首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To determine the origin and evolutionary significance of a recently discovered isoform of the estrogen receptor (ERβ), we examined the phylogenetic relationship of ERβ to the well-known α isoform (ERα) and other steroid receptors. Our phylogenetic analyses traced the origin of ERβ to a single duplication event at least 450 million years ago. Since this duplication, the evolution of both ER isoforms has apparently been constrained such that 80% of the amino acid positions in the DNA binding domain (DBD) and 53% of the ligand binding domain (LBD) have remained unchanged. Using the phylogenetic tree, we determined the amount of evolutionary change that had occurred in two ER isoforms. The DBD and the LBD had lower rates of evolutionary change compared to the NH2 terminal domain. However, even with strong selective constraints on the DBD and LBD, our phylogenetic analyses demonstrate two clearly separate phylogenetic histories for ERα and ERβ dating back several hundred million years. The ancient duplication of ER and the parallel evolution of the two ER isoforms suggest that, although ERα and ERβ share a substantial degree of sequence identity, they play unique roles in vertebrate physiology and reproduction. Received: 19 January 1999 / Accepted: 26 May 1999  相似文献   

2.
3.
T. Ohta 《Genetics》1994,138(4):1331-1337
To test the theory that evolution by gene duplication occurs as a result of positive Darwinian selection that accompanies the acceleration of mutant substitutions, DNA sequences of recent duplication were analyzed by estimating the numbers of synonymous and nonsynonymous substitutions. For the troponin C family, at the period of differentiation of the fast and slow isoforms, amino acid substitutions were shown to have been accelerated relative to synonymous substitutions. Comparison of the first exon of α-actin genes revealed that amino acid substitutions were accelerated when the smooth muscle, skeletal and cardiac isoforms differentiated. Analysis of members of the heat shock protein 70 gene family of mammals indicates that heat shock responsive genes including duplicated copies are evolving rapidly, contrary to the cognitive genes which have been evolutionarily conservative. For the α(1)-antitrypsin reactive center, the acceleration of amino acid substitution has been found for gene pairs of recent duplication.  相似文献   

4.
Plant evolution is characterized by frequent genome duplication events. Expansion of habitat resulted in the origin of many novel genes and genome duplication events which in turn resulted in the expansion of many regulatory gene families. The plant-specific FCS-Like Zinc finger (FLZ) gene family is characterized by the presence of a FCS-Like Zinc finger (FLZ) domain which mediates the protein-protein interaction. In this study, we identified that the expansion of FLZ gene family size in different species is correlated with ancestral and lineage-specific whole genome duplication events. The subsequent gene loss found to have a greater role in determining the size of this gene family in many species. However, genomic block duplications played the significant role in the expansion of FLZ gene family in some species. Comparison of Arabidopsis thaliana and Oryza sativa FLZ gene family revealed monocot and dicot specific evolutionary trends. The FLZ genes were found to be under high purifying selection. The spatiotemporal expression analyses of Arabidopsis thaliana FLZ gene family revealed that majority of the members are highly expressed in reproductive organs. FLZ genes were also found to be highly expressed during vegetative-to-reproductive phase transition which is correlated with the proposed role of this gene family in sugar signaling. The comparison of sequence, structural and expression features of duplicated genes identified lineage-specific redundancy and divergence. This extensive evolutionary analysis and expression analysis of Arabidopsis thaliana FLZ genes will pave the way for further functional analysis of FLZ genes.  相似文献   

5.
The vertebrate genome is a result of two rapid and successive rounds of whole genome duplication, referred to as 1R and 2R. Furthermore, teleost fish have undergone a third whole genome duplication (3R) specific to their lineage, resulting in the retention of multiple gene paralogs. The more recent 3R event in teleosts provides a unique opportunity to gain insight into how genes evolve through specific evolutionary processes. In this study we compare molecular activities of vitamin D receptors (VDR) from basal species that diverged at key points in vertebrate evolution in order to infer derived and ancestral VDR functions of teleost paralogs. Species include the sea lamprey (Petromyzon marinus), a 1R jawless fish; the little skate (Leucoraja erinacea), a cartilaginous fish that diverged after the 2R event; and the Senegal bichir (Polypterus senegalus), a primitive 2R ray-finned fish. Saturation binding assays and gel mobility shift assays demonstrate high affinity ligand binding and classic DNA binding characteristics of VDR has been conserved across vertebrate evolution. Concentration response curves in transient transfection assays reveal EC50 values in the low nanomolar range, however maximum transactivational efficacy varies significantly between receptor orthologs. Protein-protein interactions were investigated using co-transfection, mammalian 2-hybrid assays, and mutations of coregulator activation domains. We then combined these results with our previous study of VDR paralogs from 3R teleosts into a bioinformatics analysis. Our results suggest that 1, 25D3 acts as a partial agonist in basal species. Furthermore, our bioinformatics analysis suggests that functional differences between VDR orthologs and paralogs are influenced by differential protein interactions with essential coregulator proteins. We speculate that we may be observing a change in the pharmacodynamics relationship between VDR and 1, 25D3 throughout vertebrate evolution that may have been driven by changes in protein-protein interactions between VDR and essential coregulators.  相似文献   

6.
The Saccharomyces cerevisiae genome sequence, augmented by new data on gene expression and function, continues to yield new findings about eukaryote genome evolution. Analysis of the duplicate gene pairs formed by whole-genome duplication indicates that selection for increased levels of gene expression was a significant factor determining which genes were retained as duplicates and which were returned to a single-copy state, possibly in addition to selection for novel gene functions. Proteome comparisons between worm and yeast show that genes for core metabolic processes are shared among eukaryotes and unchanging in function, while comparisons between different yeast species identify 'orphan' genes as the most rapidly evolving fraction of the proteome. Natural hybridisation among yeast species is frequent, but its long-term evolutionary significance is unknown.  相似文献   

7.
Selective signatures in whole genome can help us understand the mechanisms of selection and target causal variants for breeding program. In present study, we performed Extended Haplotype Homozygosity (EHH) tests to identify significant core regions harboring such signals in Chinese Holstein, and then verified the biological significance of these identified regions based on commonly-used bioinformatics analyses. Results showed a total of 125 significant regions in entire genome containing some of important functional genes such as LEP, ABCG2, CSN1S1, CSN3 and TNF based on the Gene Ontology database. Some of these annotated genes involved in the core regions overlapped with those identified in our previous GWAS as well as those involved in a recently constructed candidate gene database for cattle, further indicating these genes under positive selection maybe underlie milk production traits and other important traits in Chinese Holstein. Furthermore, in the enrichment analyses for the second level GO terms and pathways, we observed some significant terms over represented in these identified regions as compared to the entire bovine genome. This indicates that some functional genes associated with milk production traits, as reflected by GO terms, could be clustered in core regions, which provided promising evidence for the exploitability of the core regions identified by EHH tests. Findings in our study could help detect functional candidate genes under positive selection for further genetic and breeding research in Chinese Holstein.  相似文献   

8.
Teng H  Cai W  Zhou L  Zhang J  Liu Q  Wang Y  Dai W  Zhao M  Sun Z 《PloS one》2010,5(10):e13342

Background

Ionotropic glutamate receptors in the central nervous system play a major role in numerous brain functions including learning and memory in many vertebrate species. NR2 subunits have been regarded as rate-limiting molecules in controlling the optimal N-methyl-D-aspartate (NMDA) receptor''s coincidence-detection property and subsequent learning and memory function across multi-species. However, its evolutionary mode among vertebrate species remains unclear.

Results

With extensive analysis of phylogeny, exon structure, protein domain, paralogon and synteny, we demonstrated that two-round genome duplication generated quartet GRIN2 genes and the third-round fish-specific genome duplication generated extra copies of fish GRIN2 genes. In addition, in-depth investigation has enabled the identification of three novel genes, GRIN2C_Gg, GRIN2D-1_Ol and GRIN2D-2_Tr in the chicken, medaka and fugu genome, respectively. Furthermore, we showed functional divergence of NR2 genes mostly occurred at the first-round duplication, amino acid residues located at the N-terminal Lig_chan domain were responsible for type I functional divergence between these GRIN2 subfamilies and purifying selection has been the prominent natural pressure operating on these diversified GRIN2 genes.

Conclusion and Significance

These findings provide intriguing subjects for testing the 2R and 3R hypothesis and we expect it could provide new insights into the underlying evolution mechanisms of cognition in vertebrate.  相似文献   

9.
Gene duplication plays an important role in the evolution of organisms by allowing functional innovation and the divergence of duplicate genes. Previous studies found two PI-like genes in grass species, suggesting functional divergence between the paralogous copies. Here, we reconstructed the evolutionary history of two PI genes from major lineages of grasses and other monocot species, and demonstrated that two PI genes (PI1 and PI2) arose from a whole genome duplication that occurred in a common ancestor of extant grasses. Molecular evolutionary analyses at the family and tribal levels found strong purifying selection acting on two genes in grasses, consistent with the conserved class B function of the PI genes. Importantly, we detected different patterns of selective relaxation between the duplicated PI genes although no signature of positive selection was found. Likelihood ratio tests revealed that the ω ratio for M domain is significantly higher in PI1 than in PI2 but that for K domain is significantly higher in PI2 than in PI1. These findings imply that complementary selective relaxation occurs in two PI genes after duplication, and provide additional molecular evidence for the subfunctionalization of the duplicated PI genes in grasses.  相似文献   

10.
Whole-genome duplication events (polyploidy events) and gene loss events have played important roles in the evolution of legumes. Here we show that the vast majority of Hsf gene duplications resulted from whole genome duplication events rather than tandem duplication, and significant differences in gene retention exist between species. By searching for intraspecies gene colinearity (microsynteny) and dating the age distributions of duplicated genes, we found that genome duplications accounted for 42 of 46 Hsf-containing segments in Glycine max, while paired segments were rarely identified in Lotus japonicas, Medicago truncatula and Cajanus cajan. However, by comparing interspecies microsynteny, we determined that the great majority of Hsf-containing segments in Lotus japonicas, Medicago truncatula and Cajanus cajan show extensive conservation with the duplicated regions of Glycine max. These segments formed 17 groups of orthologous segments. These results suggest that these regions shared ancient genome duplication with Hsf genes in Glycine max, but more than half of the copies of these genes were lost. On the other hand, the Glycine max Hsf gene family retained approximately 75% and 84% of duplicated genes produced from the ancient genome duplication and recent Glycine-specific genome duplication, respectively. Continuous purifying selection has played a key role in the maintenance of Hsf genes in Glycine max. Expression analysis of the Hsf genes in Lotus japonicus revealed their putative involvement in multiple tissue-/developmental stages and responses to various abiotic stimuli. This study traces the evolution of Hsf genes in legume species and demonstrates that the rates of gene gain and loss are far from equilibrium in different species.  相似文献   

11.
C Li  Y-M Zhang 《Heredity》2011,106(4):633-641
There are two main classes of multi-subunit seed storage proteins, glycinin (11S) and β-conglycinin (7S), which account for approximately 70% of the total protein in a typical soybean seed. The subunits of these two protein classes are encoded by a number of genes. The genomic organization of these genes follows a complex evolutionary history. This research was designed to describe the origin and maintenance of genes in each of these gene families by analyzing the synteny, phylogenies, selection pressure and duplications of the genes in each gene family. The ancestral glycinin gene initially experienced a tandem duplication event; then, the genome underwent two subsequent rounds of whole-genome duplication, thereby resulting in duplication of the glycinin genes, and finally a tandem duplication likely gave rise to the Gy1 and Gy2 genes. The β-conglycinin genes primarily originated through the more recent whole-genome duplication and several tandem duplications. Purifying selection has had a key role in the maintenance of genes in both gene families. In addition, positive selection in the glycinin genes and a large deletion in a β-conglycinin exon contribute to the diversity of the duplicate genes. In summary, our results suggest that the duplicated genes in both gene families prefer to retain similar function throughout evolution and therefore may contribute to phenotypic robustness.  相似文献   

12.
Analysis of the genome sequence of Enterococcus faecalis clinical isolate V583 revealed novel genes encoding surface proteins. Twenty-seven of these proteins, annotated as having unknown functions, possess a putative N-terminal signal peptide and a conserved C-terminal region characterized by a novel conserved domain designated WxL. Proteins having similar characteristics were also detected in other low-G+C-content gram-positive bacteria. We hypothesized that the WxL region might be a determinant of bacterial cell location. This hypothesis was tested by generating protein fusions between the C-terminal regions of two WxL proteins in E. faecalis and a nuclease reporter protein. We demonstrated that the C-terminal regions of both proteins conferred a cell surface localization to the reporter fusions in E. faecalis. This localization was eliminated by introducing specific deletions into the domains. Interestingly, exogenously added protein fusions displayed binding to whole cells of various gram-positive bacteria. We also showed that the peptidoglycan was a binding ligand for WxL domain attachment to the cell surface and that neither proteins nor carbohydrates were necessary for binding. Based on our findings, we propose that the WxL region is a novel cell wall binding domain in E. faecalis and other gram-positive bacteria.  相似文献   

13.
Semyonov J  Park JI  Chang CL  Hsu SY 《PloS one》2008,3(4):e1903
One of the most interesting questions in biology is whether certain pathways have been favored during evolution, and if so, what properties could cause such a preference. Due to the lack of experimental evidence, whether select gene families have been preferentially retained over time after duplication in metazoan organisms remains unclear. Here, by syntenic mapping of nonchemosensory G protein-coupled receptor genes (nGPCRs which represent half the receptome for transmembrane signaling) in the vertebrate genomes, we found that, as opposed to the 8-15% retention rate for whole genome duplication (WGD)-derived gene duplicates in the entire genome of pufferfish, greater than 27.8% of WGD-derived nGPCRs which interact with a nonpeptide ligand were retained after WGD in pufferfish Tetraodon nigroviridis. In addition, we show that concurrent duplication of cognate ligand genes by WGD could impose selection of nGPCRs that interact with a polypeptide ligand. Against less than 2.25% probability for parallel retention of a pair of WGD-derived ligands and a pair of cognate receptor duplicates, we found a more than 8.9% retention of WGD-derived ligand-nGPCR pairs--threefold greater than one would surmise. These results demonstrate that gene retention is not uniform after WGD in vertebrates, and suggest a Darwinian selection of GPCR-mediated intercellular communication in metazoan organisms.  相似文献   

14.
Wolfe K 《Current biology : CB》2004,14(10):R392-R394
Two new genome sequences confirm that a whole genome duplication occurred in an ancestor of Saccharomyces cerevisiae. This left a legacy of about 500 pairs of duplicated genes, many of which contribute to this yeast's ability to ferment glucose anaerobically; a few have been evolving so quickly they retain almost no sequence similarity to each other.  相似文献   

15.
Overnight preincubation of MCF-7 cells with 2 x 10(-10) M estradiol (E2) produces a dramatic reduction of their specific [3H]E2 binding capacity. Scatchard plot analysis revealed that this loss of estrogen receptor (ER) concentration, usually termed "processing", occurs without any significant modification of binding properties of the unprocessed receptors. Direct measurement of ER (ER-EIA from Abbott) gave residual receptor concentrations close to those established by binding assay indicating that processing involves the loss of at least one epitope other than the steroid binding site. Incubation with increasing amounts of E2 (0.1 to 5 x 10(-10) M) resulted in an increasing reduction of binding capacity indicating that the extent of processing is associated with the hormone concentration. Steroidal estrogens other than E2 as well as antiestrogens of the triphenylethylene category behaved similarly in this regard although the latter compounds usually acted only when at higher concentrations. The processing capacity of a large series of ligands was compared with the corresponding binding affinity for ER as assessed by classical competitive inhibition of [3H]E2 binding in both cytosol and whole cells. For steroidal estrogens, a large spectrum of concordant values was found which correlated with the known uterotrophic activity of the compounds. On the contrary, weak estrogen and antiestrogens of the triphenylethylene category displayed low processing capacities which were in the order of magnitude of the binding affinities established in whole cells; these values were considerably lower than the corresponding values measured in the cytosol. These observations are consistent with the concept that the capacity of a ligand to process ER is related to its agonistic activity. They also support our hypothesis (J. steroid Biochem. 25 (1986) 677-682) that assessment of the ability of a ligand to inhibit the binding of [3H]E2 in whole cells provides an estimate of its agonistic activity, an estimate which can not be established in the corresponding cytosol assay.  相似文献   

16.
Fugu genome database enabled us to identify two novel tropomyosin 1 (TPM1) genes through in silico data mining and isolation of their corresponding cDNAs in vivo. The duplicate TPM1 genes in Japanese pufferfish Fugu rubripes suggest that additional an ancient segmental duplication or whole genome duplication occurred in fish lineage, which, like many other reported Fugu genes, showed reduction in genomic size in comparison with their human homologue. Computer analysis predicted that the coiled-coil probabilities, that were thought to be the most major function of TPM, were the same between the two TPM1 isoforms. We confirmed that the tissue expression profiles of the two TPM1 genes differed from each other, which implied that changes in expression pattern could fix duplicated TPM1 genes although the two TPM1 isoforms appear to have similar function.  相似文献   

17.
18.
In MCF-7 breast cancer cells, hydroxytamoxifen (OH-Tam) up-regulates the estrogen receptor (ER) in a form unable to bind [(3)H]estradiol (E(2)). We show here that this property is not restricted to this antiestrogen. [(3)H]E(2) binding assays (whole cell assays, DCC assays on cell extracts) and enzyme immunoassays (Abbott) performed in parallel, establish the permanent presence of such unusual ERs in the absence of any exposure of the cells to a ligand. E(2) and the pure antiestrogen RU 58 668, which down-regulate ER, also decrease [(3)H]E(2) binding. In control cells, these ERs represent about the half of the whole receptor population; they also display a tendency to stabilize within the cell nucleus. Loss of E(2) binding ability appears irreversible, since we failed to label receptor accumulated under OH-Tam with [(3)H]E(2) or [(3)H]tamoxifen aziridine (TAZ). Cycloheximide (CHX), which blocks E(2)-induced down regulation of ER, failed to stabilize [(3)H]E(2) binding (whole cell assay) after an [(3)H]E(2) pulse (1 h), confirming that regulation of E(2) binding and peptide level are related to different regulatory mechanisms. Loss of binding ability could not be ascribed to any ER cleavage as demonstrated by Western blotting with a panel of ER antibodies raised against its various domains (67 kDa ER solely detected). We propose that loss of E(2) binding ability is related to the aging process of the receptor, i.e. it is progressively converted to a form devoted to degradation after it has accomplished its physiological role. Ligands may favor (E(2), RU 58 668) or impede (OH-Tam) this elimination process.  相似文献   

19.
The protein phosphatase 2Cs (PP2Cs) have been demonstrated to act as negative modulators of protein kinase and to participate in stress signal transduction, as well as plant growth and productivity processes. Populus euphratica is so extraordinarily adaptable to abiotic stresses that it is regarded as a potential model plant for exploring resistance mechanisms of woody plants. To gain insight into the functional characteristics of PP2C genes in P. euphratica, 117 non-redundant PeuPP2C-encoding genes were identified from the whole genome. These members were classified into 13 groups (A–M), each of which was relatively conserved in gene structure and protein domain. A total of 39 paralogous pairs were found to be generated by whole genome duplication events, and Ka/Ks analysis indicated that these paralogous pairs had evolved mainly from purifying selection. The cis-acting elements and expression patterns showed that all the PeuPP2Cs were involved in response to single or multiple stresses including drought, salinity, heat, cold, and ABA. Taken together, our results summarized the genome-wide characterization of PeuPP2Cs and their expression profiling across different tissues and under multiple abiotic stresses in P. euphratica. These data provide a foundation to further investigate potential function of PeuPP2Cs in conferring tolerance to various stresses in P. euphratica.  相似文献   

20.
Human genome projects have enabled whole genome mapping and improved our understanding of the genes in humans. However, many unknown genes remain to be functionally characterized. In this study, we characterized human chromosome 4 open reading frame 34 gene (hC4orf34). hC4orf34 was highly conserved from invertebrate to mammalian cells and ubiquitously expressed in the organs of mice, including the heart and brain. Interestingly, hC4orf34 is a novel ER-resident, type I transmembrane protein. Mutant analysis showed that the transmembrane domain (TMD) of hC4orf34 was involved in ER retention. Overall, our results indicate that hC4orf34 is an ER-resident type I transmembrane protein, and might play a role in ER functions including Ca2+ homeostasis and ER stress. [BMB Reports 2014; 47(10): 563-568]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号