首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sleep disorders negatively affect cognition and health. Recent evidence has indicated that chromatin remodeling via histone acetylation regulates cognitive function. This study aimed to investigate the possible roles of histone acetylation in sleep deprivation (SD)-induced cognitive impairment. Results of the Morris water maze test showed that 3 days of SD can cause spatial memory impairment in Wistar rats. SD can also decrease histone acetylation levels, increase histone deacetylase 2 (HDAC2) expression, and decrease histone acetyltransferase (CBP) expression. Furthermore, SD can reduce H3 and H4 acetylation levels in the promoters of the brain-derived neurotrophic factor (Bdnf) gene and thus significantly downregulate BDNF expression and impair the activity of key BDNF signaling pathways (pCaMKII, pErk2, and pCREB). However, treatment with the HDAC inhibitor trichostatin A attenuated all the negative effects induced by SD. Therefore, BDNF and its histone acetylation regulation may play important roles in SD-induced spatial memory impairment, whereas HDAC inhibition possibly confers protection against SD-induced impairment in spatial memory and hippocampal functions.  相似文献   

2.
Many in vitro findings suggest that isoflurane exposure might accelerate the process of Alzheimer Disease (AD); however, no behavioral evidence exists to support this theory. In the present study, we hypothesized that exposure of APP/PS1 transgenic mice to isoflurane during mid-adulthood, which is the pre-symptomatic phase of amyloid beta (Abeta) deposition, would alter the progression of AD. Seven-month-old Tg(APPswe,PSEN1dE9)85Dbo/J transgenic mice and their wild-type littermates were exposed to 1.1% isoflurane for 2 hours per day for 5 days. Learning and memory ability was tested 48 hours and 5 months following isoflurane exposure using the Morris Water Maze and Y maze, respectively. Abeta deposition and oligomers in the hippocampus were measured by immunohistochemistry or Elisa 5 months following isoflurane exposure. We found that the performance of both the transgenic and wild-type mice in the Morris Water Maze significantly improved 48 hours following isoflurane exposure. The transgenic mice made significantly fewer discrimination errors in the Y maze following isoflurane exposure, and no differences were found between wild-type littermates 5 months following isoflurane exposure. For the transgenic mice, the Abeta plaque and oligomers in the hippocampus was significantly decreased in the 5 months following isoflurane exposure. In summary, repeated isoflurane exposure during the pre-symptomatic phase not only improved spatial memory in both the APP/PS1 transgenic and wild-type mice shortly after the exposure but also prevented age-related decline in learning and memory and attenuated the Abeta plaque and oligomers in the hippocampus of transgenic mice.  相似文献   

3.
Recent chronobiological studies found significant correlation between lack of clock function and metabolic abnormalities. We previously showed that clock gene expressions were dampened in the peripheral tissues of obese and diabetic ob/ob mice. However, the molecular mechanism of the disturbance remained to be determined. In this study, we demonstrated for the first time that acetylation levels of histone H3 lysine 9 (H3K9) at the promoter regions of clock genes, such as Dbp, Per2, and Bmal1, in the adipose tissue of ob/ob mice were significantly reduced compared with those of its control C57BL/6J mice. Treatment with histone deacetylase (HDAC) inhibitors increased Dbp, but not Per2 or Bmal1, mRNA expression in adipose tissue, and it decreased blood glucose in these animals. In addition, 2-deoxyglucose uptake activity was significantly suppressed by silencing Dbp expression in cultured adipocytes. These results suggest that reduced H3K9 acetylation and subsequent decreased mRNA expression of the Dbp gene in adipose tissue are involved in the mechanism of development of abnormal glucose metabolism in ob/ob mice. (Author correspondence: akiofuji@jichi.ac.jp ).  相似文献   

4.
Recent chronobiological studies found significant correlation between lack of clock function and metabolic abnormalities. We previously showed that clock gene expressions were dampened in the peripheral tissues of obese and diabetic ob/ob mice. However, the molecular mechanism of the disturbance remained to be determined. In this study, we demonstrated for the first time that acetylation levels of histone H3 lysine 9 (H3K9) at the promoter regions of clock genes, such as Dbp, Per2, and Bmal1, in the adipose tissue of ob/ob mice were significantly reduced compared with those of its control C57BL/6J mice. Treatment with histone deacetylase (HDAC) inhibitors increased Dbp, but not Per2 or Bmal1, mRNA expression in adipose tissue, and it decreased blood glucose in these animals. In addition, 2-deoxyglucose uptake activity was significantly suppressed by silencing Dbp expression in cultured adipocytes. These results suggest that reduced H3K9 acetylation and subsequent decreased mRNA expression of the Dbp gene in adipose tissue are involved in the mechanism of development of abnormal glucose metabolism in ob/ob mice. (Author correspondence: )  相似文献   

5.
High concentrations of arsenic, which can be occasionally found in drinking water, have been recognized as a global health problem. Exposure to arsenic can disrupt spatial memory; however, the underlying mechanism remains unclear. In the present study, we tested whether exercise could interfere with the effect of arsenic exposure on the long-term memory (LTM) of object recognition in mice. Arsenic (0, 1, 3, and 10 mg/ kg, i.g.) was administered daily for 12 weeks. We found that arsenic at dosages of 1, 3, and 10 mg/kg decreased body weight and increased the arsenic content in the brain. The object recognition LTM (tested 24 h after training) was disrupted by 3 mg/ kg and 10 mg/ kg, but not 1 mg/ kg arsenic exposure. Swimming exercise also prevented LTM impairment induced by 3 mg/ kg, but not with 10 mg/ kg, of arsenic exposure. The expression of brain-derived neurotrophic factor (BDNF) and phosphorylated cAMP-response element binding protein (pCREB) in the CA1 and dentate gyrus areas (DG) of the dorsal hippocampus were decreased by 3 mg/ kg and 10 mg/ kg, but not by 1 mg/ kg, of arsenic exposure. The decrease in BDNF and pCREB in the CA1 and DG induced by 3 mg/ kg, but not 10 mg/ kg, of arsenic exposure were prevented by swimming exercise. Arsenic exposure did not affect the total CREB expression in the CA1 or DG. Taken together, these results indicated that swimming exercise prevented the impairment of object recognition LTM induced by arsenic exposure, which may be mediated by BDNF and CREB in the dorsal hippocampus.  相似文献   

6.
组蛋白乙酰化与癌症   总被引:17,自引:0,他引:17  
由于组蛋白被修饰所引起的染色质结构的改变,在真核生物基因表达调控中发挥着重要的作用,这些修饰主要包括甲基化、乙酰化、磷酸化和泛素化等,其中组蛋白乙酰化尤为重要.组蛋白乙酰转移酶(HAT)和组蛋白去乙酰化酶(HDAC)参与决定组蛋白乙酰化状态.HAT通常作为多亚基辅激活物复合体的一部分,催化组蛋白乙酰化,导致染色质结构的松散、激活转录;而HDAC是多亚基辅抑制物复合体的一部分,使组蛋白去乙酰化,导致染色质集缩,并抑制基因的转录. 编码这些酶的基因染色体易位易于导致急性白血病的发生.另一方面,已经确定了一些乙酰化修饰酶的基因在染色体上的位置,它们尤其倾向定位于染色体的断裂处.综述了HAT和HDAC参与的组蛋白乙酰化与癌症发生之间关系的最新进展,以期进一步阐明组蛋白乙酰化修饰酶的生物学功能以及它们在癌症发生过程中的作用.  相似文献   

7.
组蛋白甲基化与乙酰化作为共价修饰的两种不同方式,参与许多生物学过程,并在基因表达调控中有重要作用.探讨组蛋白甲基化、乙酰化以及二者之间的关系,对认识疾病相关基因功能有重要意义,并可进一步了解基因转录的表观遗传学调控机制.  相似文献   

8.
We studied the effects of a prolongued exposure to a strong (1.0 Tesla) static and uniform magnetic field upon the open field behaviour and body weight of weaning mice. We observed a marked reduction in the exploratory activity of mice exposed to the field relative to that of control animals kept in similar surroundings, and handled in the same way as the exposed mice. One week of continuous exposure to a 1.0 T field significantly reduces peripheral square entries (p<0.01) as well as rearings (p<0.05), but has no effect on body weight. Our findings agree with the suggestion that a strong magnetic field may act as stressing agent.  相似文献   

9.
组蛋白乙酰化在转录调节中的作用   总被引:2,自引:0,他引:2  
组蛋白乙酰化对染色质结构有重要影响,与特定位点的基因活化有直接联系,是转录调节的重要方式,在细胞生长、分化、衰老过程中起重要作用.  相似文献   

10.
11.

Background

Circulating subclinical lipopolysaccharide (LPS) occurs in health and disease. Ingesting high fatty meals increases LPS that cause metabolic endotoxemia. Subclinical LPS in periodontal disease may impair endothelial function. The heart may be targeted as cardiac cells express TLR4, the LPS receptor. It was hypothesized that recurrent exposure to subclinical LPS increases mortality and causes cardiac fibrosis.

Methods

C57Bl/6 mice were injected with intraperitoneal saline (control), low dose LPS (0.1 or 1 mg/kg), or moderate dose LPS (10 or 20 mg/kg), once a week for 3 months. Left ventricular (LV) function (echocardiography), hemodynamics (tail cuff pressure) and electrocardiograms (telemetry) were measured. Cardiac fibrosis was assessed by picrosirius red staining and LV expression of fibrosis related genes (QRT-PCR). Adult cardiac fibroblasts were isolated and exposed to LPS.

Results

LPS injections transiently increased heart rate and blood pressure (<6 hours) and mildly decreased LV function with full recovery by 24 hours. Mice tolerated weekly LPS for 2–3 months with no change in activity, appearance, appetite, weight, blood pressure, LV function, oximetry, or blood chemistries. Mortality increased after 60–90 days with moderate, but not low dose LPS. Arrhythmias occurred a few hours before death. LV collagen fraction area increased dose-dependently from 3.0±0.5% (SEM) in the saline control group, to 5.6±0.5% with low dose LPS and 9.7±0.9% with moderate dose LPS (P<0.05 moderate vs low dose LPS, and each LPS dose vs control). LPS increased LV expression of collagen Iα1, collagen IIIα1, MMP2, MMP9, TIMP1, periostin and IL-6 (P<0.05 moderate vs low dose LPS and vs control). LPS increased α-SMA immunostaining of myofibroblasts. LPS dose-dependently increased IL-6 in isolated adult cardiac fibroblasts.

Conclusions

Recurrent exposure to subclinical LPS increases mortality and induces cardiac fibrosis.  相似文献   

12.
Kang  Wenbin  Lu  Dihan  Yang  Xiaoyu  Ma  Wudi  Chen  Xi  Chen  Keyu  Xu  Xuanxian  Zhou  Xue  Zhou  Lihua  Feng  Xia 《Neurochemical research》2020,45(9):1986-1996

Numerous studies have shown that the inhaled general anesthetic sevoflurane imposes toxicity on the central nervous system during the developmental period but the underlying mechanisms remain unclear. Neuropeptide Y (NPY) was reported to have important neuroprotective effects, which can attenuate neuronal loss under pathological conditions. However, the effects of NPY on sevoflurane-induced hippocampal neuronal apoptosis have not been investigated. In this study, postnatal day 7 (PND7) Sprague–Dawley rats and primary cultured cells separated from hippocampi were exposed to sevoflurane (2.4% for 4 h) and the NPY expression levels after treatment were analyzed. Furthermore, neuronal apoptosis assay was conducted via immunofluorescence staining of cleaved caspase-3 and flow cytometry after exogenous NPY administration to PND7 rats as well as cultured hippocampal neurons to elucidate the role of NPY in sevoflurane-induced neurotoxicity. Our results showed the level of NPY gradually decreased within 24 h after sevoflurane exposure in both the hippocampus of PND7 rats and cultured hippocampal neurons, but not in cultured astrocytes. In the exogenous NPY pretreatment study, the proportion of cleaved caspase-3 positive cells in the CA1 region of the hippocampus was increased significantly at 24 h after sevoflurane treatment, while NPY pretreatment could reduce it. Similarly, NPY could also reverse the apoptogenic effect of sevoflurane on cultured neurons. Herein, our results showed that sevoflurane caused a significant decrease in NPY expression, whereas exogenous NPY supplementation could reduce sevoflurane-induced hippocampal neuronal apoptosis both in vivo and in vitro.

  相似文献   

13.
目的:建立新生大鼠吸入麻醉模型并探讨吸入麻醉药异氟醚对其海马凋亡的影响。方法:Penlon Prima SP麻醉机、异氟醚挥发罐及自制带进出气口的麻醉小室。共55只7日龄的SD大鼠用于实验。将其中35只大鼠随机分为7组(n=5)。实验组(Ⅰ-Ⅵ组)异氟醚挥发罐刻度分别为0.125%,0.25%,0.5%,1%,1.5%,2%;新生大鼠置于自制密封麻醉小室内,分别通入含上述异氟醚浓度的混合气体。对照组(第Ⅶ组)给予未混合异氟醚的30%的氧气。将小室安放于37℃恒温箱内。调节气体流量2L/min。实验组于通入气体5,10,15,30,90,180,360 min(T1-7)时于小室出口处抽取10mL气体,采用气相色谱法测定麻醉小室内异氟醚浓度。于通入气体360 min(T7)自新生大鼠左心室采血行血气分析;另取SD大鼠20只,随机分为对照组(C组,n=10),1.5%异氟醚组(I组,n=10),按上述方法建立异氟醚吸入麻醉模型,麻醉结束后2h处死大鼠,采用免疫组织化学法观察C组和I组大鼠大脑海马区Active caspase-3的表达。结果:①麻醉小室出口异氟醚浓度(Y)与麻醉机挥发罐异氟醚浓度(X)的直线回归方程为Y=1.5472X-0.0575(r=0.9993)。②血气分析结果显示:Ⅰ-Ⅵ组与Ⅶ组血气分析组间差异无统计学意义(P0.05)。③免疫组化结果显示:与C组相比,I组大鼠海马Active caspase-3明显增加,差异有统计学意义(P0.05)。结论:通过麻醉机、异氟醚挥发罐及自制密封带进出气口的麻醉小室成功建立了新生大鼠异氟醚麻醉模型;为进一步研究异氟醚及相关吸入麻醉药对突触发生期的神经毒性提供了实验基础。  相似文献   

14.
15.
Wen  Jieqiong  Xu  Jing  Mathena  R. Paige  Choi  Jun H.  Mintz  C. David 《Neurochemical research》2021,46(6):1577-1588
Neurochemical Research - General anesthetics (GAs) may cause disruptions in brain development, and the effect of GA exposure in the setting of pre-existing neurodevelopmental disease is unknown. We...  相似文献   

16.
17.
Exposure to radiation during fetal development induces testicular germ cell tumors (TGCT) and reduces spermatogenesis in mice. However, whether DNA damaging chemotherapeutic agents elicit these effects in mice remains unclear. Among such agents, cyclophosphamide (CP) is currently used to treat breast cancer in pregnant women, and the effects of fetal exposure to this drug manifested in the offspring must be better understood to offer such patients suitable counseling. The present study was designed to determine whether fetal exposure to CP induces testicular cancer and/or gonadal toxicity in 129 and in 129.MOLF congenic (L1) mice. Exposure to CP on embryonic days 10.5 and 11.5 dramatically increased TGCT incidence to 28% in offspring of 129 mice (control value, 2%) and to 80% in the male offspring of L1 (control value 33%). These increases are similar to those observed in both lines of mice by radiation. In utero exposure to CP also significantly reduced testis weights at 4 weeks of age to ∼70% of control and induced atrophic seminiferous tubules in ∼30% of the testes. When the in utero CP-exposed 129 mice reached adulthood, there were significant reductions in testicular and epididymal sperm counts to 62% and 70%, respectively, of controls. In female offspring, CP caused the loss of 77% of primordial follicles and increased follicle growth activation. The results indicate that i) DNA damage is a common mechanism leading to induction of testicular cancer, ii) increased induction of testis cancer by external agents is proportional to the spontaneous incidence due to inherent genetic susceptibility, and iii) children exposed to radiation or DNA damaging chemotherapeutic agents in utero may have increased risks of developing testis cancer and having reduced spermatogenic potential or diminished reproductive lifespan.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号