage and accumulation of DNA strand breaks, as demonstrated in an alkaline DNA unwinding assay. Neither lawsone nor lapachol (up to 100 μM) were active in any of these assays. Cytotoxic and oxidative action was paralleled by stimulation of stress signaling: all tested quinones except lawsone and lapachol strongly induced phosphorylation of the epidermal growth factor receptor (EGFR) and the related ErbB2 receptor tyrosine kinase. EGFR activation by plumbagin, juglone and menadione was attenuated by a superoxide dismutase mimetic, indicating that ROS-related mechanisms contribute to EGFR activation by these naphthoquinones.  相似文献   

3.
The effect of oxidants (hydrogen peroxide and juglone) on the growth, respiration, and naphthoquinone synthesis in the fungus Fusarium decemcellulare was studied. The addition of the oxidants to the exponential-phase fungus inhibited cell respiration (either partially or completely, depending on the oxidant concentration), culture growth, and naphthoquinone synthesis. The treatment of fungal cells with nonlethal concentrations of H2O2 (below 0.25 mM) and juglone (below 0.1 mM) induced the resistance of cell respiration to cyanide. The residual respiration in the presence of cyanide could be inhibited by benzohydroxamic acid, indicating the occurrence of alternative oxidase. Increased concentrations of oxidants (0.25 mM juglone and 0.5 mM H2O2) rapidly and irreversibly inhibited cell respiration. These observations suggest that the mitochondrial respiratory chain of fungal cells exposed to oxidative stress is subject to the action of active oxygen species. The treatment of fungal cells with nonlethal concentrations of H2O2 and juglone activated cellular glutathione reductase and glucose-6-phosphate dehydrogenase, which are protective enzymes against oxidative stress.  相似文献   

4.
The effect of oxidants (hydrogen peroxide and juglone) on the growth, respiration, and naphthoquinone synthesis in the fungus Fusarium decemcellulare was studied. The addition of the oxidants to the exponential-phase fungus inhibited cell respiration (either partially or completely, depending on the oxidant concentration), culture growth, and naphthoquinone synthesis. The treatment of fungal cells with nonlethal concentrations of H2O2 (below 0.25 mM) and juglone (below 0.1 mM) induced the resistance of cell respiration to cyanide. The residual respiration in the presence of cyanide could be inhibited by benzohydroxamic acid, indicating the occurrence of alternative oxidase. Increased concentrations of oxidants (0.25 mM juglone and 0.5 mM H2O2) rapidly and irreversibly inhibited cell respiration. These observations suggest that the mitochondrial respiratory chain of fungal cells exposed to oxidative stress is subject to the action of active oxygen species. The treatment of fungal cells with nonlethal concentrations of H2O2 and juglone activated cellular glutathione reductase and glucose-6-phosphate dehydrogenase, which are protective enzymes against oxidative stress.  相似文献   

5.
Accumulated evidence indicates that the interconversion of iron between ferric (Fe3+) and ferrous (Fe2+) can be realized through interaction with reactive oxygen species in the Fenton and Haber–Weiss reactions and thereby physiologically effects redox cycling. The imbalance of iron and ROS may eventually cause tissue damage such as renal proximal tubule injury and necrosis. Many approaches were exploited to ameliorate the oxidative stress caused by the imbalance. (?)-Epigallocatechin-3-gallate, the most active and most abundant catechin in tea, was found to be involved in the protection of a spectrum of renal injuries caused by oxidative stress. Most of studies suggested that EGCG works as an antioxidant. In this paper, Multivariate analysis of the LC–MS data of tea extracts and binding assays showed that the tea polyphenol EGCG can form stable complex with iron through the protein Ngal, a biomarker of acute kidney injury. UV–Vis and Luminescence spectrum methods showed that Ngal can inhibit the chemical reactivity of iron and EGCG through forming an Ngal–EGCG–iron complex. In thinking of the interaction of iron and ROS, we proposed that EGCG may work as both antioxidant and Ngal binding siderphore in protection of kidney from injuries.  相似文献   

6.
Glutathione (GSH) and GSH-dependent enzymes play a key role in cellular detoxification processes that enable organism to cope with various internal and environmental stressors. However, it is often not clear, which components of the complex GSH-metabolism are required for tolerance towards a certain stressor. To address this question, a small scale RNAi-screen was carried out in Caenorhabditis elegans where GSH-related genes were systematically knocked down and worms were subsequently analysed for their survival rate under sub-lethal concentrations of arsenite and the redox cycler juglone. While the knockdown of γ-glutamylcysteine synthetase led to a diminished survival rate under arsenite stress conditions, GSR-1 (glutathione reductase) was shown to be essential for survival under juglone stress conditions. gsr-1 is the sole GSR encoding gene found in C. elegans. Knockdown of GSR-1 hardly affected total glutathione levels nor reduced glutathione/glutathione disulphide (GSH/GSSG) ratio under normal laboratory conditions. Nevertheless, when GSSG recycling was impaired by gsr-1(RNAi), GSH synthesis was induced, but not vice versa. Moreover, the impact of GSSG recycling was potentiated under oxidative stress conditions, explaining the enormous effect gsr-1(RNAi) knockdown had on juglone tolerance. Accordingly, overexpression of GSR-1 was capable of increasing stress tolerance. Furthermore, expression levels of SKN-1-regulated GSR-1 also affected life span of C. elegans, emphasising the crucial role the GSH redox state plays in both processes.  相似文献   

7.
This study demonstrates cytotoxic and genotoxic potential of juglone, a chief constituent of walnut, and its underlying mechanisms against melanoma cells. MTT assay and clonogenic assay were used to study cytotoxicity, micronucleus assay to assess genotoxicity, glutathione (GSH) assay and 2′,7′-dicholorofluorescein diacetate (DCFH-DA) assay to evaluate the oxidative stress induction. Apoptosis/necrosis induction was analysed by flow cytometry. We observed a concentration-dependent decrease in cell survival with a corresponding increase in the lactate dehydrogenase levels. A dose-dependent increase in the frequency of micronucleated binucleate cells indicated the potential of juglone to induce cytogenetic damage in melanoma tumor cells. Moreover, results of the micronuclei study indicated division delay in the proliferating cell population by showing decrease in the cytokinesis blocked proliferation index. Further, juglone-induced apoptosis and necrosis could be demonstrated by oligonucleosomal ladder formation, microscopic analysis, increase in the hypodiploid fraction (sub Go peak in DNA histogram), as well as an increased percentage of AnnexinV(+)/PI(+) cells detected by flow cytometry. A significant concentration-dependent decrease in the glutathione levels and increase in dichlorofluorescein (DCF) fluorescence after juglone treatment confirmed the ability of juglone to generate intracellular reactive oxygen species. The cytotoxic effect of juglone can be attributed to mechanisms including the induction of oxidative stress, cell membrane damage, and a clastogenic action leading to cell death by both apoptosis and necrosis.  相似文献   

8.
9.
Spartina densiflora , an invader cordgrass living in polluted salt marshes of the Odiel estuary (SW Spain), was collected and cultured under controlled laboratory conditions. After acclimation to non-polluted soils for 28 days, both metabolites and enzymes activities used as indicators of oxidative stress were reduced significantly. Then, plants were exposed to 500 and 1000 ppm Fe-ethylenediamine-N,N'-2-hydroxyphenyl acetic acid (EDDHA) for 28 days. Our data demonstrate that iron content in leaves was enhanced by iron exposure. This iron increase caused an enhancement in the concentration of H2O2, hydroperoxides and lipid peroxidation, and a decrease in chlorophyll levels. Thus, iron exposure led to oxidative stress conditions. However, oxidative indicators stabilised after first 2 weeks of exposure, although the highest iron levels in leaves were reached at the end of treatments. Iron exposure induced an enhancement of catalase, ascorbate peroxidase and guaiacol peroxidase activities, together with an increase in total and oxidised ascorbate. This response may be defensive against oxidative stress and thus help to explain why cell oxidative damages were stabilised. Thus, by using a sensitive long-time protocol, iron-dependent oxidative damages may be controlled and even reverted successfully by the activation of the antioxidative defences of S. densiflora . This efficient antioxidative system, rapidly modulated in response to excess iron and other environmental stressors, may account for S. densiflora 's successful adaptation to stress conditions in its habitat.  相似文献   

10.
Iron is an essential micronutrient for all eukaryotic organisms. However, the low solubility of ferric iron has tremendously increased the prevalence of iron deficiency anemia, especially in women and children, with dramatic consequences. Baker''s yeast Saccharomyces cerevisiae is used as a model eukaryotic organism, a fermentative microorganism, and a feed supplement. In this report, we explore the genetic diversity of 123 wild and domestic strains of S. cerevisiae isolated from different geographical origins and sources to characterize how yeast cells respond to elevated iron concentrations in the environment. By using two different forms of iron, we selected and characterized both iron-sensitive and iron-resistant yeast strains. We observed that when the iron concentration in the medium increases, iron-sensitive strains accumulate iron more rapidly than iron-resistant isolates. We observed that, consistent with excess iron leading to oxidative stress, the redox state of iron-sensitive strains was more oxidized than that of iron-resistant strains. Growth assays in the presence of different oxidative reagents ruled out that this phenotype was due to alterations in the general oxidative stress protection machinery. It was noteworthy that iron-resistant strains were more sensitive to iron deficiency conditions than iron-sensitive strains, which suggests that adaptation to either high or low iron is detrimental for the opposite condition. An initial gene expression analysis suggested that alterations in iron homeostasis genes could contribute to the different responses of distant iron-sensitive and iron-resistant yeast strains to elevated environmental iron levels.  相似文献   

11.
Pyridoxal isonicotinoyl hydrazone (PIH) analogues are effective iron chelators in vivo and in vitro, and may be of value for the treatment of secondary iron overload. The sensitivity of Jurkat cells to Fe-chelator complexes was enhanced several-fold by the depletion of the antioxidant glutathione, indicating the role of oxidative stress in their toxicity. K562 cells loaded with eicosapentaenoic acid, a fatty acid particularly susceptible to oxidation, were also more sensitive to the toxic effects of the Fe complexes, and toxicity was proportional to lipid peroxidation. Thus Fe-chelator complexes cause oxidative stress, which may be a major component of their toxicity. As was the case for their Fe complexes, the toxicity of PIH analogues was enhanced by glutathione depletion of Jurkat cells and eicosapentaenoic acid-loading of K562 cells. Thus the toxicity of the chelators themselves is also enhanced by compromised cellular redox status. In addition, the toxicity of the chelators was diminished by culturing Jurkat cells under hypoxic conditions, which may limit the production of the reactive oxygen species that initiate oxidative stress. A significant part of the toxicity of the chelators may be due to intracellular formation of Fe-chelator complexes, which oxidatively destroy the cell.  相似文献   

12.
Neurons, as non-dividing cells, encounter a myriad of stressful conditions throughout their lifespan. In particular, there is increasing evidence that iron progressively accumulates in the brain with age and that iron induced oxidative stress is the cause of several forms of neurodegeneration. Here, we review recent evidence that gives support to the following notions: 1) neuronal iron accumulation leads to oxidative stress and cell death; 2) neuronal survival to iron accumulation associates with decreased expression of the iron import transporter DMT1 and increased expression of the efflux transporter IREG1; and 3) the adaptive process of neurons towards iron-induced oxidative stress includes a marked increase in both the expression of the catalytic subunit of gamma glutamate-cysteine ligase and glutathione. These findings may help to understand aging-related neurodegeneration hallmarks: oxidative damage, functional impairment and cell death.  相似文献   

13.
HbpS is an extracellular oligomeric protein, which has been shown to act in concert with the two-component system SenS-SenR during the sensing of redox stress. HbpS can bind and degrade heme under oxidative stress conditions, leading to a free iron ion. The liberated iron is subsequently coordinated on the protein surface. Furthermore, HbpS has been shown to modulate the phosphorylation state of the sensor kinase SenS as, in the absence of oxidative stress conditions, HbpS inhibits SenS autophosphorylation whereas the presence of heme or iron ions and redox-stressing agents enhances it. Using HbpS wild type and mutants as well as different biochemical and biophysical approaches, we show that iron-mediated oxidative stress induces both secondary structure and overall intrinsic conformational changes within HbpS. We demonstrate in addition that HbpS is oxidatively modified, leading to the generation of highly reactive carbonyl groups and tyrosine-tyrosine bonds. Further examination of the crystal structure and subsequent mutational analyses allowed the identification of the tyrosine residue participating in dityrosine formation, which occurs between two monomers within the octomeric assembly. Therefore, it is proposed that oxidative modifications causing structural and conformational changes are responsible for the control of SenS and hence of the HbpS-SenS-SenR signaling cascade.  相似文献   

14.
Macrophages have a great capacity to take up (eg. by endocytosis and phagocytosis) exogenous sources of iron which could potentially become cytotoxic, particularly following the intralysosomal formation of low-molecular weight, redox active iron, and under conditions of oxidative stress. Following autophago-cytosis of endogenous ferritin/apoferritin, these compounds may serve as chelators of such lysosomal iron and counteract the occurrence of iron-mediated intralysosomal oxidative reactions. Such redox-reactions have been shown to lead to destabilisation of lysosomal membranes and result in leakage of damaging lysosomal contents to the cytosol. In this study we have shown: (i) human monocyte-derived macrophages to accumulate ferritin in response to iron exposure; (ii) iron to destabilise macrophage secondary lysosomes when the cells are exposed to H2O2; and (iii) endocytosed apoferritin to act as a stabiliser of the acidic vacuolar compartment of iron-loaded macrophages. While the endogenous ferritin accumulation which was induced by iron exposure was not sufficient to protect cells from the damaging effects of H2O2, exogenously added apoferritin, as well as the potent iron chelator desferrioxamine, afforded significant protection. It is suggested that intralysosomal formation of haemosiderin, from partially degraded ferritin, is a protective strategy to suppress intralysosomal iron-catalysed redox reactions. However, under conditions of severe macrophage lysosomal iron-overload, induction of ferritin synthesis is not enough to completely prevent the enhanced cytotoxic effects of H2O2.  相似文献   

15.
The apicomplexan parasite Toxoplasma gondii is highly susceptible to oxidative stress caused by tert-butyl-hydroperoxide, juglone, and phenazine methylsulfate with IC(50) in the nanomolar range. Using dichlorofluorescein diacetate, a detector of endogenous oxidative stress, it was shown that juglone and phenazine methylsulfate are potentially toxic to the parasites without affecting the host cells. These results demonstrate that T. gondii is vulnerable to oxidative challenge that results from disruption of its redox balance and so this could be an effective approach to therapeutic intervention. This study has characterized redox active and antioxidant peroxidases belonging to the class of 1-Cys and 2-Cys peroxiredoxins that play crucial roles in maintaining redox balance. The tachyzoite stages of T. gondii express thioredoxin (TgTrx), 1-Cys peroxiredoxin (TgTrx-Px2), and a 2-Cys peroxiredoxin (TgTrx-Px1) and immunofluorescent studies revealed that all three proteins are located in the cytosol of the parasite confirming previous studies on TgTrx-Px1 (Kwok, L.Y., Schluter, D., Clayton, C., and Soldati, D. (2004) Mol. Microbiol. 51, 47-61). TgTrx-Px1 showed K(m) values for H(2)O(2) and tert-butyl hydroperoxide in the nanomolar range, emphasizing the great affinity of the protein for theses substrates. Moreover, the catalytic efficiency of TgTrx-Px1 for these substrates at 10(6)-10(7) M(-1) s(-1) is unusually high, which qualifies the enzyme as an extremely potent antioxidant. Kinetic analyses revealed that TgTrx-Px1 is inhibited by tert-butyl hydroperoxide, and apparent inhibition constants were determined to be between 33 and 35.6 microm depending on the concentration of the non-inhibitory substrate thioredoxin. TgTrx-Px2 protected glutamine synthetase from inactivation by Fe(3+)/DTT, showing that it is an active peroxiredoxin.  相似文献   

16.
The adaptive response of the phytopathogenic fungus Fusarium decemcellulare to the oxidative stress induced by hydrogen peroxide and juglone (5-hydroxy-1,4-naphthoquinone) was studied. At concentrations higher than 1 mM, H2O2 and juglone completely inhibited the growth of the fungus. The 60-min pretreatment of logarithmic-phase cells with nonlethal concentrations of H2O2 (0.25 mM) and juglone (0.1 mM) led to the development of a resistance to high concentrations of these oxidants. The stationary-phase cells were found to be more resistant to the oxidants than the logarithmic-phase cells. The adaptation of fungal cells to H2O2 and juglone was associated with an increase in the activity of cellular catalase and superoxide dismutase, the main enzymes involved in the defense against oxidative stress.  相似文献   

17.
18.
自由基过度引起的氧化应激是多种疾病发生的因素。连翘花黄色素(forsythia flower yellow pigment, FFYP)中含有大量的抗氧化活性物质,但其对氧化应激的抵抗性仍不清楚。本文首先通过化学方法检测FFYP的体外抗氧化活性;用细胞内抗氧化活性(cellular antioxidant activity,CAA)方法检测FFYP细胞内抗氧化活性;然后以秀丽隐杆线虫(Caenorhabditis elegans,C. elegans)为模型,检测FFYP对线虫氧化应激抵抗力及体内抗氧化指标的影响;用Daf 16和Skn 1突变体线虫和qRT PCR实验探究其作用机制。研究结果表明,FFYP具有1,1-二苯基-2-三硝基苯肼(1,1-diphenyl-2-picrylhydrazyl, DPPH)自由基清除能力,铁离子还原能力和活性氧自由基(reactive oxygen species, ROS)清除能力,并且具有浓度依赖性。用500 μmol/L的胡桃醌提供氧化应激压力时,FFYP能显著提高线虫在氧化应激下的寿命,表明FFYP可以提高线虫对氧化应激的抵抗力。进一步研究发现,FFYP可显著降低线虫体内ROS自由基含量,提高超氧化物歧化酶(superoxide dismutase, SOD)和过氧化氢酶(catalase, CAT)活性,增加还原型谷胱甘肽(glutathione, GSH)含量,表明FFYP通过提高线虫体内抗氧化防御系统活性清除自由基来提高线虫对氧化应激的抵抗力。突变体线虫实验显示,FFYP对线虫延长氧化应激下寿命的效应在Skn-1突变体线虫中完全消失,在Daf-16突变体中效应被减弱。qRT-PCR实验也显示,Daf-16和Skn-1靶基因的表达量均被提高。表明FFYP对线虫氧化应激抵抗力提高的作用是通过Daf-16和Skn-1共同作用。这预示着FFYP具有很好的抗氧化及抗应激药用价值,有潜力成为一种新的有生物活性的天然色素。  相似文献   

19.
Frataxin, a small mitochondrial protein linked to the neurodegenerative disease Friedreich ataxia, has recently been proposed as an iron donor for the iron-sulfur cluster assembly. An analogous function has also been attributed to IscA, a key member of the iron-sulfur cluster assembly machinery found in bacteria, yeast, and humans. Here we have compared the iron binding property of IscA and the frataxin ortholog CyaY from Escherichia coli under physiological and oxidative stress conditions. In the presence of the thioredoxin reductase system, which emulates the intracellular redox potential, CyaY fails to bind any iron even at a 10-fold excess of iron in the incubation solution. Under the same physiologically relevant conditions, IscA efficiently recruits iron and transfers the iron for the iron-sulfur cluster assembly in a proposed scaffold IscU. In the presence of hydrogen peroxide, however, IscA completely loses its iron binding activity, whereas CyaY becomes a competent iron-binding protein and attenuates the iron-mediated production of hydroxyl free radicals. Hydrogen peroxide appears to oxidize the iron binding thiol groups in IscA, thus blocking the iron binding in the protein. Once the oxidized thiol groups in IscA are re-reduced with the thioredoxin reductase system, the iron binding activity of IscA is fully restored. On the other hand, hydrogen peroxide has no effect on the iron binding carboxyl groups in CyaY, allowing the protein to bind iron under oxidative stress conditions. The results suggest that IscA is capable of recruiting intracellular iron for the iron-sulfur cluster assembly under normal physiological conditions, whereas CyaY may serve as an iron chaperon to sequester redox active free iron and alleviate cellular oxidative damage under oxidative stress conditions.  相似文献   

20.
Production of minute concentrations of superoxide (O2) and nitrogen monoxide (nitric oxide, NO) plays important roles in several aspects of cellular signaling and metabolic regulation. However, in an inflammatory environment, the concentrations of these radicals can drastically increase and the antioxidant defenses may become overwhelmed. Thus, biological damage may occur owing to redox imbalance—a condition called oxidative and/or nitrosative stress. A complex interplay exists between iron metabolism, O2, hydrogen peroxide (H2O2), and NO. Iron is involved in both the formation and the scavenging of these species. Iron deficiency (anemia) (ID(A)) is associated with oxidative stress, but its role in the induction of nitrosative stress is largely unclear. Moreover, oral as well as intravenous (iv) iron preparations used for the treatment of ID(A) may also induce oxidative and/or nitrosative stress. Oral administration of ferrous salts may lead to high transferrin saturation levels and, thus, formation of non-transferrin-bound iron, a potentially toxic form of iron with a propensity to induce oxidative stress. One of the factors that determine the likelihood of oxidative and nitrosative stress induced upon administration of an iv iron complex is the amount of labile (or weakly-bound) iron present in the complex. Stable dextran-based iron complexes used for iv therapy, although they contain only negligible amounts of labile iron, can induce oxidative and/or nitrosative stress through so far unknown mechanisms. In this review, after summarizing the main features of iron metabolism and its complex interplay with O2, H2O2, NO, and other more reactive compounds derived from these species, the potential of various iron therapies to induce oxidative and nitrosative stress is discussed and possible underlying mechanisms are proposed. Understanding the mechanisms, by which various iron formulations may induce oxidative and nitrosative stress, will help us develop better tolerated and more efficient therapies for various dysfunctions of iron metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号