首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
p-formaldehyde-promoted membrane vesiculation of preiodinated cultures lead to the release of surface proteins of about 68 kd in normal and transformed rat liver epithelial cells and rat fibroblasts, concurrent with a marked decrease in surface-associated fibronectin. Membrane vesiculation in the presence of soybean trypsin inhibitor permitted the detection of an 18 kd surface protein in membrane vesicles and the increased expression of a 70 kd external component in normal but not in transformed epithelial cells.Our results show that the membrane vesiculation process is associated both with the release and selective degradation of specific cell surface proteins in a process which may involve surface protease activation. Our data also suggest the potential of the chemical vesiculation process as a probe to monitor differences in surface topography between different cell types.  相似文献   

2.
During incubation of intact human erythrocytes with sonicated dimyristoylphosphatidylcholine (DMPC) vesicles, the cells change their discoid morphology to form echinocytes and finally give rise to the release of membrane vesicles. In this process, the red cell membrane accumulates DMPC and loses up to 15% of its cholesterol. On the other hand, replacement of 25% of the endogenous phosphatidylcholine species by DMPC without affecting the cholesterol level of the erythrocytes can be achieved by incubation with DMPC/cholesterol (1:1, mol/mol) sonicated vesicles in the presence of the phosphatidylcholine-specific phospholipid-transfer protein from bovine liver. This replacement also gives rise to an echinocytic cell morphology, but no membrane vesiculation can be observed. However, the vesiculation process can as yet be initiated upon a subsequent decrease of the cholesterol level, by incubation of those modified cells in the presence of sonicated vesicles of pure egg phosphatidylcholine. Incubation of native erythrocytes with pure egg phosphatidylcholine vesicles, on the other hand, results in cholesterol depletion, but does neither induce the formation of echinocytes nor the release of membrane vesicles. Cellular ATP levels are not affected during these incubations. From these results, it can be concluded that a decrease in cholesterol content of the erythrocyte membrane is essential for the DMPC-induced vesiculation of those cells.  相似文献   

3.
To study the effect of sickling on dimyristoylphosphatidylcholine (DMPC)-induced vesiculation, sickle (SS) red blood cells were incubated with sonicated suspensions of DMPC under either room air or nitrogen. Like normal red cells, when sickle cells were incubated with DMPC under oxygenated conditions, incorporation of DMPC into the erythrocyte membrane occurred, followed by echinocytic shape transformation and subsequent release of membrane vesicles. On the other hand, when SS cells were induced to sickle by deoxygenation, DMPC-induced vesiculation of these cells was dramatically reduced. However, upon reoxygenation, release of vesicles from these sickle erythrocytes occurred immediately. When SS cells were incubated under hypertonic (500 mosM) and deoxygenated conditions (where hemoglobin polymerization occurs but red cells do not show the typical sickle morphology), a similar decrease in the extent of vesiculation was observed. Experiments with radiolabelled lipid vesicles indicated that incorporation of DMPC into erythrocyte membranes occurred in all cases and therefore was not the limiting factor in the reduction of vesiculation in deoxygenated SS cells. Taken together, these results indicate that cellular viscosity and membrane rigidity, both of which are influenced by hemoglobin polymerization, are two important factors in process of vesicle release from sickle erythrocytes.  相似文献   

4.
The shedding of plasma membrane vesicles has been shown to result from exposure of monolayer cell cultures to formaldehyde and other sulfhydryl blocking agents. Incubation of cells in concentrations of these agents as low as 5 to 10 mM for intervals as brief as fifteen minutes is effective (Scott, 1976). Plasma membrane vesiculation has been shown to be an energy-dependent process that requires Ca++ and physiological temperature. Following plasma membrane vesiculation, cell monolayers appear intact by phase microscopy and show only slight evidence of cell injury by electron microscopy. In view of these observations, the question has been raised whether plasma membrane vesiculation is compatible with continued cell growth and metabolism. The experiments described in this paper were designed to answer these questions. We pulse exposed 3T3 mouse embryo cells to concentrations of formaldehyde, between 2.5 and 250 mM, for intervals 15, 30 or 60 min. Cell momolayers were then washed in a variety of different media in an attempt to reverse the effect of formaldehyde on cells. Cell monolayers were thereafter assayed for the shedding of plasma membrane vesicles and for their ability to transport 2-deoxy-D-glucose. Cells were also replated in serum-containing medium and their ability to grow was assayed over a seven day interval. The results show an inverse relationship between the shedding of plasma membrane vesicles and the ability of the cells to transport nutrients and to grow. We interpret these data to suggest that the process of plasma membrane vesiculation results from a form of cell injury which blocks cellular metabolism and growth.  相似文献   

5.
Mechanically perforated MDCK cells were used to study membrane transport between the trans-Golgi network and the apical and basolateral plasma membrane domains in vitro. Three membrane transport markers--an apical protein (fowl plague virus haemagglutinin), a basolateral protein (vesicular stomatitis virus G protein), and a lipid marker destined for both domains (C6-NBD-sphingomyelin)--were each accumulated in the trans-Golgi by a 20 degrees C block of transport and their behaviour monitored following cell perforation and incubation at 37 degrees C. In the presence of ATP and in the absence of calcium ions a considerable fraction of the transport markers were released from the perforated cells in sealed membrane vesicles. Control experiments showed that the vesicles were not generated by non-specific vesiculation of the Golgi complex or the plasma membrane. The vesicles had well defined sedimentation properties and the orientation expected of transport vesicles derived from the trans-Golgi network.  相似文献   

6.
Release of vesicles from human red cell membranes was induced either by ATP-depletion or by incubation of the cells in presence of sonicated dimyristoylphosphatidylcholine (DMPC) vesicles. Vesicles released from ATP-depleted red cells but not the DMPC-induced vesicles contained degradation products of band 3 protein. Furthermore, in ATP-depleted erythrocytes proteolytic breakdown products could be demonstrated that were not detected in cells incubated with DMPC. Proteolysis was neither significantly affected by the protease inhibitor N-alpha-tosyl-L-lysine chloromethyl ketone (TLCK) nor by other protease inhibitors tested in this study (diisopropylfluorophosphate, N-ethylmaleimide and phenylmethylsulfonyl fluoride). Both vesiculation processes were inhibited in a concentration dependent way by TLCK while other protease inhibitors did not significantly influence membrane vesiculation. Phase contrast microscopy showed that TLCK diminished the DMPC-induced formation of echinocytes which is known to precede vesicle release. These results suggest that the influence of TLCK on membrane vesiculation is not primarily due to inhibition of proteolysis but to a direct interaction of the inhibitor with the intrinsic domain of the erythrocyte membrane.  相似文献   

7.
It has been long noted that gram-negative bacteria produce outer membrane vesicles, and recent data demonstrate that vesicles released by pathogenic strains can transmit virulence factors to host cells. However, the mechanism of vesicle release has remained undetermined. This genetic study addresses whether these structures are merely a result of membrane instability or are formed by a more directed process. To elucidate the regulatory mechanisms and physiological basis of vesiculation, we conducted a screen in Escherichia coli to identify gene disruptions that caused vesicle over- or underproduction. Only a few low-vesiculation mutants and no null mutants were recovered, suggesting that vesiculation may be a fundamental characteristic of gram-negative bacterial growth. Gene disruptions were identified that caused differences in vesicle production ranging from a 5-fold decrease to a 200-fold increase relative to wild-type levels. These disruptions included loci governing outer membrane components and peptidoglycan synthesis as well as the sigma(E) cell envelope stress response. Mutations causing vesicle overproduction did not result in upregulation of the ompC gene encoding a major outer membrane protein. Detergent sensitivity, leakiness, and growth characteristics of the novel vesiculation mutant strains did not correlate with vesiculation levels, demonstrating that vesicle production is not predictive of envelope instability.  相似文献   

8.
Alterations of membrane lipid biophysical properties of sensitive A549 and resistant A549/DDP cells to the Cis-dichlorodiammine platinum (Cisplatin) were performed by measurements of fluorescence and flow cytometry approaches using fluorescence dyes of DPH, N-AS and Mero-cyanine 540 (MC 540) respectively. Fatty acids of membrane lipid of the two cell lines were analyzed by gas chromatography. The results indicated clearly that fluorescence polarization (P) of the DPH probe is 0.169 for the sensitive A549 cell and 0.194 for the resistant A549/DDP cells. Statistical analysis showed significant difference between the two cell lines. The polarizations of 2-AS and 7-AS which reflect the fluidity of surface and middle of lipid bilayer are 0.134 and 0.144 for the sensitive A549 cells as well as 0.171 and 0.178 for the resistant A549/DDP cells respectively, but there is no significant difference of the polarization of 12-AS between the two cell lines. This shows that alterations of the membrane fluidity of both  相似文献   

9.
The structural effects of in situ production of diacylglycerol by phospholipase C in pure lipid model membranes have been examined by freeze fracture electron microscopy. Phospholipase C-activity induces massive aggregation and fusion of large unilamellar lipid vesicles and leads to the formation of a 'sealed' lipid aggregate; the outer membrane of this aggregate appears to be continuous. In some areas lipid arranges into a honeycomb structure; this structure is probably a precursor of a discontinuous inverted (type II) cubic phase. Similarly, enzyme treatment of multilamellar vesicles leads to extensive membrane fusion and vesiculation. Thus morphological evidence is obtained showing the ability of phospholipase C to induce bilayer destabilization and fusion. It is speculated that phospholipase C-induced membrane fusion involves a type II fusion intermediate induced by diacylglycerol produced locally.  相似文献   

10.
A C Newton  W H Huestis 《Biochemistry》1988,27(13):4645-4655
Sonicated dimyristoylphosphatidylcholine vesicles interact with cultured murine lymphoma (BL/VL3) to generate complexes of vesicle and cell membrane components. Cell-free supernatants harvested after cell-vesicle incubations contain three distinct lipid species that can be separated by density gradient centrifugation. Analysis of protein and lipid composition and assays for cell and vesicle lumen contents reveal that the densest of the three lipid species comprises sealed plasma membrane fragments complexed with vesicles, while the least dense species is indistinguishable from pure phospholipid vesicles. The third, intermediate density species consists of topologically intact vesicles with associated plasma membrane proteins but without detectable cell lipids or cytoplasmic components. The membrane fragmentation and cell-to-vesicle protein transfer observed during lymphoma-vesicle incubations are examined as functions of cell and vesicle concentrations and incubation time.  相似文献   

11.
Matrix vesicles (MV) are lipid bilayer-enclosed nanoscale structures that initiate extracellular mineral formation in most vertebrate species. Little attention has been given to differences between species in membrane lipid composition or to how new mineral is formed in MV. To explore more precisely the lipids of MV isolated from avian and bovine species, we developed a new high-performance liquid chromatography (HPLC) method used in combination with evaporative light scattering detection (ELSD) to quantify their lipid composition. HPLC analyses were performed on a Lichrosorb silica column using separate binary gradient elution systems for analyzing polar and nonpolar lipids. Standard mixtures of both phospholipids and nonpolar lipids were used to prepare calibration curves for each lipid, which were analyzed mathematically by polynomial regression for accurate quantitation. This new methodology provides high-resolution separations and quantitation of both the polar and the nonpolar lipids typically present in biological membranes, including lyso- (monoacyl-) phospholipids. We have applied this method to quantitate the phospholipid and nonpolar lipid composition of MV isolated from chicken and bovine growth plate cartilage. We also compared the ability of these MV to induce mineral formation. While the ability to induce mineralization and the lipid composition were generally similar, some significant differences between MV from these two disparate species were seen.  相似文献   

12.
In order to investigate the role of the plasma membrane in determining the kinetics of removal of cholesterol from cells, the efflux of [3H]cholesterol from intact cells and plasma membrane vesicles has been compared. The release of cholesterol from cultures of Fu5AH rat hepatoma and WIRL-3C rat liver cells to complexes of egg phosphatidylcholine (1 mg/ml) and human high-density apolipoprotein is first order with respect to concentration of cholesterol in the cells, with half-times (t 1/2) for at least one-third of the cell cholesterol of 3.2 +/- 0.6 and 14.3 +/- 1.5 h, respectively. Plasma membrane vesicles (0.5-5.0 micron diameter) were produced from both cell lines by incubating the cells with 50 mM formaldehyde and 2 mM dithiothreitol for 90 min. The efflux of cholesterol from the isolated vesicles follows the same kinetics as the intact, parent cells: the t 1/2 values for plasma membrane vesicles of Fu5AH and WIRL cells are 3.9 +/- 0.5 and 11.2 +/- 0.7 h, respectively. These t 1/2 values reflect the rate-limiting step in the cholesterol efflux process, which is the desorption of cholesterol molecules from the plasma membrane into the extracellular aqueous phase. The fact that intact cells and isolated plasma membranes release cholesterol at the same rates indicates that variations in the plasma membrane structure account for differences in the kinetics of cholesterol release from different cell types. In order to investigate the role of plasma membrane lipids, the kinetics of cholesterol desorption from small unilamellar vesicles prepared from the total lipid isolated from plasma membrane vesicles of Fu5AH and WIRL cells were measured. Half-times of cholesterol release from plasma membrane lipid vesicles of Fu5AH and WIRL cells were the same, with values of 3.1 +/- 0.1 and 2.9 +/- 0.2 h, respectively. Since bilayers formed from isolated plasma membrane lipids do not reproduce the kinetics of cholesterol efflux observed with the intact plasma membranes, it is likely that the local domain structure, as influenced by membrane proteins, is responsible for the differences in t 1/2 values for cholesterol efflux from these cell lines.  相似文献   

13.
Cellular processes involving membrane vesiculation are related to cellular transport and membrane components trafficking. Endocytosis, formation of caveolae and caveosomes, as well as Golgi membranes traffic have been linked to the existence and dynamics of particular types of lipid/protein membrane domains, enriched in sphingolipids and cholesterol, called rafts [Nature 387 (1997) 569; Trends Cell Biol. 12 (2002) 296; Biochemistry 27 (1988) 6197]. In addition, the participation of phospholipases in the vesiculation of Golgi and other membranes has been already established [Traffic 1 (2000) 504] essentially in their role in the production of second messenger molecules. In this work we illustrate with raft-containing giant lipid vesicles a mechanism for raft-vesicle expulsion from the membrane due to the activity of a single enzyme-phospholipase A(2) (PLA(2)). This leads to the hypothesis that the PLA(2), apart from its role in second messenger generation, might play a direct and general role in the vesiculation processes underlying the intermembrane transport of rafts through purely physicochemical mechanisms. These mechanisms would be: enzyme adsorption leading to membrane curvature generation (budding), and enzyme activity modulation of the line tension at the raft boundaries, which induces vesicle fission.  相似文献   

14.
A requirement for concentrated and chemically homogeneous pools of molecular building blocks would severely restrict plausible scenarios for the origin of life. In the case of membrane self-assembly, models of prebiotic lipid synthesis yield primarily short, single-chain amphiphiles that can form bilayer vesicles only at very high concentrations. These high critical aggregation concentrations (cacs) pose significant obstacles for the self-assembly of single-chain lipid membranes. Here, we examine membrane self-assembly in mixtures of fatty acids with varying chain lengths, an expected feature of any abiotic lipid synthesis. We derive theoretical predictions for the cac of mixtures by adapting thermodynamic models developed for the analogous phenomenon of mixed micelle self-assembly. We then use several complementary methods to characterize aggregation experimentally, and find cac values in close agreement with our theoretical predictions. These measurements establish that the cac of fatty acid mixtures is dramatically lowered by minor fractions of long-chain species, thereby providing a plausible route for protocell membrane assembly. Using an NMR-based approach to monitor aggregation of isotopically labeled samples, we demonstrate the incorporation of individual components into mixed vesicles. These experiments suggest that vesicles assembled in dilute, mixed solutions are depleted of the shorter-chain-length lipid species, a finding that carries implications for the composition of primitive cell membranes.  相似文献   

15.
A new method for assaying endocytosis in erythrocyte ghosts is presented. The method involves measuring the percentage loss of acetylcholinesterase activity which occurs when vacuoles form, making the acetylcholinesterase on the vacuole surface inaccessible. This method is compared to other methods of measuring endocytosis in this system, including phase contrast microscope estimation of vesiculation, stereological analysis of electron micrographs to determine vesiculation and loss of sialic acid accessible to neuraminidase due to endocytosis. Comparison of the percentage loss of acetylcholinesterase activity with the electron micrographic and sialic acid methods showed that all three methods gave a quantitative measure of the percentage of total membrane area taken in as vesicles. Since the acetylcholinesterase method was fast, easy, inexpensive, and quantitative, it was the preferred method for assay of endocytosis. The inhibition of endocytosis by Ca2+ was observed with this method; the success of this experiment demonstrated the applicability of the method to the study of inhibitors of endocytosis.  相似文献   

16.
Hemolysis (Kobayashi, T., Takahashi, K., Yamada, A., Nojima, S. and Inoue, K. (1983) J. Biochem. 93, 675-680) and shedding of acetylcholinesterase-enriched membrane vesicles (diameter 150-200 nm) were observed when human erythrocytes were incubated with liposomes of phosphatidylcholine which contained polyunsaturated fatty acyl chains. These events occurring on erythrocyte membrane were inhibited by radical scavengers or incorporation of alpha-tocopherol into liposomes, suggesting that lipid peroxidation is involved in the process leading to membrane vesiculation and hemolysis. The idea was supported by findings that generation of chemiluminescence, formation of thiobarbituric acid reactive substance, accumulation of conjugated diene compounds in liposomes and decrease of polyunsaturated fatty acids in liposomes occurred concomitantly during incubation. Hemolysis was also suppressed by the addition of extra liposomes, insensitive to peroxidation, or of serum albumin even after the completion of peroxidation of liposomes. These results suggest that peroxidized lipids, responsible for vesiculation and hemolysis, may be formed first in liposomes and then gradually transferred to erythrocyte membranes. The accumulation of these lipids peroxides may eventually cause membrane vesiculation followed by hemolysis.  相似文献   

17.
E Farge 《Biophysical journal》1995,69(6):2501-2506
Endocytosis vesiculation consists of local membrane invaginations, continuously generated on the plasma membrane surface of living cells. This vesiculation process was found to be activated in vivo by the generation of a transmembrane surface area asymmetry in the plasma membrane bilayer, after enhancement of transbilayer phospholipid translocation. The observed enhancement was shown to be in good quantitative agreement with a theoretical model of elastic equilibrium describing stabilization of 100-nm vesicles in response to phospholipid redistribution. Very rapid dynamic vesiculation and direct re-fusion of the vesicles, both dependent on the phospholipid translocation activity, were found on a time scale of seconds. Both vesiculation and re-fusion were shown to result in a steady-state population of internal vesicles at long time points. The plasma membrane appears to be a dynamic structure, oscillating between two distinct curvature states, the 10 microns-1 "vesicle" and the 0.1 micron-1 "plasma membrane" curvature states. This dynamic behavior is discussed in terms of an elastic control of the membranes curvature state by the phospholipid translocation activity.  相似文献   

18.
The shedding of acetylcholinesterase-enriched vesicles from erythrocytes of various species of animals occurred when cells were treated with C12:0PC. The response was observed shortly after a morphological change of erythrocytes without any accompanying detectable K+ leakage or hemolysis. The vesiculation was inhibited by the presence of serum albumin or by the incorporation of cholesterol into C12:0PC liposomes, indicating that the insertion of C12:0PC into the erythrocyte membrane causes the vesiculation. The ratio of C12:0PC to total phospholipid determined in vesicle fractions was almost the same as that observed in non-hemolyzed cell fractions. This finding suggests that the vesicles were not shed from portions of membranes rich in C12:0PC. The vesicles showed similar characteristics to those generated by ATP depletion; their diameter is 150-200 nm and they are enriched with acetylcholinesterase activity. Erythrocytes became denser when they lost acetylcholinesterase activity on treatment with C12:0PC.  相似文献   

19.
Alterations of membrane lipid biophysical properties of sensitive A549 and resistant A549/DDP cells to the Cis-dichlorodiammine platinum (Cisplatin) were performed by measurements of fluorescence and flow cytometry approaches using fluorescence dyes of DPH, N-AS and Merocyanine 540 (MC 540) respectively. Fatty acids of membrane lipid of the two cell lines were analyzed by gas chromatography. The results indicated clearly that fluorescence polarization (P) of the DPH probe is 0.169 for the sensitive A549 cell and 0.194 for the resistant A549/DDP cells. Statistical analysis showed significant difference between the two cell lines. The polarizations of 2-AS and 7-AS which reflect the fluidity of surface and middle of lipid bilayer are 0.134 and 0.144 for the sensitive A549 cells as well as 0.171 and 0.178 for the resistant A549/DDP cells respectively, but there is no significant difference of the polarization of 12-AS between the two cell lines. This shows that alterations of the membrane fluidity of both cells were mainly located on the surface and middle of the lipid bilayer. In addition, the packing density of phospholipid molecules in the membrane of the two cell lines detected by MC540 probe indicated that lipid packing of A549 cell membranes was looser than that of the A549/DDP cells. And unsaturation degree of plasma membrane fatty acids of the A549/DDP cells was also lower than that of A549 cells. Taken together, it was proposed that the alteration of membrane lipid biophysical state may be involved in the resistance of A549/DDP cells to cisplatin.  相似文献   

20.
Alterations of membrane lipid biophysical properties of sensitive A549 and resistant A549/DDP cells to the Cis-dichlorodiammine platinum (Cisplatin) were performed by measurements of fluorescence and flow cytometry approaches using fluorescence dyes of DPH, N-AS and Merocyanine 540 (MC 540) respectively. Fatty acids of membrane lipid of the two cell lines were analyzed by gas chromatography. The results indicated clearly that fluorescence polarization (P) of the DPH probe is 0.169 for the sensitive A549 cell and 0.194 for the resistant A549/DDP cells. Statistical analysis showed significant difference between the two cell lines. The polarizations of 2-AS and 7-AS which reflect the fluidity of surface and middle of lipid bilayer are 0.134 and 0.144 for the sensitive A549 cells as well as 0.171 and 0.178 for the resistant A549/DDP cells respectively, but there is no significant difference of the polarization of 12-AS between the two cell lines. This shows that alterations of the membrane fluidity of both cells were mainly located on the surface and middle of the lipid bilayer. In addition, the packing density of phospholipid molecules in the membrane of the two cell lines detected by MC540 probe indicated that lipid packing of A549 cell membranes was looser than that of the A549/DDP cells. And unsaturation degree of plasma membrane fatty acids of the A549/DDP cells was also lower than that of A549 cells. Taken together, it was proposed that the alteration of membrane lipid biophysical state may be involved in the resistance of A549/DDP cells to cisplatin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号