首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Lipid microdomains (‘lipid rafts’) are plasma membrane subregions, enriched in cholesterol and glycosphingolipids, which participate dynamically in cell signaling and molecular trafficking operations. One strategy for the study of the physicochemical properties of lipid rafts in model membrane systems has been the use of nuclear magnetic resonance (NMR), but until now this spectroscopic method has not been considered a clinically relevant tool. We performed a proof-of-concept study to test the feasibility of using NMR to study lipid rafts in human tissues. Platelets were selected as a cost-effective and minimally invasive model system in which lipid rafts have previously been studied using other approaches. Platelets were isolated from plasma of medication-free adult research participants (n=13) and lysed with homogenization and sonication. Lipid-enriched fractions were obtained using a discontinuous sucrose gradient. Association of lipid fractions with GM1 ganglioside was tested using HRP-conjugated cholera toxin B subunit dot blot assays. 1H high resolution magic-angle spinning nuclear magnetic resonance (HRMAS NMR) spectra obtained with single-pulse Bloch decay experiments yielded spectral linewidths and intensities as a function of temperature. Rates of lipid lateral diffusion that reported on raft size were measured with a two-dimensional stimulated echo longitudinal encode-decode NMR experiment. We found that lipid fractions at 10–35% sucrose density associated with GM1 ganglioside, a marker for lipid rafts. NMR spectra of the membrane phospholipids featured a prominent ‘centerband’ peak associated with the hydrocarbon chain methylene resonance at 1.3 ppm; the linewidth (full width at half-maximum intensity) of this ‘centerband’ peak, together with the ratio of intensities between the centerband and ‘spinning sideband’ peaks, agreed well with values reported previously for lipid rafts in model membranes. Decreasing temperature produced decreases in the 1.3 ppm peak intensity and a discontinuity at ~18 °C, for which the simplest explanation is a phase transition from Ld to Lo phases indicative of raft formation. Rates of lateral diffusion of the acyl chain lipid signal at 1.3 ppm, a quantitative measure of microdomain size, were consistent with lipid molecules organized in rafts. These results show that HRMAS NMR can characterize lipid microdomains in human platelets, a methodological advance that could be extended to other tissues in which membrane biochemistry may have physiological and pathophysiological relevance.  相似文献   

2.
Stable isotopes (δ15N and δ13C) are being widely applied in ecological research but there has been a call for ecologists to determine species- and tissue-specific diet discrimination factors (?13C and ?15N) for their study animals. For large sharks stable isotopes may provide an important tool to elucidate aspects of their ecological roles in marine systems, but laboratory based controlled feeding experiments are impractical. By utilizing commercial aquaria, we estimated ?15N and ?13C of muscle, liver, vertebral cartilage and a number of organs of three large sand tiger (Carcharias taurus) and one large lemon shark (Negaprion brevirostris) under a controlled feeding regime. For all sharks mean ± SD for ?15N and ?13C in lipid extracted muscle using lipid extracted prey data were 2.29‰ ± 0.22 and 0.90‰ ± 0.33, respectively. The use of non-lipid extracted muscle and prey resulted in very similar ?15N and ?13C values but mixing of lipid and non-lipid extracted data produced variable estimates. Values of ?15N and ?13C in lipid extracted liver and prey were 1.50‰ ± 0.54 and 0.22‰ ± 1.18, respectively. Non-lipid extracted diet discrimination factors in liver were highly influenced by lipid content and studies that examine stable isotopes in shark liver, and likely any high lipid tissue, should strive to remove lipid effects through standardising C:N ratios, prior to isotope analysis. Mean vertebral cartilage ?15N and ?13C values were 1.45‰ ± 0.61 and 3.75‰ ± 0.44, respectively. Organ ?15N and ?13C values were more variable among individual sharks but heart tissue was consistently enriched by ~ 1–2.5‰. Minimal variability in muscle and liver δ15N and δ13C sampled at different intervals along the length of individual sharks and between liver lobes suggests that stable isotope values are consistent within tissues of individual animals. To our knowledge, these are the first reported diet–tissue discrimination factors for large sharks under semi-controlled conditions, and are lower than those reported for teleost fish.  相似文献   

3.
The chain length dependence of the interaction of PFOA, a persistent environmental contaminant, with dimyristoyl- (DMPC), dipalmitoyl- (DPPC) and distearoylphosphatidylcholine (DSPC) was investigated using steady-state fluorescence anisotropy spectroscopy, differential scanning calorimetry (DSC) and dynamic light scattering (DLS). PFOA caused a linear depression of the main phase transition temperature Tm while increasing the width of the phase transition of all three phosphatidylcholines. Although PFOA's effect on Tm and the transition width decreased in the order DMPC > DPPC > DSPC, its relative effect on the phase behavior was largely independent of the phosphatidylcholine. PFOA caused swelling of DMPC but not DPPC and DSPC liposomes at 37 °C in the DLS experiments, which suggests that PFOA partitions more readily into bilayers in the fluid phase. These findings suggest that PFOA's effect on the phase behavior of phosphatidylcholines depends on the cooperativity and state (i.e., gel versus liquid phase) of the membrane. DLS experiments are also consistent with partial liposome solubilization at PFOA/lipid molar ratios > 1, which suggests the formation of mixed PFOA–lipid micelles.  相似文献   

4.
Carbon and nitrogen are important elements in biogeochemical studies of tidal wetlands. Three wetland zones in Luoyuan Bay in the Fujian province were chosen for this study; the Spartina alterniflora flat zone with Spartina alterniflora growing, the silt zone with no Spartina alterniflora growing and the Spartina alterniflora-silt flat zone – a transition zone between the two. The spatial and seasonal variations of total organic carbon (TOC), total nitrogen (TN), stable isotopes of organic material (δ13C, δ15N), C/N ratio, average particle size and sediment composition in surface and vertical sediments of different ecological zones were analyzed. Carbon and nitrogen accumulation and particle size effects in the different ecological zones were discussed and the indicators of δ13C and C/N ratios were also compared. TOC, TN, δ13C contents, C/N ratios, and average particle size varied within the ranges of 0.611–1.133%, 0.053–0.090%, ?22.60 to ?18.92‰, 12.3–15.7, and 6.4–8.7 μm, respectively. Sediments were mainly silt-sized. Besides δ15N values, the other parameters, such as TOC, TN, δ13C contents, C/N ratios, and average particle size showed an obvious zonal distribution in surface sediments. The distribution of TOC and TN contents reflected the distribution of Spartina alterniflora within the bay. The profile and seasonal variations of these parameters in different ecological zones indicated that variations in the Spartina alterniflora flat and transition zones were complex because of the effect of Spartina alterniflora. Vertical and seasonal variations were sampled in the silt flat area. The profile and seasonal variations of TOC, TN and δ13C were similar in the transition zone and the Spartina alterniflora flat zone. Seasonal concentrations of TOC, TN and δ13C decreased from autumn > spring > winter > summer. The seasonal variation of carbon and nitrogen in the sediments may be influenced by temperature, particle size, plankton and benthos. The particle size effect was significant in the surface sediments and profile sediments of the transition zone. However, other factors had a greater effect on the distributions of TOC and TN in the Spartina alterniflora flat and silt flat zones. C/N ratios in sediments of the Spartina alterniflora flat, transition zone and silt flat were close to or > 12, indicating that the organic material source was dominated by terrestrial inputs. However, δ13C values decreased from the Spartina alterniflora flat zone > transition zone > silt flat zone indicating that the organic material source was predominantly from marine inputs. Thus the indications from C/N ratios and δ13C were different. There was no clear relationship between C/N ratios and δ13C values and a better relationship between δ13C values and TOC concentrations suggested that δ13C values provided a better indication of the organic source. Limited amounts of organic material came from Spartina alterniflora. This study has provided basic data for researching biogeochemical processes of biogenic elements in tidal wetlands and vegetation restoration, and has also provided a reference for assessing and protecting the environment and ecological systems in wetlands.  相似文献   

5.
A water-soluble dextran was produced by purified dextransucrase from Leuconostoc mesenteroides NRRL B-640. The dextran was purified by alcohol precipitation. The structure of dextran was determined by FT-IR, 1H NMR, 13C NMR and 2-dimensional NMR spectroscopic techniques. NMR techniques (1D 1H, 13C and 2D HMQC) were used to fully assign the 1H and 13C spectra. All the spectral data showed that the dextran contains d-glucose residues in a linear chain with consecutive α(1  6) linkages. No branching was observed in the dextran structure. The viscosity of dextran solution decreased with the increase in shear rate exhibiting a typical non-Newtonian pseudoplastic behavior. The surface morphology of dried and powdered dextran studied using Scanning electron microscopy revealed the cubical porous structure.  相似文献   

6.
To elucidate the native-state crystal structure of beeswax from the Japanese bee, Apis cerana japonica, we determined the relationship between temperature and the 13C solid-state nuclear magnetic resonance (NMR) chemical shift of methylene carbon of beeswax, with comparison to n-alkanes and polyethylene in the orthorhombic, monoclinic, or triclinic crystal form. Variable-temperature 13C solid-state NMR observations of n-alkanes and polyethylene revealed that the chemical shifts of methylene carbon in the orthorhombic crystal form increased linearly with increasing temperature, that of the triclinic form decreased, and that of the monoclinic form was unaltered. These relations were compared with results of variable-temperature 13C solid-state NMR observation of beeswax. Results clarified that the two crystal forms comprising the beeswax in the native state are orthorhombic and monoclinic. The variable-temperature 13C solid-state NMR observations were also applied to interpret the differential scanning calorimetry (DSC) curve of beeswax. They were used to clarify the structural changes of beeswax for widely various temperatures. For beeswax secreted by the Japanese bee, the transition from the orthorhombic form to the rotator phase occurred at 36 °C, that is from the crystalline to the intermediate state at 45 °C. Moreover, the variable-temperature 13C solid-state NMR spectrum of honeybee silk in the native state was observed. Results demonstrated that the secondary structures of honeybee silk proteins in the native state comprised coexisting α-helix and β-sheet conformations and that the amount of α-helices was greater. The α-helix content of honeybee silk was compared with that of hornet silk produced by Vespa larvae.  相似文献   

7.
Diphytanoylphosphatidylcholine (DPhyPC) is a branched chain lipid often used for model membrane studies, including peptide/lipid interactions, ion channels and lipid rafts. This work reports results of volume measurements, water permeability measurements Pf, X-ray scattering from oriented samples, and X-ray and neutron scattering from unilamellar vesicles at T = 30 °C. We measured the volume/lipid VL = 1426 ± 1 Å3. The area/lipid was found to be 80.5 ± 1.5 Å2 when both X-ray and neutron data were combined with the SDP model analysis (Ku?erka, N., Nagle, J.F., Sachs, J.N., Feller, S.E., Pencer, J., Jackson, A., Katsaras, J., 2008. Lipid bilayer structure determined by the simultaneous analysis of neutron and X-ray scattering data. Biophys. J. 95, 2356–2367); this is substantially larger than the area of DOPC which has the largest area of the common linear chain lipids. Pf was measured to be (7.0 ± 1.0) × 10?3 cm/s; this is considerably smaller than predicted by the recently proposed 3-slab model (Nagle, J.F., Mathai, J.C., Zeidel, M.L., Tristram-Nagle, S., 2008. Theory of passive permeability through lipid bilayers. J. Gen. Physiol. 131, 77–85). This disagreement can be understood if there is a diminished diffusion coefficient in the hydrocarbon core of DPhyPC and that is supported by previous molecular dynamics simulations (Shinoda, W., Mikami, M., Baba, T., Hato, M., 2004. Molecular dynamics study on the effects of chain branching on the physical properties of lipid bilayers. 2. Permeability. J. Phys. Chem. B 108, 9346–9356). While the DPhyPC head–head thickness (DHH = 36.4 Å), and Hamaker parameter (H = 4.5 × 10?21 J) were similar to the linear chain lipid DOPC, the bending modulus (KC = 5.2 ± 0.5 × 10?21 J) was 30% smaller. Our results suggest that, from the biophysical perspective, DPhyPC belongs to a different family of lipids than phosphatidylcholines that have linear chain hydrocarbon chains.  相似文献   

8.
Centrifugal partition chromatography in the pH-zone-refining mode was successfully applied to the separation of alkaloids, directly from a crude extract of Ipomoea muricata. The experiment was performed with a two-phase solvent system composed of methyl tert-butyl ether (MtBE)–acetonitrile–water (4:1:5, v/v) where triethylamine (10 mM) was added to the upper organic stationary phase as a retainer and trifluoroacetic acid (10 mM) to the aqueous mobile phase as an eluter. From 4 g of crude extract, 210 mg lysergol and 182 mg chanoclavine were obtained in 97% and 79.6% purities. Total yield recovery was >95%. Isolated alkaloids were characterized on the basis of their 1H, 13C NMR and ESI-MS data.  相似文献   

9.
The direct interaction of the antibiotic primycin with the plasma membrane was investigated by employing the well-characterized ergosterol-producing, amphotericin B-sensitive parental Candida albicans strain 33erg+ and its ergosterol-less amphotericin B-resistant plasma membrane mutant erg-2. The growth inhibition concentration in shaken liquid medium was 64 μg ml?1 for 33erg+ and 128 μg ml?1 for erg-2, suggesting that the plasma membrane composition influences the mode of action of primycin. To determine the primycin-induced changes in the plasma membrane dynamic, electron paramagnetic resonance (EPR) spectroscopy methods were used, the spin-labeled fatty acid 5-(4,4-dimethyloxazolidine-N-oxyl)stearic acid) being applied for the in vivo measurements. The phase transition temperatures of untreated strain 33erg+ and its mutant erg-2 were 12.5 °C and 11 °C, respectively. After 128 μg ml?1 primycin treatment, these values increased to 17.5 °C and 16 °C, revealing a significant reduction in the phospholipid flexibility. Saturation transfer EPR measurements demonstrated that, the rotational correlation times of the spin label molecule for the control samples of 33erg+ and erg-2 were 60 ns and 100 ns. These correlation times gradually decreased on the addition of increasing primycin concentrations, reaching 8 μs and 1 μs. The results indicate the plasma membrane “rigidizing” effect of primycin, a feature that may stem from its ability to undergo complex formation with membrane constituent fatty acid molecules, causing alterations in the structures of phospholipids in the hydrophobic surface near the fatty acid chain region.  相似文献   

10.
We have employed 31P CODEX (centre-band-only-detection-of-exchange) NMR to measure lateral diffusion coefficients of phospholipids in unilamellar lipid bilayer vesicles consisting of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC), alone or in mixtures with 30 mol% 1-palmitoyl-2-oleoyl-phosphatidylglycerol (POPG) or cholesterol (CHOL). The lateral diffusion coefficients of POPC and POPG were extracted from experimental CODEX signal decays as a function of increasing mixing time, after accounting for the vesicle's size and size distribution, as determined via dynamic light scattering, and the viscosity of the vesicular suspension, as determined via 1H pulsed field gradient NMR. Lateral diffusion coefficients for POPC and POPG determined in this fashion fell in the range 1.0–3.2 × 10?12 m2 s?1 at 10 °C, depending on the vesicular composition, in good agreement with accepted values. Thus, two advantages of 31P CODEX NMR for phospholipid lateral diffusion measurements are demonstrated: no labelling of the molecule of interest is necessary, and multiple lateral diffusion coefficients can be measured simultaneously. It is expected that this approach will prove particularly useful in diagnosing heterogeneities in lateral diffusion behaviours, such as might be expected for specific lipid–lipid or lipid–protein interactions, and thermotropic or electrostatically induced phase inhomogeneities.  相似文献   

11.
We combine cyclo- and sequence stratigraphy along with whole rock δ13C and conodont apatite δ18O analysis to document high-frequency (104–105 yr) and My-scale sea-level changes for the Middle Pennsylvanian (Desmoinesian or Moscovian) Gray Mesa Formation of central New Mexico. Approximately 75 subtidal cycles (1–8 m) are grouped into 4 1/2 My-scale depositional sequences (40–80 m). About 50% of the cycles show evidence of prolonged subaerial exposure at cycle tops with the development of calcretes, diagenetic mottling, and regolith intraclasts. High-resolution δ13C analysis of whole rock limestones across nine of the cycles indicates that the cycle tops were diagenetically altered by isotopically light, meteoric fluids during sea-level fall and lowstand. These δ13C trends support the interpretation that high-frequency sea-level changes were responsible for cycle development.Conodont apatite δ18O values from sampled cycles indicate that the high-frequency sea-level changes were driven by glacio-eustasy combined with changes in surface seawater temperature (SST). δ18O values from conodont apatite, spanning parts of three depositional sequences indicate that My-scale glacio-eustasy and/or SST changes controlled sequence development. δ18O shifts indicate that the magnitudes of 104–105 yr glacio-eustasy were between ~ 55 and 170+ m combined with tropical SST changes of ~ 1.5°–6 °C. Calculated My-scale glacio-eustatic oscillations were between ~ 60 and 140 m with SST changes of < 3.5 °C. The most plausible driver for the My-scale paleoclimate changes is long-period obliquity (~ 1.2 My) variations. These calculated high-frequency, glacio-eustatic values are similar or greater than Pleistocene values, and lie within the range estimated for other Middle Pennsylvanian successions using a variety of independent eustatic proxies. The similarity in range of magnitudes between high-frequency and My-scale sea-level changes combined with the large differences in magnitudes between individual high-frequency sea-level oscillations helps explain the lack of systematic cycle-stacking patterns within these Pennsylvanian icehouse sequences.  相似文献   

12.
《Inorganica chimica acta》2006,359(4):1135-1146
We are reporting the stability constants of the different complexes between phosphonoacetic acid (PAA), phosphonoformic acid (PFA), aminomethylphosphonic acid (AMPA), aminoethylphosphonic acid (AEPA) and methylenediphosphonic acid (MDP) with the aluminum metal ion in aqueous solutions. (In this study the term aluminum is reserved for the 3+ ion.) The affinity of the phosphonic acid derivatives to chelate aluminum has been tested by potentiometric titrations with I = 0.10 M KNO3 at 25 ± 0.1 °C. The proposed aluminum–ligand complex structures have been confirmed by 31P NMR, 13C NMR, and 27Al NMR experiments. Both PAA and PFA formed simple one to one complexes. The respective values for PAA are log β111 = 13.57, log β110 = 10.58, and log β11−1 = 5.84. The respective values for PFA are log β112 = 15.24, log β111 = 13.11, and log β110 = 6.88. In contrast to PAA and PFA, the major species formed with AMPA and AEPA consist of a series of dimeric complexes. The 31P NMR spectra of these complexes indicate that the amine groups do not co-ordinate to aluminum and remain protonated. In addition to these dimeric complexes, a monoprotonated monomer of Al–AMPA also has been detected. The 27Al NMR experiments indicated that the aluminum is hexacoordinated in all the complexes in this study and the hydroxide ion did not remove aluminium from its complexes. Among the ligands studied, PAA and PFA were able to solubilize aluminum at physiological pH. A comparison between the acidities and the chelating properties of the ligands used is presented.  相似文献   

13.
Melittin is an amphipathic peptide which has received much attention as a model peptide for peptide–membrane interactions. It is however not suited as a transfection agent due to its cytolytic and toxicological effects. Retro-inverso-melittin, when covalently linked to the lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (riDOM), eliminates these shortcomings. The interaction of riDOM with phospholipid membranes was investigated with circular dichroism (CD) spectroscopy, dynamic light scattering, ζ-potential measurements, and high-sensitivity isothermal titration calorimetry. riDOM forms cationic nanoparticles with a diameter of ~ 13 nm which are well soluble in water and bind with high affinity to DNA and lipid membranes. When dissolved in bilayer membranes, riDOM nanoparticles dissociate and form transient pores. riDOM-induced membrane leakiness is however much reduced compared to that of authentic melittin. The secondary structure of the ri-melittin is not changed when riDOM is transferred from water to the membrane and displays a large fraction of β-structure. The 31P NMR spectrum of the nanoparticle is however transformed into a typical bilayer spectrum. The Gibbs free energy of riDOM binding to bilayer membranes is − 8.0 to − 10.0 kcal/mol which corresponds to the partition energy of just one fatty acyl chain. Half of the hydrophobic surface of the riDOM lipid extension with its 2 oleic acyl chains is therefore involved in a lipid–peptide interaction. This packing arrangement guarantees a good solubility of riDOM both in the aqueous and in the membrane phase. The membrane binding enthalpy is small and riDOM binding is thus entropy-driven.  相似文献   

14.
The 13C/12C ratios of leaves of the conifer morphotype Frenelopsis were measured to decipher the influences of water and salt stress on stomatal density (SD), epidermal cell density (ECD) and stomatal index (SI). Three morphospecies were analyzed: F. ugnaensis from freshwater fluvio-lacustrine deposits (Upper Barremian), F. turolensis and alata from coastal deposits (Lower-Middle Albian and Upper Albian respectively). The cuticle δ13C values show a large variation from ? 28‰ to ? 21‰. Comparison with previously published marine carbonate δ13C records indicate that the difference in cuticle δ13C between the different deposits are mainly due to difference in CO2-plant isotope fractionation rather than to change in isotopic composition of inorganic carbon in the atmosphere and ocean. The less negative δ13C and wide range in δ13C of F. turolensis and alata (? 27.5 to ? 21‰), compared to F. ugnaensis, (? 28 to ? 25‰) are interpreted as a result of salt and/or water stress. The data as a whole yield a good relationship between the 13C/12C ratio and SD (r = 0.67, n = 42, p < 0.001), SI (r = 0.53, n = 41, p < 0.001), hence suggesting that the differences in SD and SI between the three morphospecies are related to freshwater/saline environment. Looking at single morphospecies, the SD of F. ugnaensis decreases with increasing δ13C value (r = ? 0.57, n = 15, p = 0.026) as well as a decrease of SI (r = ? 0.62, n = 15, p = 0.013), possibly reflecting warmer and drier conditions. Average SI of F. alata does not significantly change with δ13C and inferred soil salinity in contrast to SD (p < 0.01).  相似文献   

15.
β-lapachone (1) has entered phases I and II clinical trials for the treatment of solid tumors and the therapeutic efficacy of β-lapachone is closely related to its metabolic process. In order to contribute to a better understanding of human metabolism of β-lapachone, Cunninghamella elegans ATCC 10028b was used as a microbial model of mammalian metabolism to biotransform β-lapachone and two new glycosylated derivatives were produced. The chemical structures were elucidated as 6-hydroxy-2,2-dimethyl-3,4-dihydro-2H-naphtho[1,2-b]pyran-5-O-β-d-glucopyranoside (2) and 5-hydroxy-2,2-dimethyl-3,4-dihydro-2H-naphtho[1,2-b]pyran-6-O-β-d-glucopyranoside (3) by 1H NMR, 13C NMR, HMBC, HMQC, COSY and HRMS analyses. The major derivative (3) displayed a lower activity against breast cancer cell line SKBR-3 (IC50 = 312.5 μM) than β-lapachone (IC50 = 5.6 μM), but did not show cytotoxicity against normal fibroblasts cell line GM07492-A, whereas β-lapachone was highly toxic (IC50 = 7.25 μM). These metabolites were reported here for the first time and are similar to those that occur in phase II of human metabolism  相似文献   

16.
A globally recorded negative carbon isotope excursion characterizes the transition from Cambrian Series 2 to Cambrian Series 3. This transition is also well exposed in sedimentary successions on the Yangtze Platform, and the Wuliu–Zengjiayan section, Guizhou Province, South China has been proposed as a potential Global Stratotype Section and Point (GSSP) for this boundary. Here, we report δ13Ccarb values for the Jianshan and the Wuliu–Zengjiayan sections. Both sections display a progressive decrease in δ13C from values around + 3‰ upwards in stratigraphy to a pronounced δ13C minimum with values as low as ? 6.9‰ at the proposed boundary level, and a return to δ13C values between 0 and + 1‰ in the upper part of the sections. The δ13C minimum is thought to be caused by a transgressive event, flooding the shelf area with 13C depleted basinal anoxic bottom water. Our δ13C data are in good agreement with carbon isotope profiles recorded elsewhere. These define the so called ROECE event (Redlichiid–Oleneliid Extinction Carbon Isotope Excursion, cf. Zhu et al., 2006, 2007) and may reflect the perturbation of the global carbon cycle during the Cambrian Series 2 to Cambrian Series 3 transition.  相似文献   

17.
2-(4-Fluorophenyl)-quinazolin-4(3H)-one (FQ) was synthesized, and its structure was identified with 1H nuclear magnetic resonance (1H NMR), 13C nuclear magnetic resonance (13C NMR), fourier transform infrared spectroscopy (FTIR), and high resolution mass spectrometry (HRMS). From the enzyme analysis, the results showed that it could inhibit the diphenolase activity of tyrosinase (IC50 = 120 ± 2 μM). Furthermore, the results of kinetic studies showed that the compound was a reversible mixed-type inhibitor, and that the inhibition constants were determined to be 703.2 (KI) and 222.1 μM (KIS). The results of fluorescence quenching experiment showed that the compound could interact with tyrosinase and the substrates (tyrosine and l-DOPA). Molecular docking analysis revealed that the mass transfer rate was affected by FQ blocking the enzyme catalytic center. In brief, current study identified a novel tyrosinase inhibitor which deserved further study for hyperpigmentation drugs.  相似文献   

18.
A new cellulose graft copolymer was synthesized in 1-N-butyl-3-methylimidazolium chloride ([Bmim]Cl) by the ring opening graft polymerization (ROGP) of p-dioxanone (PDO) onto cellulose. The structure of the copolymer was characterized by 13C and 1H NMR, WAXD, DSC as well as SEM. Cellulose graft copolymers with a molar substitution (MS) in the range of 2.08–4.60 were obtained with 24 h at 80 °C in a completely homogeneous procedure. The obtained copolymers exhibited the clear glass transition temperatures (Tg) indicating the inter-molecular and intra-molecular hydrogen bonds in cellulose molecules had been destroyed. The reaction media applied can be easily recycled and reused.  相似文献   

19.
We explored the relationships between surface-soil (1–20 cm) organic carbon isotopic signatures and associated climatic factors in central-east Asia in an attempt to develop transfer functions that can be used to retrieve the paleoclimatic information stored in the thick eolian–paleosol sequences within the area. Our analysis shows that the negative correlation between the surface-soil organic δ13C values and the mean annual precipitation is robust (R2 = 0.453; n = 196; p < 0.05) and the negative correlation with the growing-season (April–September) precipitation is more significant (R2 = 0.4966; n = 196; p < 0.05). Our study further shows that the positive correlation between the surface-soil organic δ13C values and mean growing-season aridity is most significant (R2 = 0.5805; n = 196; p < 0.05). We have smoothed both the organic δ13C values and the mean growing-season aridity values using a 3-point moving-window average-filter method in an attempt to remove some of random errors and found that the positive correlation between the two is further increased (R2 =  0.7784; n =  192; p < 0.05). These robust linear relationships demonstrate their value in reconstructing paleoclimate changes in the study area. The documented climatic dependency of the surface-soil carbon isotopic composition in the study area might have resulted both from the humidity-related isotopic enrichment processes of the dominant C3 plants (stomatal conductance and photosynthetic discrimination) and from the aridity-related abundance of C4 plants (mainly Chenopodiaceae species) along the S–N bioclimatic gradient.  相似文献   

20.
Chitin based polyurethane elastomers (PUEs) were synthesized by step growth polymerization techniques using poly (ε-caprolactone) (PCL), 4, 4′- diphenylmethane diisocyanate (MDI) and blends of chitin and 1,4-butanne diol (BDO). The conventional spectroscopic characterization of the samples with FT-IR, 1H NMR and 13C NMR were in accordance with proposed PUEs structure. The crystalline behavior of the synthesized polymers were investigated by X-ray diffraction (XRD), differential scanning calorimetery (DSC), optical microscopic technique and loss tangent curves (tan δ peaks). Results showed that crystallinity of the synthesized PUEs samples was affected by varying the chitin contents used as chain extender. The contents of chitin favors the formation of more ordered structure, as higher peak intensities were obtained from the PU extended with chitin than 1,4-butane diol (BDO). X-ray diffraction experiments results correlates with optical microscopy findings. The higher ΔH value; 41.57 (J g?1) was found in the samples extended with chitin than BDO (31.32 J g?1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号