首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Docosahexaenoic acid (DHA) plays an important role in visual and neural development in mammals. In the present study, effect of dietary supplementation with n-3 fatty acids, primarily docosahexaenoic acid (DHA) with high purity, on the fatty acid composition of photoreceptor cells of young rats (fed from 4 weeks) was investigated. DHA in rod outer segment (ROS) membranes was significantly increased in the group of high DHA feeding (9.69% total energy). Other n-3 fatty acids (α-linolenic acid (ALA) and eicosapentaenoic acid (EPA)) included in the diets with DHA (0.95%~5.63% total energy) also significantly increased the proportion of DHA compared with the linoleic acid diet groups. However, the proportions of arachidonic acid (ARA) and other long chain n-6 fatty acids (22:4n6 and 22:5n6) were suppressed in these n-3 fatty acids-fed groups. Phospholipid hydroperoxides in ROS membranes were determined using a highly sensitive analytical technique, chemiluminescence-high performance liquid chromatography (CL-HPLC). There was no increasing tendency in the hydroperoxide levels of ROS membranes containing high content of DHA, and phosphatidylethanolamine hydroperoxide (PEOOH) was much lower than phosphatidylcholine hydroperoxide (PCOOH) under normal light conditions, which implies that DHA supplementation does not much affect the peroxidizability of ROS membranes in vivo. But UV irradiation on separated ROS membranes accelerated the formation of phospholipid hydroperoxides in high DHA feeding rats, and PEOOH was produced more efficiently than PCOOH in vitro.  相似文献   

2.
Docosahexaenoic acid (DHA) plays an important role in visual and neural development in mammals. In the present study, effect of dietary supplementation with n-3 fatty acids, primarily docosahexaenoic acid (DHA) with high purity, on the fatty acid composition of photoreceptor cells of young rats (fed from 4 weeks) was investigated. DHA in rod outer segment (ROS) membranes was significantly increased in the group of high DHA feeding (9.69% total energy). Other n-3 fatty acids (alpha-linolenic acid (ALA) and eicosapentaenoic acid (EPA)) included in the diets with DHA (0.95%-5.63% total energy) also significantly increased the proportion of DHA compared with the linoleic acid diet groups. However, the proportions of arachidonic acid (ARA) and other long chain n-6 fatty acids (22:4n6 and 22:5n6) were suppressed in these n-3 fatty acids-fed groups. Phospholipid hydroperoxides in ROS membranes were determined using a highly sensitive analytical technique, chemiluminescence-high performance liquid chromatography (CL-HPLC). There was no increasing tendency in the hydroperoxide levels of ROS membranes containing high content of DHA, and phosphatidylethanolamine hydroperoxide (PEOOH) was much lower than phosphatidylcholine hydroperoxide (PCOOH) under normal light conditions, which implies that DHA supplementation does not much affect the peroxidizability of ROS membranes in vivo. But UV irradiation on separated ROS membranes accelerated the formation of phospholipid hydroperoxides in high DHA feeding rats, and PEOOH was produced more efficiently than PCOOH in vitro.  相似文献   

3.
The interaction of brain lipids with α-synuclein may play an important role in the pathogenesis of Parkinson disease (PD). Docosahexaenoic acid (DHA) is an abundant fatty acid of neuronal membranes, and it is presents at high levels in brain areas with α-synuclein inclusions of patients with PD. In animal models, an increase of DHA content in the brain induces α-synuclein oligomer formation in vivo. However, it is not clear whether these oligomeric species are the precursors of the larger aggregates found in Lewy bodies of post-mortem PD brains. To characterize these species and to define the role of fatty acids in amyloid formation, we investigated the aggregation process of α-synuclein in the presence of DHA. We found that DHA readily promotes α-synuclein aggregation and that the morphology of these aggregates is dependent on the ratio between the protein and DHA. In the presence of a molar ratio protein/DHA of 1:10, amyloid-like fibrils are formed. These fibrils are morphologically different from those formed by α-synuclein alone and have a less packed structure. At a protein/DHA molar ratio of 1:50, we observe the formation of stable oligomers. Moreover, chemical modifications, methionine oxidations, and protein-lipid adduct formations are induced by increasing concentrations of DHA. The extent of these modifications defines the structure and the stability of aggregates. We also show that α-synuclein oligomers are more toxic if generated in the presence of DHA in dopaminergic neuronal cell lines, suggesting that these species might be important in the neurodegenerative process associated with PD.  相似文献   

4.
Hydroperoxides of amino acid and amino acid residues (tyrosine, cysteine, tryptophan, and histidine) in proteins are formed during oxidative modification induced by reactive oxygen species. Amino acid hydroperoxides are unstable intermediates that can further propagate oxidative damage in proteins. The existing assays (oxidation of ferrous cation and iodometric assays) cannot be used in real-time measurements. In this study, we show that the profluorescent coumarin boronic acid (CBA) probe reacts with amino acid and protein hydroperoxides to form the corresponding fluorescent product, 7-hydroxycoumarin. 7-Hydroxycoumarin formation was catalase-independent. Based on this observation, we have developed a fluorometric, real-time assay that is adapted to a multiwell plate format. This is the first report showing real-time monitoring of amino acid and protein hydroperoxides using the CBA-based assay. This approach was used to detect protein hydroperoxides in cell lysates obtained from macrophages exposed to visible light and photosensitizer (rose bengal). We also measured the rate constants for the reaction between amino acid hydroperoxides (tyrosyl, tryptophan, and histidine hydroperoxides) and CBA, and these values (7–23 m−1 s−1) were significantly higher than that measured for H2O2 (1.5 m−1 s−1). Using the CBA-based competition kinetics approach, the rate constants for amino acid hydroperoxides with ebselen, a glutathione peroxidase mimic, were also determined, and the values were within the range of 1.1–1.5 × 103 m−1 s−1. Both ebselen and boronates may be used as small molecule scavengers of amino acid and protein hydroperoxides. Here we also show formation of tryptophan hydroperoxide from tryptophan exposed to co-generated fluxes of nitric oxide and superoxide. This observation reveals a new mechanism for amino acid and protein hydroperoxide formation in biological systems.  相似文献   

5.
The dissociation of apo- and metal-bound human copper-zinc superoxide dismutase (SOD1) dimers induced by the chaotrope guanidine hydrochloride (GdnHCl) or the reductant Tris(2-carboxyethyl)phosphine (TCEP) has been analyzed using analytical ultracentrifugation. Global fitting of sedimentation equilibrium data under native solution conditions (without GdnHCl or TCEP) demonstrate that both the apo- and metal-bound forms of SOD1 are stable dimers. Sedimentation velocity experiments show that apo-SOD1 dimers dissociate cooperatively over the range 0.5-1.0 M GdnHCl. In contrast, metal-bound SOD1 dimers possess a more compact shape and dissociate at significantly higher GdnHCl concentrations (2.0-3.0 M). Reduction of the intrasubunit disulfide bond within each SOD1 subunit by 5-10 mM TCEP promotes dissociation of apo-SOD1 dimers, whereas the metal-bound enzyme remains a stable dimer under these conditions. The Cys-57 --> Ser mutant of SOD1, a protein incapable of forming the intrasubunit disulfide bond, sediments as a monomer in the absence of metal ions and as a dimer when metals are bound. Taken together, these data indicate that the stability imparted to the human SOD1 dimer by metal binding and the formation of the intrasubunit disulfide bond are mediated by independent molecular mechanisms. By combining the sedimentation data with previous crystallographic results, a molecular explanation is provided for the existence of different SOD1 macromolecular shapes and multiple SOD1 dimeric species with different stabilities.  相似文献   

6.
More than 100 copper/zinc superoxide dismutase 1 (SOD1) genetic mutations have been characterized. These mutations lead to the death of motor neurons in ALS. In its native form, the SOD1 protein is expressed as a homodimer in the cytosol. In vitro studies have shown that SOD1 mutations impair the dimerization kinetics of the protein, and in vivo studies have shown that SOD1 forms aggregates in patients with familial forms of ALS. In this study, we analyzed WT SOD1 and 9 mutant (mt) forms of the protein by non-invasive fluorescence techniques. Using microscopic techniques such as fluorescence resonance energy transfer, fluorescence complementation, image-based quantification, and fluorescence correlation spectroscopy, we studied SOD1 dimerization, oligomerization, and aggregation. Our results indicate that SOD1 mutations lead to an impairment in SOD1 dimerization and, subsequently, affect protein aggregation. We also show that SOD1 WT and mt proteins can dimerize. However, aggregates are predominantly composed of SOD1 mt proteins.  相似文献   

7.
Previous studies suggested that women synthesise docosahexaenoic acid (DHA) more efficiently from their precursors than men. This study investigated the relationship between diet, platelet phospholipids fatty acids and gender. Dietary intake and platelet phosphatidyl-choline (PC) and phosphatidylethanolamine (PE) fatty acids were determined in Caucasian 40 men and 34 women. Absolute and %energy intakes of arachidonic acid (AA), eicosapentaenoic acid (EPA), and DHA, and the ratios of total n-6/n-3 PUFA and linoleic/alpha-linolenic acids did not differ between the sexes. However, women had higher DHA in PC (1.19 vs 1.05 wt%, p<0.05) and PE (3.62 vs 3.21 wt%, p<0.05) than men. Also EPA (1.10 vs 0.93 wt%, p<0.05) was higher in women's PE. Conversely, men had elevated AA and total n-6 fatty acids in PC. The higher platelet DHA levels and lower platelet AA/EPA and AA/DHA ratios in women of child-bearing age compared with men, may lead to less platelet aggregation and vaso-occlusion.  相似文献   

8.
SOD1 and amyotrophic lateral sclerosis: mutations and oligomerization   总被引:1,自引:0,他引:1  
There are about 100 single point mutations of copper, zinc superoxide dismutase 1 (SOD1) which are reported (http://alsod.iop.kcl.ac.uk/Als/index.aspx) to be related to the familial form (fALS) of amyotrophic lateral sclerosis (ALS). These mutations are spread all over the protein. It is well documented that fALS produces protein aggregates in the motor neurons of fALS patients, which have been found to be associated to mitochondria. We selected eleven SOD1 mutants, most of them reported as pathological, and characterized them investigating their propensity to aggregation using different techniques, from circular dichroism spectra to ThT-binding fluorescence, size-exclusion chromatography and light scattering spectroscopy. We show here that these eleven SOD1 mutants, only when they are in the metal-free form, undergo the same general mechanism of oligomerization as found for the WT metal-free protein. The rates of oligomerization are different but eventually they give rise to the same type of soluble oligomeric species. These oligomers are formed through oxidation of the two free cysteines of SOD1 (6 and 111) and stabilized by hydrogen bonds, between beta strands, thus forming amyloid-like structures. SOD1 enters the mitochondria as demetallated and mitochondria are loci where oxidative stress may easily occur. The soluble oligomeric species, formed by the apo form of both WT SOD1 and its mutants through an oxidative process, might represent the precursor toxic species, whose existence would also suggest a common mechanism for ALS and fALS. The mechanism here proposed for SOD1 mutant oligomerization is absolutely general and it provides a common unique picture for the behaviors of the many SOD1 mutants, of different nature and distributed all over the protein.  相似文献   

9.

Background

The present study sought to further investigate the in vitro and in vivo anticancer effects of a representative omega-3 fatty acid, docosahexaenoic acid (DHA), with a focus on assessing the induction of oxidative stress and apoptosis as an important mechanism for its anticancer actions.

Methodology/Principal Findings

In vitro studies showed that DHA strongly reduces the viability and DNA synthesis of MCF-7 human breast cancer cells in culture, and also promotes cell death via apoptosis. Mechanistically, accumulation of reactive oxygen species and activation of caspase 8 contribute critically to the induction of apoptotic cell death. Co-presence of antioxidants or selective inhibition or knockdown of caspase 8 each effectively abrogates the cytotoxic effect of DHA. Using athymic nude mice as an in vivo model, we found that feeding animals the 5% fish oil-supplemented diet for 6 weeks significantly reduces the growth of MCF-7 human breast cancer cells in vivo through inhibition of cancer cell proliferation as well as promotion of cell death. Using 3-nitrotyrosine as a parameter, we confirmed that the fish oil-supplemented diet significantly increases oxidative stress in tumor cells in vivo. Analysis of fatty acid content in plasma and tissues showed that feeding animals a 5% fish oil diet increases the levels of DHA and eicosapentaenoic acid in both normal and tumorous mammary tissues by 329% and 300%, respectively.

Conclusions/Significance

DHA can strongly induce apoptosis in human MCF-7 breast cancer cells both in vitro and in vivo. The induction of apoptosis in these cells is selectively mediated via caspase 8 activation. These observations call for further studies to assess the effectiveness of fish oil as a dietary supplement in the prevention and treatment of human breast cancer.  相似文献   

10.
11.
Mechanistic pathways linking maternal polyunsaturated fatty acid (PUFA) status with gestational length are poorly delineated. This study examined whether inflammation and sleep quality serve as mediators, focusing on the antiinflammatory ω-3 docosahexaenoic acid (DHA; 22:6n3) and proinflammatory ω-6 arachidonic acid (AA; 20:4n6). Pregnant women (n = 135) provided a blood sample and completed the Pittsburgh Sleep Quality Index (PSQI) at 20–27 weeks gestation. Red blood cell (RBC) fatty acid levels were determined by gas chromatography and serum inflammatory markers [interleukin (IL)-6, IL-8, tumor necrosis factor-α, IL-1β, and C-reactive protein] by electrochemiluminescence using high sensitivity kits. Both higher serum IL-8 (95% CI = 0.10,3.84) and poor sleep (95% CI = 0.03,0.28) served as significant mediators linking lower DHA:AA ratios with shorter gestation. Further, a serial mediation model moving from the DHA:AA ratio → sleep → IL-8 → length of gestation was statistically significant (95% CI = 0.02, 0.79). These relationships remained after adjusting for depressive symptoms, age, BMI, income, race, and smoking. No interactions with race were observed in relation to length of gestation as a continuous variable. However, a significant interaction between race and the DHA:AA ratio in predicting preterm birth was observed (p = 0.049); among African Americans only, odds of preterm birth decreased as DHA:AA increased (p = 0.048). These data support a role for both inflammatory pathways and sleep quality in linking less optimal RBC PUFA status with shorter gestation in African American and European American women and suggest that African-Americans have greater risk for preterm birth in the context of a low DHA:AA ratio.  相似文献   

12.
The potential effects of various dietary eicosapentaenoic acid (EPA; 20:5) and docosahexaenoic acid (DHA; 22:6) ratios (1:1, 2:1, and 1:2, respectively) on protein redox states from plasma, kidney, skeletal muscle, and liver were investigated in Wistar rats. Dietary fish oil groups were compared with animals fed soybean and linseed oils, vegetable oils enriched in ω6 linoleic acid (LA; 18:2) and ω3 α-linolenic acid (ALA; 18:3), respectively. Fish oil treatments were effective at reducing the level of total fatty acids in plasma and enriching the plasmatic free fatty acid fraction and erythrocyte membranes in EPA and DHA. A proteomic approach consisting of fluorescein 5-thiosemicarbazide (FTSC) labeling of protein carbonyls, FTSC intensity visualization on 1-DE or 2-DE gels, and protein identification by MS/MS was used for the protein oxidation assessment. Albumin was found to be the most carbonylated protein in plasma for all dietary groups, and its oxidation level was significantly modulated by dietary interventions. Supplementation with an equal EPA:DHA ratio (1:1) showed the lowest oxidation score for plasma albumin, followed in increasing order of carbonylation by 1:2 <2:1 ≈ linseed < soybean. Oxidation patterns of myofibrillar skeletal muscle proteins and cytosolic proteins from kidney and liver also indicated a protective effect on proteins for the fish oil treatments, the 1:1 ratio exhibiting the lowest protein oxidation scores. The effect of fish oil treatments at reducing carbonylation on specific proteins from plasma (albumin), skeletal muscle (actin), and liver (albumin, argininosuccinate synthetase, 3-α-hydroxysteroid dehydrogenase) was remarkable. This investigation highlights the efficiency of dietary fish oil at reducing in vivo oxidative damage of proteins compared to oils enriched in the 18-carbon polyunsaturated fatty acids ω3 ALA and ω6 LA, and such antioxidant activity may differ among different fish oil sources because of variations in EPA/DHA content.  相似文献   

13.
Marine heterotrophic microalgal species which are potentially rich in docosahexaenoic acid (DHA, C22:6n−3) have been found in Taiwan; however, there was a lack of detailed analysis and characterization of these indigenous algae which is needed for the development of commercial applications. Hence, the objective of this study was to screen DHA-rich heterotrophic microalgae species indigenous to Taiwan for commercial purposes. Heterotrophic microalgae from a variety of marine habitats were isolated, cultivated, and then identified according to their 18S rRNA gene sequences and morphological characteristics. A comparison was made of their fatty acid profiles, fatty acid content, and amount of biomass. For the strain with highest DHA yield, the optimal growth conditions were determined in order to establish the best fermentation conditions for scale-up. In this study, 25 heterotrophic microalgal strains were successfully isolated from marine habitats around Taiwan. All of the isolated strains showed a close phylogenic relationship with the Thraustochytriaceae family according to their 18S rRNA gene sequences. GC/MS analysis discerned seven distinctive fatty acid profiles of these strains, with the production of eicosapentaenoic acid (C20:5n−3) ranging from 0.02 to 2.61 mg L−1, and DHA ranging from 0.8 to 18.0 mg L−1. An Aurantiochytrium strain BL10 with high DHA production was subsequently chosen for further manipulation. Under optimal growth conditions it could produce up to 59.0 g of dry biomass per liter of culture, with dry biomass containing 73% total fatty acid and 29% DHA, revealing BL10 as an excellent source of microbial DHA.  相似文献   

14.
Copper binding and X-ray aborption spectroscopy studies are reported on untagged human CCS (hCCS; CCS = copper chaperone for superoxide dismutase) isolated using an intein self-cleaving vector and on single and double Cys to Ala mutants of the hCCS MTCQSC and CSC motifs of domains 1 (D1) and 3 (D3), respectively. The results on the wild-type protein confirmed earlier findings on the CCS-MBP (maltose binding protein) constructs, namely, that Cu(I) coordinates to the CXC motif, forming a cluster at the interface of two D3 polypeptides. In contrast to the single Cys to Ser mutations of the CCS-MBP protein (Stasser, J. P., Eisses, J. F., Barry, A. N., Kaplan, J. H., and Blackburn, N. J. (2005) Biochemistry 44, 3143-3152), single Cys to Ala mutations in D3 were sufficient to eliminate cluster formation and significantly reduce CCS activity. Analysis of the intensity of the Cu-Cu cluster interaction in C244A, C246A, and C244/246A variants suggested that the nuclearity of the cluster was greater than 2 and was most consistent with a Cu4S6 adamantane-type species. The relationship among cluster formation, oligomerization, and metal loading was evaluated. The results support a model in which Cu(I) binding converts the apo dimer with a D2-D2 interface to a new dimer connected by cluster formation at two D3 CSC motifs. The predominance of dimer over tetramer in the cluster-containing species strongly suggests that the D2 dimer interface remains open and available for sequestering an SOD1 monomer. This work implicates the copper cluster in the reactive form and adds detail to the cluster nuclearity and how copper loading affects the oligomerization states and reactivity of CCS for its partner SOD1.  相似文献   

15.
Plant stomata function in innate immunity against bacterial invasion and abscisic acid (ABA) has been suggested to regulate this process. Using genetic, biochemical, and pharmacological approaches, we demonstrate that (i) the Arabidopsis thaliana nine-specific-lipoxygenase encoding gene, LOX1, which is expressed in guard cells, is required to trigger stomatal closure in response to both bacteria and the pathogen-associated molecular pattern flagellin peptide flg22; (ii) LOX1 participates in stomatal defense; (iii) polyunsaturated fatty acids, the LOX substrates, trigger stomatal closure; (iv) the LOX products, fatty acid hydroperoxides, or reactive electrophile oxylipins induce stomatal closure; and (v) the flg22-mediated stomatal closure is conveyed by both LOX1 and the mitogen-activated protein kinases MPK3 and MPK6 and involves salicylic acid whereas the ABA-induced process depends on the protein kinases OST1, MPK9, or MPK12. Finally, we show that the oxylipin and the ABA pathways converge at the level of the anion channel SLAC1 to regulate stomatal closure. Collectively, our results demonstrate that early biotic signaling in guard cells is an ABA-independent process revealing a novel function of LOX1-dependent stomatal pathway in plant immunity.  相似文献   

16.
Yeast species were screened for the incorporation and accumulation of docosahexaenoic acid (DHA) with a yeast-malt medium containing 0.5% free fatty acid prepared from fish oil (DHA, 28% of total fatty acids in fish oil). The most suitable strain was Pichia methanolica HA-32. The optimum cultivation conditions for the accumulation of lipids and incorporation of DHA were as follows: 5% glucose, 20% yeast extract, and 3% free fatty acid in the medium, at pH 6.0 and with incubated at 25°C for 3 days. Under these conditions, about 200 mg of total lipids and 60 mg of DHA were recovered from 1 g of dry cells. The accumulation of DHA in cells increased in conjunction with the amount of yeast extract added to the medium. Vitamin B groups and minerals also had an effect on the accumulation of DHA. Choline and K2HPO4, which caused browning of the medium, promoted the accumulation of DHA in cells.  相似文献   

17.
The synthesis of long chain polyunsaturated fatty acids (LCPUFA), such as eicosapentaenoic acid (EPA; 20:5n-3) and docosahexaenoic acid (DHA; 22:6n-3), involves fatty acyl desaturase and elongase enzymes. The marine fish species southern bluefin tuna (SBT) can accumulate large quantities of omega-3 (n-3) LCPUFA in its flesh but their capacity to synthesize EPA and DHA is uncertain. A cDNA, sbtElovl5, encoding a putative fatty acyl elongase was amplified from SBT liver tissue. The cDNA included an open reading frame (ORF) encoding 294 amino acids. Sequence comparisons and phylogenetic analyses revealed a high level of sequence conservation between sbtElovl5 and fatty acyl elongase sequences from other fish species. Heterologous expression of the sbtElovl5 ORF in Saccharomyces cerevisiae confirmed that it encoded a fatty acyl elongase capable of elongating C18/20 polyunsaturated fatty acid (PUFA) substrates, but not C22 PUFA substrates. For the first time in an Elovl5, the substrate competition occurring in nature was investigated. Higher activity towards n-3 PUFA substrates than omega-6 (n-6) PUFA substrates was exhibited, regardless of substrate chain length. The sbtElovl5 preferentially elongated 18:4n-3 and 18:3n-6 rather than 20:5n-3 and 20:4n-6. The sbtElovl5 enzyme also elongated saturated and monounsaturated fatty acids.  相似文献   

18.
Serum amyloid A (SAA) reduces fat deposition in adipocytes and hepatoma cells. Human SAA1 mRNA is increased by docosahexaenoic acid (DHA) treatment in human cells. These studies asked whether DHA decreases fat deposition through SAA1 and explored the mechanisms involved. We demonstrated that DHA increased human SAA1 and C/EBPβ mRNA expression in human hepatoma cells, SK-HEP-1. Utilizing a promoter deletion assay, we found that a CCAAT/enhancer-binding protein β (C/EBPβ)-binding site in the SAA1 promoter region between −242 and −102 bp was critical for DHA-mediated SAA1 expression. Mutation of the putative C/EBPβ-binding site suppressed the DHA-induced SAA1 promoter activity. The addition of the protein kinase A inhibitor H89 negated the DHA-induced increase in C/EBPβ protein expression. The up-regulation of SAA1 mRNA and protein by DHA was also inhibited by H89. We also demonstrated that DHA increased protein kinase A (PKA) activities. These data suggest that C/EBPβ is involved in the DHA-regulated increase in SAA1 expression via PKA-dependent mechanisms. Furthermore, the suppressive effect of DHA on triacylglycerol accumulation was abolished by H89 in SK-HEP-1 cells and adipocytes, indicating that DHA also reduces lipid accumulation via PKA. The observation of increased SAA1 expression coupled with reduced fat accumulation mediated by DHA via PKA suggests that SAA1 is involved in DHA-induced triacylglycerol breakdown. These findings provide new insights into the complicated regulatory network in DHA-mediated lipid metabolism and are useful in developing new approaches to reduce body fat deposition and fatty liver.  相似文献   

19.
Adiponectin, a hormone secreted from adipocytes, has been shown to protect against development of insulin resistance, ischemia–reperfusion injury, and inflammation. Adiponectin assembles into multiple oligomeric isoforms: trimers, hexamers and several higher molecular weight (HMW) species. Of these, the HMW species are selectively decreased during the onset of type 2 diabetes. Despite the critical role of HMW adiponectin in insulin responsiveness, its assembly process is poorly understood. In this report, we investigated the role of divalent cations in adiponectin assembly. Purified adiponectin 18mers, the largest HMW species, did not collapse to smaller oligomers after treatment with high concentrations of EDTA. However, treatment with EDTA or another chelator DTPA inhibited the oligomerization of 18mers from trimers in vitro. Zn2+ specifically increased the formation of 18mers when compared with Cu2+, Mg2+, and Ca2+. Distribution of adiponectin oligomers secreted from zinc chelator TPEN-treated rat adipocytes skewed toward increased proportions of hexamers and trimers. While we observed presence of zinc in adiponectin purified from calf serum, the role of zinc in disulfide bonding between oligomers was examined because the process is critical for 18mer assembly. Surprisingly, Zn2+ inhibited disulfide bond formation early in the oligomerization process. We hypothesize that initial decreases in disulfide formation rates could allow adiponectin subunits to associate before becoming locked in fully oxidized conformations incapable of further oligomerization. These data demonstrate that zinc stimulates oligomerization of HMW adiponectin and possibly other disulfide-dependent protein assembly processes.  相似文献   

20.
Seven strains of marine microbes producing a significant amount of docosahexaenoic acid (DHA; C22:6, n-3) were screened from seawater collected in coastal areas of Japan and Fiji. They accumulate their respective intermediate fatty acids in addition to DHA. There are 5 kinds of polyunsaturated fatty acid (PUFA) profiles which can be described as (1) DHA/docosapentaenoic acid (DPA; C22:5, n-6), (2) DHA/DPA/eicosapentaenoic acid (EPA; C20:5, n-3), (3) DHA/EPA, (4) DHA/DPA/EPA/arachidonic acid (AA; C20:4, n-6), and (5) DHA/DPA/EPA/AA/docosatetraenoic acid (C22:4, n-6). These isolates are proved to be new thraustochytrids by their specific insertion sequences in the 18S rRNA genes. The phylogenetic tree constructed by molecular analysis of 18S rRNA genes from the isolates and typical thraustochytrids shows that strains with the same PUFA profile form each monophyletic cluster. These results suggest that the C20-22 PUFA profile may be applicable as an effective characteristic for grouping thraustochytrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号