首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Foraging in social groups has a number of benefits but can also increase the risk of exploitation. High tendency to shoal may be correlated with groups foraging, although facultatively social fish adjust both shoaling decisions and food resource defence based on intrinsic and extrinsic factors. The main aim of this study was to examine the relationships between shoaling, solitary foraging and aggression, forager tolerance of conspecifics joining at a discovered food patch and forager exploitation of resources discovered by others. We used two intra‐lacustrine three‐spined stickleback morph pairs, lava and mud, and monomorphic morphs from each of lava and mud habitats. The lava morph formed less cohesive shoals, was bolder during solitary foraging, approached and entered an occupied food patch less frequently than the mud morph, suggesting a link between shoaling and the propensity for social foraging. However, shoaling tendency and joiner tolerance were not correlated at a population level. Intralacustrine lava and mud morphs differed more markedly in joiner tolerance than morphs from single habitat lakes, whereas the opposite was true for shoaling tendency. We conclude that, in addition to differentiation in shoaling tendency, the lava and mud morphs differ in social foraging and these variations may act to promote population divergence. © 2014 The Linnean Society of London, Biological Journal of the Linnean Society, 2014, 113 , 194–203.  相似文献   

2.
Chipps SR  Dunbar JA  Wahl DH 《Oecologia》2004,138(1):32-38
Bluegill sunfish (Lepomis macrochirus) are known to diversify into two forms specialized for foraging on either limnetic or littoral prey. Because juvenile bluegills seek vegetative cover in the presence of largemouth bass (Micropterus salmoides) predators, natural selection should favor the littoral body design at size ranges most vulnerable to predation. Yet within bluegill populations, both limnetic and littoral forms occur where vegetation and predators are present. While adaptive for foraging in different environments, does habitat-linked phenotypic variation also influence predator evasiveness for juvenile bluegills? We evaluate this question by quantifying susceptibility to predation for two groups of morphologically distinct bluegills; a limnetic form characteristic of bluegills inhabiting open water areas (limnetic bluegill) and a littoral form characteristic of bluegills inhabiting dense vegetation (littoral bluegill). In a series of predation trials, we found that bluegill behaviors differed in open water habitat but not in simulated vegetation. In open water habitat, limnetic bluegills formed more dense shoaling aggregations, maintained a larger distance from the predator, and required longer amounts of time to capture than littoral bluegill. When provided with simulated vegetation, largemouth bass spent longer amounts of time pursuing littoral bluegill and captured significantly fewer littoral bluegills than limnetic fish. Hence, morphological and behavioral variation in bluegills was linked to differential susceptibility to predation in open water and vegetated environments. Combined with previous studies, these findings show that morphological and behavioral adaptations enhance both foraging performance and predator evasiveness in different lake habitats.  相似文献   

3.
Wright  D.  Rimmer  L. B.  Pritchard  V. L.  Butlin  R. K.  & Krause  J. 《Journal of fish biology》2003,63(S1):258-259
Population differences in anti‐predator behaviour have been demonstrated in several species, although less is known about the genetic basis of these traits. To determine the extent of genetic differences in boldness (defined as exploration of a novel object) and shoaling within and between zebrafish ( Danio rerio ) populations, and to examine the genetic basis of shoaling behaviour in general, we carried out a study that involved laboratory‐raised fish derived from four wild‐caught populations. Controlling for differences in rearing environment, significant inter‐population differences were found in boldness but not shoaling. A larger shoaling experiment was also performed using one of the populations as the basis of a North Carolina type II breeding design (174 fish in total) to estimate heritability of shoaling tendency. A narrow‐sense heritability estimate of 0·40 was obtained, with no apparent dominance effects.  相似文献   

4.
We assessed whether zebrafish, Danio rerio, display inhibitory control using a simple and rapid behavioural test. Zebrafish were exposed to a prey stimulus placed inside a transparent tube, which initially elicited attack behaviour. However, zebrafish showed a rapid reduction in the number of attacks towards the prey, which indicated the ability to inhibit their foraging behaviour. Zebrafish also exhibited mnemonic retention of foraging inhibition, as indicated by a reduced number of attacks in a subsequent exposure to the unreachable prey. The ability to inhibit the foraging behaviour varied across three genetically separated wild-type strains and across different individuals within strains, suggesting that zebrafish show heritable within-species differences in inhibitory control. Our behavioural test might be suitable for screening large zebrafish populations in mutational studies and assessing the effects of pharmacologically active substances on inhibitory control.  相似文献   

5.
Species that cross strong environmental gradients are expected to face divergent selective pressures that can act on sexually‐selected traits. In the present study, we examine the role of hypoxia and carotenoid availability in driving divergence in two sexually‐selected traits, male colour and reproductive behaviour, in the African cichlid Pseudocrenilabrus multicolor victoriae. Low‐dissolved oxygen (DO) (hypoxic) environments are expected to be energetically challenging; given that male nuptial colour expression and courtship displays can be costly, we expected fish in low‐DO versus high‐DO environments to differ in these traits. First, a field survey was used to describe natural variation in male nuptial colour patterns and diet across habitats divergent in DO. Next, using wild‐caught fish from a low‐DO and high‐DO habitat, we tested for differences in reproductive behaviour. Finally, a laboratory rearing experiment was used to quantify the interaction of DO and diet (low‐ versus high‐carotenoid availability) on the expression of male colour during development. In energetically challenging low‐DO environments, fish were more red and, in high‐DO environments, fish were typically brighter and more yellow. The frequency of reproductive displays in fish of low‐DO origin was 75% lower, although this had no consequence for brooding frequency (i.e. both populations produced the same number of broods on average). Our laboratory rearing study showed carotenoid availability to be important in colour production with no direct influence of DO on colour. Additionally, weak patterns of diet variation across wild populations suggest that other factors in combination with diet are contributing to colour divergence.  相似文献   

6.
Animals in urban habitats are often noticeably bold in the presence of humans. Such boldness may arise due to habituation, as urban animals learn, through repeated exposure, that passing humans do not represent a threat. However, there is growing research suggesting that: (1) inherent traits, as opposed to learned behaviour, influence which species invade urban habitats, and (2) individuals exhibit individual personality traits that limit behavioural flexibility, with the possible result that not all individuals would be able to demonstrate an appropriate level of boldness in urban environments. As a result, perhaps only birds with inherently bold personalities could successfully settle in an area of high human disturbance, and further, we might also expect to see the existence of behavioural syndromes, where boldness is correlated with variation in other behavioural traits such as aggression. In this study, we examined boldness and territorial aggression in urban and rural populations of song sparrows. We found that urban birds were bolder towards humans and that urban birds also showed higher levels of territorial aggression. We also found an overall correlation between boldness and territorial aggression, suggesting that urban boldness may be part of a behavioural syndrome. However, we see no correlation between boldness and aggression in the urban population, and thus, more work is needed to determine the mechanisms accounting for high levels of boldness and aggression urban song sparrows.  相似文献   

7.
The ability to learn and remember about the surrounding environment is crucial for the survival of organisms in their natural habitats. Adults of numerous fish species have been shown to display sophisticated behaviour related to learning and memory. This study deals with testing learning abilities among juveniles (10 wks old) of zebrafish (Danio rerio) through a simple task of finding food. We compared the performance of juveniles from two populations, a wild collected from a natural habitat and an aquarium‐bred purchased from a pet shop, reared in bare environment (lacking visual cues). Additionally, we also tested the effect of early habitat enrichment on the performance among juveniles of the aquarium‐bred population. The experiments involved training fishes to solve a simple maze (with a food reward at the end) and testing their memory. Learning was measured based on the time taken to complete the task (performance time) of finding food in the maze‐arena across repeated trials. Our results showed that juveniles from the two populations possessed significantly different learning abilities. There were population differences in exploratory tendency and time taken to accomplish the task. However, when memory was tested based on performance time between training and test day, individuals (from both populations) were found to be poor at memorizing learnt tasks. On the other hand, juveniles (belonging to aquarium‐bred population) reared in spatially complex environments displayed higher rates of learning and were capable of remembering learnt tasks better than their counterparts from bare environments. This study thus demonstrates the importance of rearing conditions and natural ecology in ontogenetic development of learning and memory functions among zebrafish.  相似文献   

8.
Freshwater colonization by threespine stickleback has led to divergence in morphology between ancestral marine and derived freshwater populations, making them ideal for studying natural selection on phenotypes. In an open brackish–freshwater system, we previously discovered two genetically distinct stickleback populations that also differ in geometric shape: one mainly found in the brackish water lagoon and one throughout the freshwater system. As shape and size are not perfectly correlated, the aim of this study was to identify the morphological trait(s) that separated the populations in geometric shape. We measured 23 phenotypes likely to be important for foraging, swimming capacity, and defense against predation. The lateral plate morphs in freshwater displayed few significant changes in trait sizes, but the low plated expressed feeding traits more associated with benthic habitats. When comparing the completely plated genetically assigned populations, the freshwater, the hybrids, the migrants and the lagoon fish, many of the linear traits had different slopes and intercepts in trait‐size regressions, precluding our ability to directly compare all traits simultaneously, which most likely results from low variation in body length for the lagoon and migrant population. We found the lagoon stickleback population to be more specialized toward the littoral zone, displaying benthic traits such as large, deep bodies with smaller eyes compared to the freshwater completely plated morph. Further, the lagoon and migrant fish had an overall higher body coverage of lateral plates compared to freshwater fish, and the dorsal and pelvic spines were longer. Evolutionary constraints due to allometric scaling relationships could explain the observed, overall restricted, differences in morphology between the sticklebacks in this study, as most traits have diversified in common allometric trajectories. The observed differences in foraging and antipredation traits between the fish with a lagoon and freshwater genetic signature are likely a result of genetic or plastic adaptations toward brackish and freshwater environments.  相似文献   

9.
The behaviour and ecology of the zebrafish, Danio rerio   总被引:1,自引:0,他引:1  
The zebrafish Danio rerio, is an important model organism in developmental genetics, neurophysiology and biomedicine, but little is known about its natural ecology and behaviour. It is a small, shoaling cyprinid, native to the flood-plains of the Indian subcontinent, where it is found in shallow, slow-flowing waters. Zebrafish are group spawners and egg scatterers, although females are choosy with respect to sites for oviposition and males defend territories around such sites. Laboratory studies of zebrafish behaviour have encompassed shoaling, foraging, reproduction, sensory perception and learning. These studies are reviewed in relation to the suitability of the zebrafish as a model for studies on cognition and learning, development, behavioural and evolutionary ecology, and behavioural genetics.  相似文献   

10.
Aggression is often positively correlated with other behavioural traits such as boldness and activity levels. Comparisons across populations can help to determine factors that promote the evolution of such traits. We quantified these behaviours by testing the responses of wild-caught poeciliid fish, Brachyrhaphis episcopi, to mirror image stimuli. This species occurs in populations that experience either high or low levels of predation pressure. Previous studies have shown that B. episcopi from low predation environments are less bold than those that occur with many predators. We therefore predicted that fish from high predation populations would be more aggressive and more active than fish from low predation populations. However, we found the opposite - low predation fish approached a mirror and a novel object more frequently than high predation fish suggesting that ‘boldness’ and aggression were higher in low predation populations, and that population-level boldness measures may vary depending on context. When tested individually, low predation fish inspected their mirror image more frequently. Females, but not males, from low predation sites were also more aggressive towards their mirror image. Variation in female aggression may be driven by a trade-off between food availability and predation risk. This suggests that the relationship between aggression and boldness has been shaped by adaptation to environmental conditions, and not genetic constraints.  相似文献   

11.
Habitat structure can impede visibility and movement, resulting in lower resource monopolization and aggression. Consequently, dominant individuals may prefer open habitats to maximize resource gain, or complex habitats to minimize predation risk. We explored the role of dominance on foraging, aggression and habitat choice using convict cichlids (Amatitlania nigrofasciata) in a two‐patch ideal free distribution experiment. Groups of six fish of four distinct sizes first competed for shrimp in one‐patch trials in both an open and complex habitat; half the groups experienced each habitat type first. Following these one‐patch trials, each group then chose between habitat types in a two‐patch trial while competing for food. Finally, each fish underwent an individual behavioural assessment using a battery of “personality” tests to determine if behaviour when alone accurately reflected behaviour within a social context. In the one‐patch trials, dominant fish showed similar food consumption between habitats, but chased more in the complex habitat. In the two‐patch choice trials, dominants preferred and defended the complex habitat, forming an ideal despotic distribution with more than half the fish and competitive weight in the open habitat. Within the groups, individual fish differed in foraging and chasing, with repeatabilities of 0.45 and 0.23 across all treatments. Although a higher foraging rate during the individual assessment predicted foraging rate and use of the complex habitat during the group trials, aggression and boldness tests were not reflective of group behaviour. Across groups, heavier dominants and those with higher foraging rate in the open habitat used the open habitat more, suggesting that both risk and energetic state affect habitat preference in dominant convict cichlids.  相似文献   

12.
Zebrafish form shoals in nature and in the laboratory. The sight of conspecifics has been found reinforcing in zebrafish learning tasks. However, the mechanisms of shoaling, and those of its reinforcing properties, are not known. The dopaminergic system has been implicated in reward among other functions and it is also engaged by drugs of abuse as shown in a variety of vertebrates including zebrafish. The ontogenetic changes in dopamine levels and, to a lesser degree, in serotonin levels, have been found to accompany the maturation of shoaling in zebrafish. Thus, we hypothesized that the dopaminergic system may contribute to shoaling in zebrafish. To test this we employed a D1-receptor antagonist and quantified behavioral responses of our subjects using a social preference (shoaling) paradigm. We found significant reduction of social preference induced by the D1-R antagonist, SCH23390, in the AB strain of zebrafish, an alteration that was not accompanied by changes in motor function or vision. We also detected D1-R antagonist-induced changes in the level of dopamine, DOPAC, serotonin and 5HIAA, respectively, in the brain of AB zebrafish as quantified by HPLC with electrochemical detection. We found the antagonist-induced behavioral changes to be absent and the levels of these neurochemicals to be lower in another zebrafish population, SF, demonstrating naturally occurring genetic variability in these traits. We conclude that this variability may be utilized to unravel the mechanisms of social behavior in zebrafish, a line of research that may be extended to other vertebrates including our own species.  相似文献   

13.
Herbivory can lead to shifts in ecosystem state or changes in ecosystem functioning, and recovery from herbivory is particularly slow in disturbance-sensitive ecosystems such as arctic tundra. Herbivore impacts on ecosystems are variable in space and time due to population fluctuations and selective utilization of habitats; thus there is a need to accurately predict herbivore impacts at the landscape scale. The habitat utilization and extent of disturbance caused by increasing populations of pink-footed geese (Anser brachyrhynchus) foraging in the high arctic tundra of Svalbard were assessed using a predictive model of the population’s habitat use. Pink-footed geese arrive in Svalbard in early spring when they forage for belowground plant parts; this foraging (called grubbing) can cause vegetation loss and soil disturbance. Surveys of the extent and intensity of grubbing were carried out to develop predictive models that were subsequently tested against data collected during the following year from different areas. Both habitat type at a particular point and the amount of preferred fen habitat in the surrounding area were powerful predictors of grubbing likelihood and the developed model correctly classified over 69% of validation observations with an AUC of 0.75. Pink-footed geese showed a strong preference for wetter habitats within low-lying landscapes. Extrapolation of the predictive model across the archipelago showed that a maximum potential area of 2300 km2 (3.8% of the archipelago) could be disturbed by grubbing. Thus, increasing populations of geese may cause large-scale vegetation loss and soil disturbance in arctic ecosystems.  相似文献   

14.
Wu CL  Lin TH  Chang TL  Sun HW  Hui CF  Wu JL 《Transgenic research》2011,20(6):1217-1226
Zebrafish (Danio rerio) is used as a model system for in vivo studies. To expand the research scope of physical, biochemical and physiological studies, a cold-tolerant model of zebrafish was developed. The common carp (Cyprinus carpio) muscle form of creatine kinase (CK, EC 2.7.3.2) can maintain enzymatic activity at a temperature of around 15°C. However, a cold-inducible promoter of zebrafish, hsc 70 (heat shock protein 70 cognate), is able to increase the expression of gene product by 9.8 fold at a temperature of 16°C. Therefore, the carp CK gene was promoted by hsc 70 and transfected into zebrafish embryos. Resulting transgenic zebrafish survived and could maintain its swimming behavior at 13°C, which was not possible with the wild-type zebrafish. The swimming distance of the transgenic fish was 42% greater than that of the wild type at 13°C. This new transgenic fish model is ideal for studies of ectothermal vertebrates in low-temperature environments.  相似文献   

15.
Ultraviolet (UV) cones are photoreceptors that sense light in the range 300–450 nm and are found in the retinas of non-mammalian vertebrates and small mammals. Despite their widespread presence across taxa, the functions that these cones exert in the lives of animals remain largely unknown. In this study, I used the zebrafish lor (lots of rods) mutant, characterized by a diminished UV cone population compared to that of wild-type zebrafish, to test whether its foraging performance differed from that of the wild-type (control). The mean location distance and angle (variables that are reliable indicators of foraging performance) at which control fish detected zooplankton prey were, on average, 24 and 90% greater than corresponding measures for lor fish. Such inferior foraging performance of the mutant could be explained by reduced contrast perception of the prey, resulting from the diminished population of UV cones and associated sensitivity. Thus, UV cones enhance the foraging performance of zebrafish, a crucial ecological function that may explain why small zooplanktivorous fishes retain UV cones throughout their lives.  相似文献   

16.
Foraging distance is a key determinant of colony survival and pollination potential in bumblebees Bombus spp. However this aspect of bumblebee ecology is poorly understood because of the difficulty in locating colonies of these central place foragers. Here, we used a combination of molecular microsatellite analyses, remote sensing and spatial analyses using kernel density estimates to estimate nest location and foraging distances for a large number of wild colonies of two species, and related these to the distribution of foraging habitats across an experimentally manipulated landscape. Mean foraging distances were 755 m for Bombus lapidarius and 775 m for B. pascuorum (using our most conservative estimation method). Colony‐specific foraging distances of both species varied with landscape structure, decreasing as the proportion of foraging habitats increased. This is the first time that foraging distance in wild bumblebees has been shown to vary with resource availability. Our method offers a means of estimating foraging distances in social insects, and informs the scale of management required to conserve bumblebee populations and enhance their pollination services across different landscapes.  相似文献   

17.
Socially reared guppies Poecilia reticulata derived from two wild populations (Upper and Lower Aripo River, Trinidad) showed a significant relationship between body size and shoaling tendency, measured as the proportion of time spent in proximity to a bottle containing conspecifics. Larger females shoaled significantly more than smaller females. Fish from the high-shoaling population (Lower Aripo) showed significantly less shoaling behaviour when reared in isolation. In contrast, low-shoaling fish (Upper Aripo) demonstrated no significant change in their shoaling behaviour in response to social isolation.  相似文献   

18.
Many fish species exhibit size‐assortative shoaling, which is often thought to be driven by predation risk. Recent fieldwork has revealed that guppies (Poecilia reticulata) are more size assorted in high‐predation populations than in low‐predation ones. However, size assortment does nonetheless occur in some low‐predation populations, suggesting that predation is unlikely the sole driving force behind size‐assortment. Here, we investigated in the laboratory the potential role of active choice in size‐assortative shoaling in wild‐caught female guppies originating from two populations of the same river system in Trinidad. Small or large focal females from each population were offered a binary choice of shoaling with either four small female conspecifics or four large ones. Observed shoaling preferences depended on the body size of the focal fish, suggesting phenotype‐mediated conflict over group composition. Large focal fish preferred to shoal with the size‐matched stimulus shoal of large fish. In contrast, small focal fish did not shoal assortatively but also preferred to shoal with larger females. Our results suggest that size‐assortative shoaling in female guppies is likely to be due to factors other than active choice, such as habitat segregation and sexual harassment.  相似文献   

19.
Several traits related to foraging behaviour were assessed in young-of-the-year produced from largemouth bass Micropterus salmoides that had been exposed to four generations of artificial selection for vulnerability to angling. As recreational angling may target foraging ability, this study tested the hypothesis that selection for vulnerability to angling would affect behaviours associated with foraging ecology and prey capture success. Fish selected for low vulnerability to angling captured more prey and attempted more captures than high vulnerability fish. The higher capture attempts, however, ultimately resulted in a lower capture success for low vulnerability fish. Low vulnerability fish also had higher prey rejection rates, marginally shorter reactive distance and were more efficient at converting prey consumed into growth than their high vulnerability counterparts. Selection due to recreational fishing has the potential to affect many aspects of the foraging ecology of the targeted population and highlights the importance of understanding evolutionary effects and how these need to be considered when managing populations.  相似文献   

20.
Behavioral syndromes and the evolution of correlated behavior in zebrafish   总被引:2,自引:0,他引:2  
Studies of "behavioral syndromes" in different populations andspecies of animals can be used to shed light on the underlyingmechanisms of evolution. For example, some personality syndromessuggest the existence of an underlying hormonal link, whereasother relationships between boldness and aggression appear tobe the result of similar selective pressures. Here, we used1 wild-derived and 2 laboratory strains of zebrafish (Daniorerio) to examine relationships among 5 behavioral measures:shoaling, activity level, predator approaches, latency to feedafter a disturbance, and biting to a mirror stimulus. We foundevidence of an activity syndrome, as if underlying metaboliccosts influence variation in multiple forms of behavior. Evidencefor a relationship between boldness and aggression was alsoapparent but depended both on strain and which specific behaviorpatterns were identified as measures of "boldness." Althoughsome comparisons of laboratory and wild-derived strains wereconsistent with a domestication syndrome, others were not. Mostobserved relationships were relatively weak and occasionallyinconsistent, arguing against strong underlying genetic linkagesor pleiotropic effects relating any of the behavioral measures.Instead, it may be more important to study the details of selectivecontext or the long-term impact of linkages between some, butnot all, of a large set of genes influencing complex behavioraltraits. We found profound differences among strains in mostbehavior patterns, but few sex differences. One strain (TM1)was consistently different from the others (SH and Nadia) beingmore social, more likely to approach predators, and taking lesstime to recover from disturbance than were the other 2 strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号