首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Introduction

There is no approved vaccine for malaria, and precisely how human antibody responses to malaria parasite components and potential vaccine molecules are developed and maintained remains poorly defined. In this study, antibody anamnestic or memory response elicited by a single episode of P. falciparum infection was investigated.

Methods

This study involved 362 malaria patients aged between 6 months to 60 years, of whom 19% were early-diagnosed people living with HIV/AIDS (PLWHA). On the day malaria was diagnosed and 42 days later, blood specimens were collected. Parasite density, CD4+ cells, and antibodies specific to synthetic peptides representing antigenic regions of the P. falciparum proteins GLURP, MSP3 and HRPII were measured.

Results

On the day of malaria diagnosis, Immunoglobulin (IgG) antibodies against GLURP, MSP3 and HRP II peptides were present in the blood of 75%, 41% and 60% of patients, respectively. 42 days later, the majority of patients had boosted their serum IgG antibody more than 1.2 fold. The increase in level of IgG antibody against the peptides was not affected by parasite density at diagnosis. The median CD4+ cell counts of PLWHAs and HIV negative individuals were not statistically different, and median post-infection increases in anti-peptide IgG were similar in both groups of patients.

Conclusion

In the majority (70%) of individuals, an infection of P. falciparum elicits at least 20% increase in level of anti-parasite IgG. This boost in anti-P. falciparum IgG is not affected by parasite density on the day of malaria diagnosis, or by HIV status.  相似文献   

2.

Background

Dual epidemics of the malaria parasite Plasmodium and HIV-1 in sub-Saharan Africa and Asia present a significant risk for co-infection in these overlapping endemic regions. Recent studies of HIV/Plasmodium falciparum co-infection have reported significant interactions of these pathogens, including more rapid CD4+ T cell loss, increased viral load, increased immunosuppression, and increased episodes of clinical malaria. Here, we describe a novel rhesus macaque model for co-infection that supports and expands upon findings in human co-infection studies and can be used to identify interactions between these two pathogens.

Methodology/Principal Findings

Five rhesus macaques were infected with P. cynomolgi and, following three parasite relapses, with SIV. Compared to macaques infected with SIV alone, co-infected animals had, as a group, decreased survival time and more rapid declines in markers for SIV progression, including peripheral CD4+ T cells and CD4+/CD8+ T cell ratios. The naïve CD4+ T cell pool of the co-infected animals was depleted more rapidly than animals infected with SIV alone. The co-infected animals also failed to generate proliferative responses to parasitemia by CD4+ and CD8+ T cells as well as B cells while also having a less robust anti-parasite and altered anti-SIV antibody response.

Conclusions/Significance

These data suggest that infection with both SIV and Plasmodium enhances SIV-induced disease progression and impairs the anti-Plasmodium immune response. These data support findings in HIV/Plasmodium co-infection studies. This animal model can be used to further define impacts of lentivirus and Plasmodium co-infection and guide public health and therapeutic interventions.  相似文献   

3.

Objective

Detailed studies of correlation between HIV-M.tb co-infection and hierarchy declines of CD8+/CD4+ T-cell counts and IFN-γ responses have not been done. We conducted case-control studies to address this issue.

Methods

164 HIV-1-infected individuals comprised of HIV-1+ATB, HIV-1+LTB and HIV-1+TB- groups were evaluated. Immune phenotyping and complete blood count (CBC) were employed to measure CD4+ and CD8+ T-cell counts; T.SPOT.TB and intracellular cytokine staining (ICS) were utilized to detect ESAT6, CFP10 or PPD-specific IFN-γ responses.

Results

There were significant differences in median CD4+ T-cell counts between HIV-1+ATB (164/μL), HIV-1+LTB (447/μL) and HIV-1+TB- (329/μL) groups. Hierarchy low CD4+ T-cell counts (<200/μL, 200-500/μL, >500/μL) were correlated significantly with active TB but not M.tb co-infection. Interestingly, hierarchy low CD8+ T-cell counts were not only associated significantly with active TB but also with M.tb co-infection (P<0.001). Immunologically, HIV-1+ATB group showed significantly lower numbers of ESAT-6-/CFP-10-specific IFN-γ+ T cells than HIV-1+LTB group. Consistently, PPD-specific IFN-γ+CD4+/CD8+ T effector cells in HIV-1+ATB group were significantly lower than those in HIV-1+LTB group (P<0.001).

Conclusions

Hierarchy low CD8+ T-cell counts and effector function in HIV-1-infected individuals are correlated with both M.tb co-infection and active TB. Hierarchy low CD4+ T-cell counts and Th1 effector function in HIV-1+ individuals are associated with increased frequencies of active TB, but not M.tb co-infection.  相似文献   

4.

Background

HIV-1 and Plasmodium falciparum malaria cause substantial morbidity in Sub-Saharan Africa, especially as co-infecting pathogens. We examined the relationship between presence of P. falciparum DNA in plasma samples and clinical malaria as well as the impact of atazanavir, an HIV-1 protease inhibitor (PI), on P. falciparum PCR positivity.

Methods

ACTG study A5175 compared two NNRTI-based regimens and one PI-based anti-retroviral (ARV) regimen in antiretroviral therapy naïve participants. We performed nested PCR on plasma samples for the P. falciparum 18s rRNA gene to detect the presence of malaria DNA in 215 of the 221 participants enrolled in Blantyre and Lilongwe, Malawi. We also studied the closest sample preceding the first malaria diagnosis from 102 persons with clinical malaria and randomly selected follow up samples from 88 persons without clinical malaria.

Results

PCR positivity was observed in 18 (8%) baseline samples and was not significantly associated with age, sex, screening CD4+ T-cell count, baseline HIV-1 RNA level or co-trimoxazole use within the first 8 weeks. Neither baseline PCR positivity (p = 0.45) nor PCR positivity after initiation of antiretroviral therapy (p = 1.0) were significantly associated with subsequent clinical malaria. Randomization to the PI versus NNRTI ARV regimens was not significantly associated with either PCR positivity (p = 0.5) or clinical malaria (p = 0.609). Clinical malaria was associated with a history of tuberculosis (p = 0.006) and a lower BMI (p = 0.004).

Conclusion

P. falciparum DNA was detected in 8% of participants at baseline, but was not significantly associated with subsequent development of clinical malaria. HIV PI therapy did not decrease the prevalence of PCR positivity or incidence of clinical disease.  相似文献   

5.
The ABO blood group antigens are expressed on erythrocytes but also on endothelial cells, platelets and serum proteins. Notably, the ABO blood group of a malaria patient determines the development of the disease given that blood group O reduces the probability to succumb in severe malaria, compared to individuals of groups A, B or AB. P. falciparum rosetting and sequestration are mediated by PfEMP1, RIFIN and STEVOR, expressed at the surface of the parasitized red blood cell (pRBC). Antibodies to these antigens consequently modify the course of a malaria infection by preventing sequestration and promoting phagocytosis of pRBC. Here we have studied rosetting P. falciparum and present evidence of an immune evasion mechanism not previously recognized. We find the accessibility of antibodies to PfEMP1 at the surface of the pRBC to be reduced when P. falciparum forms rosettes in blood group A RBC, as compared to group O RBC. The pRBC surrounds itself with tightly bound normal RBC that makes PfEMP1 inaccessible to antibodies and clearance by the immune system. Accordingly, pRBC of in vitro cloned P. falciparum devoid of ABO blood group dependent rosetting were equally well detected by anti-PfEMP1 antibodies, independent of the blood group utilized for their propagation. The pathogenic mechanisms underlying the severe forms of malaria may in patients of blood group A depend on the ability of the parasite to mask PfEMP1 from antibody recognition, in so doing evading immune clearance.  相似文献   

6.
Malaria and HIV co-infection is a growing health priority. However, most research on malaria or HIV currently focuses on each infection individually. Although understanding the disease dynamics for each of these pathogens independently is vital, it is also important that the interactions between these pathogens are investigated and understood. We have developed a versatile in vitro model of HIV-malaria co-infection to study host immune responses to malaria in the context of HIV infection. Our model allows the study of secreted factors in cellular supernatants, cell surface and intracellular protein markers, as well as RNA expression levels. The experimental design and methods used limit variability and promote data reliability and reproducibility. All pathogens used in this model are natural human pathogens (Plasmodium falciparum and HIV-1), and all infected cells are naturally infected and used fresh. We use human erythrocytes parasitized with P. falciparum and maintained in continuous in vitro culture. We obtain freshly isolated peripheral blood mononuclear cells from chronically HIV-infected volunteers. Every condition used has an appropriate control (P. falciparum parasitized vs. normal erythrocytes), and every HIV-infected donor has an HIV uninfected control, from which cells are harvested on the same day. This model provides a realistic environment to study the interactions between malaria parasites and human immune cells in the context of HIV infection.  相似文献   

7.

Background

The geographic overlap between HIV-1 and malaria has generated much interest in their potential interactions. A variety of studies have evidenced a complex HIV-malaria interaction within individuals and populations that may have dramatic effects, but the causes and implications of this co-infection at the population level are still unclear. In a previous publication, we showed that the prevalence of malaria caused by the parasite Plasmodium falciparum is associated with HIV infection in eastern sub-Saharan Africa. To complement our knowledge of the HIV-malaria co-infection, the objective of this work was to assess the relationship between malaria and HIV prevalence in the western region of sub-Saharan Africa.

Methodology/Principal Findings

Population-based cross-sectional data were obtained from the HIV/AIDS Demographic and Health Surveys conducted in Burkina Faso, Ghana, Guinea, Mali, Liberia and Cameroon, and the malaria atlas project. Using generalized linear mixed models, we assessed the relationship between HIV-1 and Plasmodium falciparum parasite rate (PfPR) adjusting for important socio-economic and biological cofactors. We found no evidence that individuals living in areas with stable malaria transmission (PfPR>0.46) have higher odds of being HIV-positive than individuals who live in areas with PfPR≤0.46 in western sub-Saharan Africa (estimated odds ratio 1.14, 95% confidence interval 0.86–1.50). In contrast, the results suggested that PfPR was associated with being infected with HIV in Cameroon (estimated odds ratio 1.56, 95% confidence interval 1.23–2.00).

Conclusion/Significance

Contrary to our previous research on eastern sub-Saharan Africa, this study did not identify an association between PfPR and infection with HIV in western sub-Saharan Africa, which suggests that malaria might not play an important role in the spread of HIV in populations where the HIV prevalence is low. Our work highlights the importance of understanding the epidemiologic effect of co-infection and the relevant factors involved in this relationship for the implementation of effective control strategies.  相似文献   

8.
Infection with Human Immunodeficiency Virus Type 1 (HIV-1) induces defects of both cellular and humoral immune responses. Impaired CD4+ T cell help and B cell dysfunction may partially explain the low frequency of broadly neutralizing antibodies in HIV-infected individuals. To understand the extent of B cell dysfunction during HIV infection, we assessed the level of B cell activation at baseline and after stimulation with a variety of antigens. Increased levels of viremia were associated with higher baseline expression of the activation marker CD86 on B cells and with decreased ability of B cells to increase expression of CD86 after in vitro stimulation with inactivated HIV-1. In a series of cell isolation experiments B cell responses to antigen were enhanced in the presence of autologous CD4+ T cells. HIV infected individuals had a higher frequency of PD-1 expression on B cells compared to HIV- subjects and PD-1 blockade improved B cell responsiveness to HIV antigen, suggesting that inhibitory molecule expression during HIV-1 infection may contribute to some of the observed B cell defects. Our findings demonstrate that during chronic HIV infection, B cells are activated and lose full capacity to respond to antigen, but suppression of inhibitory pressures as well as a robust CD4+ T cell response may help preserve B cell function.  相似文献   

9.

Background and Objectives

Co-trimoxazole prophylaxis, currently recommended in HIV-exposed, uninfected (HEU) children as protection against opportunistic infections, also has some anti-malarial efficacy. We determined whether daily co-trimoxazole prophylaxis affects the natural development of antibody-mediated immunity to blood-stage Plasmodium falciparum malaria infection.

Methods

Using an enzyme-linked immunosorbent assay, we measured antibodies to 8Plasmodium falciparum antigens (AMA-1, MSP-119, MSP-3, PfSE, EBA-175RII, GLURP R0, GLURP R2 and CSP) in serum samples from 33 HEU children and 31 HIV-unexposed, uninfected (HUU) children, collected at 6, 12 and 18 months of age.

Results

Compared to HIV-uninfected children, HEU children had significantly lower levels of specific IgG against AMA-1 at 6 months (p = 0.001), MSP-119 at 12 months (p = 0.041) and PfSE at 6 months (p = 0.038), 12 months (p = 0.0012) and 18 months (p = 0.0097). No differences in the IgG antibody responses against the rest of the antigens were observed between the two groups at all time points. The breadth of specificity of IgG response was reduced in HEU children compared to HUU children during the follow up period.

Conclusions

Co-trimoxazole prophylaxis seems to reduce IgG antibody responses to P. falciparum blood stage antigens, which could be as a result of a reduction in exposure of those children under this regime. Although antibody responses were regarded as markers of exposure in this study, further studies are required to establish whether these responses are correlated in any way to clinical immunity to malaria.  相似文献   

10.
P. vivax infection during pregnancy has been associated with poor outcomes such as anemia, low birth weight and congenital malaria, thus representing an important global health problem. However, no vaccine is currently available for its prevention. Vir genes were the first putative virulent factors associated with P. vivax infections, yet very few studies have examined their potential role as targets of immunity. We investigated the immunogenic properties of five VIR proteins and two long synthetic peptides containing conserved VIR sequences (PvLP1 and PvLP2) in the context of the PregVax cohort study including women from five malaria endemic countries: Brazil, Colombia, Guatemala, India and Papua New Guinea (PNG) at different timepoints during and after pregnancy. Antibody responses against all antigens were detected in all populations, with PNG women presenting the highest levels overall. P. vivax infection at sample collection time was positively associated with antibody levels against PvLP1 (fold-increase: 1.60 at recruitment -first antenatal visit-) and PvLP2 (fold-increase: 1.63 at delivery), and P. falciparum co-infection was found to increase those responses (for PvLP1 at recruitment, fold-increase: 2.25). Levels of IgG against two VIR proteins at delivery were associated with higher birth weight (27 g increase per duplicating antibody levels, p<0.05). Peripheral blood mononuclear cells from PNG uninfected pregnant women had significantly higher antigen-specific IFN-γ TH1 responses (p=0.006) and secreted less pro-inflammatory cytokines TNF and IL-6 after PvLP2 stimulation than P. vivax-infected women (p<0.05). These data demonstrate that VIR antigens induce the natural acquisition of antibody and T cell memory responses that might be important in immunity to P. vivax during pregnancy in very diverse geographical settings.  相似文献   

11.
BackgroundHelminths can modulate the host immune response to Plasmodium falciparum and can therefore affect the risk of clinical malaria. We assessed here the effect of helminth infections on both the immunogenicity and efficacy of the GMZ2 malaria vaccine candidate, a recombinant protein consisting of conserved domains of GLURP and MSP3, two asexual blood-stage antigens of P. falciparum. Controlled human malaria infection (CHMI) was used to assess the efficacy of the vaccine.MethodologyIn a randomized, double-blind Phase I clinical trial, fifty, healthy, lifelong malaria-exposed adult volunteers received three doses of GMZ2 adjuvanted with either Cationic Adjuvant Formulation (CAF) 01 or Alhydrogel, or a control vaccine (Rabies) on days (D) 0, D28 and D56, followed by direct venous inoculation (DVI) of 3,200 P. falciparum sporozoites (PfSPZ Challenge) approximately 13 weeks after last vaccination to assess vaccine efficacy. Participants were followed-up on a daily basis with clinical examinations and thick blood smears to monitor P. falciparum parasitemia for 35 days. Malaria was defined as the presence of P. falciparum parasites in the blood associated with at least one symptom that can be associated to malaria over 35 days following DVI of PfSPZ Challenge. Soil-transmitted helminth (STH) infection was assessed by microscopy and by polymerase chain reaction (PCR) on stool, and Schistosoma infection was assessed by microscopy on urine. Participants were considered as infected if positive for any helminth either by PCR and/or microscopy at D0 and/or at D84 (Helm+) and were classified as mono-infection or co-infection. Total vaccine-specific IgG concentrations assessed on D84 were analysed as immunogenicity outcome.Main findingsThe helminth in mono-infection, particularly Schistosoma haematobium and STH were significantly associated with earlier malaria episodes following CHMI, while no association was found in case of coinfection. In further analyses, the anti-GMZ2 IgG concentration on D84 was significantly higher in the S. haematobium-infected and significantly lower in the Strongyloides stercoralis-infected groups, compared to helminth-negative volunteers. Interesting, in the absence of helminth infection, a high anti-GMZ2 IgG concentration on D84 was significantly associated with protection against malaria.ConclusionsOur results suggest that helminth infection may reduce naturally acquired and vaccine-induced protection against malaria. Vaccine-specific antibody concentrations on D84 may be associated with protection in participants with no helminth infection. These results suggest that helminth infection affect malaria vaccine immunogenicity and efficacy in helminth endemic countries.  相似文献   

12.

Background

Plasmodium falciparum infected red blood cells (iRBC) express variant surface antigens (VSA) of which VAR2CSA is involved in placental sequestration and causes pregnancy-associated malaria (PAM). Primigravidae are most susceptible to PAM whereas antibodies associated with protection are often present at higher levels in multigravid women. However, HIV co-infection with malaria has been shown to alter this parity-dependent acquisition of immunity, with more severe symptoms as well as more malaria episodes in HIV positive women versus HIV negative women of a similar parity.

Methods

Using VAR2CSA DBL-domains expressed on the surface of CHO-745 cells we quantified levels of DBL-domain specific IgG in sera from pregnant Malawian women by flow cytometry. Dissociations constants of DBL5ε specific antibodies were determined using a surface plasmon resonance technique, as an indication of antibody affinities.

Results

VAR2CSA DBL5ε was recognized in a gender and parity-dependent manner with anti-DBL5ε IgG correlating significantly with IgG levels to VSA-PAM on the iRBC surface. HIV positive women had lower levels of anti-DBL5ε IgG than HIV negative women of similar parity. In primigravidae, antibodies in HIV positive women also showed significantly lower affinity to VAR2CSA DBL5ε.

Conclusions

Pregnant women from a malaria-endemic area had increased levels of anti-DBL5ε IgG by parity, indicating this domain of VAR2CSA to be a promising vaccine candidate against PAM. However, it is important to consider co-infection with HIV, as this seems to change the properties of antibody response against malaria. Understanding the characteristics of antibody response against VAR2CSA is undoubtedly imperative in order to design a functional and efficient vaccine against PAM.  相似文献   

13.
Individuals living in malaria endemic areas become clinically immune after multiple re-infections over time and remain infected without apparent symptoms. However, it is unclear why a long period is required to gain clinical immunity to malaria, and how such immunity is maintained. Although malaria infection is reported to induce inhibition of immune responses, studies on asymptomatic individuals living in endemic regions of malaria are relatively scarce. We conducted a cross-sectional study of immune responses in asymptomatic school children aged 4–16 years living in an area where Plasmodium falciparum and Schistosoma mansoni infections are co-endemic in Kenya. Peripheral blood mononuclear cells were subjected to flow cytometric analysis and cultured to determine proliferative responses and cytokine production. The proportions of cellular subsets in children positive for P. falciparum infection at the level of microscopy were comparable to the negative children, except for a reduction in central memory-phenotype CD8+ T cells and natural killer cells. In functional studies, the production of cytokines by peripheral blood mononuclear cells in response to P. falciparum crude antigens exhibited strong heterogeneity among children. In addition, production of IL-2 in response to anti-CD3 and anti-CD28 monoclonal antibodies was significantly reduced in P. falciparum-positive children as compared to -negative children, suggesting a state of unresponsiveness. These data suggest that the quality of T cell immune responses is heterogeneous among asymptomatic children living in the endemic region of P. falciparum, and that the responses are generally suppressed by active infection with Plasmodium parasites.  相似文献   

14.

Background and Aims

Hepatitis C Virus (HCV)-related liver disease progresses more rapidly in individuals co-infected with Human Immunodeficiency Virus-1 (HIV), although the underlying immunologic mechanisms are unknown. We examined whether HIV-specific T-cells are identified in the liver of HCV/HIV co-infected individuals and promote liver inflammation through bystander immune responses.

Methods

Ex-vivo intra-hepatic lymphocytes from HCV mono-infected and HCV/HIV co-infected individuals were assessed for immune responses to HIV and HCV antigens by polychromatic flow cytometry.

Results

HCV/HIV liver biopsies had similar frequencies of lymphocytes but lower percentages of CD4+ T-cells compared to HCV biopsies. In co-infection, intra-hepatic HIV-specific CD8+ and CD4+ T-cells producing IFN-γ and TNF-α were detected and were comparable in frequency to those that were HCV-specific. In co-infected individuals, viral-specific CD8+ T-cells produced more of the fibrogenic cytokine, TNF-α. In both mono- and co-infected individuals, intra-hepatic HCV-specific T-cells were poorly functional compared to HIV-specific T-cells. In co-infection, HAART was not associated with a reconstitution of intra-hepatic CD4+ T-cells and was associated with reduction in both HIV and HCV-specific intra-hepatic cytokine responses.

Conclusion

The accumulation of functional HIV-specific T-cells in the liver during HCV/HIV co-infection may represent a bystander role for HIV in inducing faster progression of liver disease.  相似文献   

15.

Background

With low and markedly seasonal malaria transmission, increasingly sensitive tools for better stratifying the risk of infection and targeting control interventions are needed. A cross-sectional survey to characterize the current malaria transmission patterns, identify hotspots, and detect recent changes using parasitological and serological measures was conducted in three sites of the Peruvian Amazon.

Material and Methods

After full census of the study population, 651 participants were interviewed, clinically examined and had a blood sample taken for the detection of malaria parasites (microscopy and PCR) and antibodies against P. vivax (PvMSP119, PvAMA1) and P. falciparum (PfGLURP, PfAMA1) antigens by ELISA. Risk factors for malaria infection (positive PCR) and malaria exposure (seropositivity) were assessed by multivariate survey logistic regression models. Age-specific seroprevalence was analyzed using a reversible catalytic conversion model based on maximum likelihood for generating seroconversion rates (SCR, λ). SaTScan was used to detect spatial clusters of serology-positive individuals within each site.

Results

The overall parasite prevalence by PCR was low, i.e. 3.9% for P. vivax and 6.7% for P. falciparum, while the seroprevalence was substantially higher, 33.6% for P. vivax and 22.0% for P. falciparum, with major differences between study sites. Age and location (site) were significantly associated with P. vivax exposure; while location, age and outdoor occupation were associated with P. falciparum exposure. P. falciparum seroprevalence curves showed a stable transmission throughout time, while for P. vivax transmission was better described by a model with two SCRs. The spatial analysis identified well-defined clusters of P. falciparum seropositive individuals in two sites, while it detected only a very small cluster of P. vivax exposure.

Conclusion

The use of a single parasitological and serological malaria survey has proven to be an efficient and accurate method to characterize the species specific heterogeneity in malaria transmission at micro-geographical level as well as to identify recent changes in transmission.  相似文献   

16.

Background

Malaria caused by Plasmodium falciparum remains a major cause of death in sub-Saharan Africa. Immunity against symptoms of malaria requires repeated exposure, suggesting either that the parasite is poorly immunogenic or that the development of effective immune responses to malaria may be impaired.

Methods

We carried out two age-stratified cross-sectional surveys of anti-malarial humoral immune responses in a Gambian village where P. falciparum malaria transmission is low and sporadic. Circulating antibodies and memory B cells (MBC) to four malarial antigens were measured using ELISA and cultured B cell ELISpot.

Findings and Conclusions

The proportion of individuals with malaria-specific MBC and antibodies, and the average number of antigens recognised by each individual, increased with age but the magnitude of these responses did not. Malaria-specific antibody levels did not correlate with either the prevalence or median number of MBC, indicating that these two assays are measuring different aspects of the humoral immune response. Among those with immunological evidence of malaria exposure (defined as a positive response to at least one malarial antigen either by ELISA or ELISPOT), the median number of malaria-specific MBC was similar to median numbers of diphtheria-specific MBC, suggesting that the circulating memory cell pool for malaria antigens is of similar size to that for other antigens.  相似文献   

17.
Clinical immunity to malaria declines in the absence of repeated parasite exposure. However, little is known about how B cell populations and antigen-specific memory B cells change in the absence of P. falciparum infection. A successful indoor residual insecticide spraying campaign in a highland area of western Kenya, led to an absence of blood-stage P. falciparum infection between March 2007 and April 2008. We assessed memory B cell responses in 45 adults at the beginning (April 2008) and end (April 2009) of a subsequent 12-month period during which none of the adults had evidence of asymptomatic parasitemia or clinical disease. Antibodies and memory B cells to the 42-kDa portion of the merozoite surface protein-1 (MSP-142) were measured using ELISA and ELISPOT assays, respectively. B cell populations were characterized by flow cytometry. From 2008 to 2009, the prevalence of MSP-142-specific memory B cells (45% vs. 55%, respectively, P = 0.32) or antibodies (91% vs. 82%, respectively, P = 0.32) did not differ significantly, although specific individuals did change from positive to negative and vice versa, particularly for memory B cells, suggesting possible low-level undetected parasitemia may have occurred in some individuals. The magnitude of MSP-142-specific memory B cells and levels of antibodies to MSP-142 also did not differ from 2008 to 2009 (P>0.10 for both). However, from 2008 to 2009 the proportions of both class-switched atypical (CD19+IgD-CD27-CD21-IgM-) and class-switched activated (CD19+IgD-CD27+CD21-IgM-) memory B cells decreased (both P<0.001). In contrast, class-switched resting classical memory B cells (CD19+IgD-CD27+CD21+IgM-) increased (P<0.001). In this area of seasonal malaria transmission, a one- year absence of detectable P. falciparum infection was not associated with changes in the prevalence or level of MSP-142 specific memory B cells, but was associated with major changes in overall memory B cell subsets.  相似文献   

18.
A global HIV-1 vaccine will likely need to induce immune responses against conserved HIV-1 regions to contend with the profound genetic diversity of HIV-1. Here we evaluated the capacity of immunogens consisting of only highly conserved HIV-1 sequences that are aimed at focusing cellular immune responses on these potentially critical regions. We assessed in rhesus monkeys the breadth and magnitude of T lymphocyte responses elicited by adenovirus vectors expressing either full-length HIV-1 Gag/Pol/Env immunogens or concatenated immunogens consisting of only highly conserved HIV-1 sequences. Surprisingly, we found that the full-length immunogens induced comparable breadth (P = 1.0) and greater magnitude (P = 0.01) of CD8+ T lymphocyte responses against conserved HIV-1 regions compared with the conserved-region-only immunogens. Moreover, the full-length immunogens induced a 5-fold increased total breadth of HIV-1-specific T lymphocyte responses compared with the conserved-region-only immunogens (P = 0.007). These results suggest that full-length HIV-1 immunogens elicit a substantially increased magnitude and breadth of cellular immune responses compared with conserved-region-only HIV-1 immunogens, including greater magnitude and comparable breadth of responses against conserved sequences.  相似文献   

19.
HIV co-infection is an important risk factor for tuberculosis (TB) providing a powerful model in which to dissect out defective, protective and dysfunctional Mycobacterium tuberculosis (MTB)-specific immune responses. To identify the changes induced by HIV co-infection we compared MTB-specific CD4+ responses in subjects with active TB and latent TB infection (LTBI), with and without HIV co-infection. CD4+ T-cell subsets producing interferon-gamma (IFN-γ), interleukin-2 (IL-2) and tumour necrosis factor-alpha (TNF-α) and expressing CD279 (PD-1) were measured using polychromatic flow-cytometry. HIV-TB co-infection was consistently and independently associated with a reduced frequency of CD4+ IFN-γ and IL-2-dual secreting T-cells and the proportion correlated inversely with HIV viral load (VL). The impact of HIV co-infection on this key MTB-specific T-cell subset identifies them as a potential correlate of mycobacterial immune containment. The percentage of MTB-specific IFN-γ-secreting T-cell subsets that expressed PD-1 was increased in active TB with HIV co-infection and correlated with VL. This identifies a novel correlate of dysregulated immunity to MTB, which may in part explain the paucity of inflammatory response in the face of mycobacterial dissemination that characterizes active TB with HIV co-infection.  相似文献   

20.
Antibodies constitute a critical component of the naturally acquired immunity that develops following frequent exposure to malaria. However, specific antibody titres have been reported to decline rapidly in the absence of reinfection, supporting the widely perceived notion that malaria infections fail to induce durable immunological memory responses. Currently, direct evidence for the presence or absence of immune memory to malaria is limited. In this study, we analysed the longevity of both antibody and B cell memory responses to malaria antigens among individuals who were living in an area of extremely low malaria transmission in northern Thailand, and who were known either to be malaria naïve or to have had a documented clinical attack of P. falciparum and/or P. vivax in the past 6 years. We found that exposure to malaria results in the generation of relatively avid antigen-specific antibodies and the establishment of populations of antigen-specific memory B cells in a significant proportion of malaria-exposed individuals. Both antibody and memory B cell responses to malaria antigens were stably maintained over time in the absence of reinfection. In a number of cases where antigen-specific antibodies were not detected in plasma, stable frequencies of antigen-specific memory B cells were nonetheless observed, suggesting that circulating memory B cells may be maintained independently of long-lived plasma cells. We conclude that infrequent malaria infections are capable of inducing long-lived antibody and memory B cell responses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号