共查询到20条相似文献,搜索用时 15 毫秒
1.
The development of safe and effective gene delivery agents poses a great challenge in the quest to make human gene therapy a reality. Cationic polymers represent one important class of materials for gene delivery, but to date they have shown only moderate efficiency. Improving the efficiency will require the design of new polymers incorporating optimized gene delivery properties. For example, inefficient release of the DNA/polymer complex from endocytic vesicles into the cytoplasm is one of the primary causes of poor gene delivery. Here we report the synthesis of a biocompatible, imidazole-containing polymer designed to overcome this obstacle. DNA/polymer polyplexes incorporating this polymer were shown to have desirable physico-chemical properties for gene delivery and are essentially nontoxic. Using this system, mammalian cells in vitro were transfected in the absence of any exogenous endosomolytic agent such as chloroquine. 相似文献
2.
Xiaolong Chen Hanjie Liu Ang Li Shuangshuang Ji Hao Fei 《The Journal of biological chemistry》2021,297(6)
Peptide conformation can change subject to environment cues. This concept also applies to many cationic amphipathic peptides (CAPs) known to have cell membrane lytic or penetrative activities. Well-conditioned CAPs can match the properties of the target membrane to support their intended biological functions, e.g., intracellular cargo delivery; however, the intricacy in such conditioning surpasses our current understanding. Here we focused on hydrophobicity, a key biophysical property that dictates the membrane activity of CAPs, and applied a structure–function strategy to evolve a template peptide for endosomolytic cargo delivery. The template was subjected to iterative adjustment to balance hydrophobicity between its N-terminal linear and C-terminal helical domains. We demonstrate that the obtained peptide, LP6, could dramatically promote cargo cell entry and facilitate cytosolic delivery of biomacromolecules such as FITC-dextran, saporin, and human IgG. Among the evolved peptide series, LP6 has low cytotoxicity and moderate hydrophobicity, exhibits maximum change in helical conformation in response to negatively charged phospholipids, and also shows an apparent aggregational behavior in response to sialic acid enrichment. These attributes of LP6 collectively indicate that its anion-responsive conformational change is a critical underlining of its endosomolytic cargo delivery capability. Our results also suggest that modulation of hydrophobicity serves as a key to the precise tuning of CAP''s membrane activity for future biomedical applications. 相似文献
3.
Prata CA Zhang XX Luo D McIntosh TJ Barthelemy P Grinstaff MW 《Bioconjugate chemistry》2008,19(2):418-420
DNA transfections are widely performed in research laboratories and in vivo gene delivery holds the promise for curing many diseases. The synthetic carriers or vectors for DNA are typically cationic lipids. However, in biology, the recognition of nucleic acids by proteins involves both electrostatic and stacking contributions. As such we have prepared a series of new lipophilic peptide vectors that possess lysine and tryptophan amino acids for evaluation. These lipophilic peptides show minimal cytotoxicity and enhanced in vitro gene transfection activity. 相似文献
4.
Chan E Amon M Marano RJ Wimmer N Kearns PS Manolios N Rakoczy PE Toth I 《Bioorganic & medicinal chemistry》2007,15(12):4091-4097
In search of new oligodeoxynucleotide (ODN) delivery agents, we evaluated novel peptides derived from core peptide H-GLRILLLKV-OH (CP). CP is a fragment designed from the T-cell antigen receptor (TCR) alpha-chain transmembrane sequence. CP was able to enter cells including T-cells and inhibited interleukin-2 (IL-2) production. To examine the effect of increased lipophilicity on cellular uptake and activity of CP, a lipoamino acid (2-aminododecanoic acid) was incorporated into peptide CP resulting in 2-aminodecanoyl-CP (LP). The toxicity of CP and LP was assessed by measuring the haemolytic activity. Neither compound caused any haemolysis of red blood cells. We have also compared the biological activities of the CP and LP. Using a T-cell antigen presentation assay, the more lipophilic LP caused greater inhibition of IL-2 production than the parent CP in the antigen stimulated T-cells. The LP also showed increased permeability than CP in the Caco-2 cell assay. We utilised the enhanced cell permeability property of LP in oligodeoxynucleotide ODN1 delivery. Isothermal titration calorimetry (ITC) suggested that CP and LP complex with ODN1 in a 12:1 (CP:ODN1) and 15:1 (LP:ODN1) ratio. These complexes were then transfected into human retinal pigment epithelial cells. The level of transfection was measured by the decreased production of the protein human vascular endothelial growth factor (hVEGF). The results revealed greater transfection efficiency for both CP and LP (47%, 55% more inhibition) compared to commercially available transfection agent cytofectin GSV. These results suggested that the CP and particularly its lipophilic analogue LP have the potential to be used as oligodeoxynucleotide delivery systems. 相似文献
5.
6.
Besides being a useful tool in research, gene transfer has a high potential as treatment for a variety of genetic and acquired diseases. However, in order to enable a gene to become a pharmaceutical, efficient and safe methods of delivery have to be developed. We recently found that cationic amphipathic histidine-rich peptide antibiotics can efficiently deliver DNA into mammalian cells. Our lead compound, LAH4 (KKALLALALHHLAHLALHLALALKKA), demonstrated in vitro transfection efficiencies comparable to those of commercially available reagents. Synthesis and evaluation of LAH mutants provided evidence that the transfection efficiency depends on the number and positioning of histidine residues in the peptide as well as on the pH at which the in-plane to transmembrane transition takes place. Moreover, recent results suggest that binding of the DNA complexes to the plasma membrane is mediated by heparan sulfate proteoglycans and that anionic phospholipids may be involved in the endosomal destabilization process. Finally, we also describe in this review the rationale that led to the development of LAH4 as a DNA carrier as well as the biophysical methods that have allowed us to propose a model which could explain the way this peptide destabilizes the endosomal bilayer. 相似文献
7.
Besides being a useful tool in research, gene transfer has a high potential as treatment for a variety of genetic and acquired diseases. However, in order to enable a gene to become a pharmaceutical, efficient and safe methods of delivery have to be developed. We recently found that cationic amphipathic histidine-rich peptide antibiotics can efficiently deliver DNA into mammalian cells. Our lead compound, LAH4 (KKALLALALHHLAHLALHLALALKKA), demonstrated in vitro transfection efficiencies comparable to those of commercially available reagents. Synthesis and evaluation of LAH mutants provided evidence that the transfection efficiency depends on the number and positioning of histidine residues in the peptide as well as on the pH at which the in-plane to transmembrane transition takes place. Moreover, recent results suggest that binding of the DNA complexes to the plasma membrane is mediated by heparan sulfate proteoglycans and that anionic phospholipids may be involved in the endosomal destabilization process. Finally, we also describe in this review the rationale that led to the development of LAH4 as a DNA carrier as well as the biophysical methods that have allowed us to propose a model which could explain the way this peptide destabilizes the endosomal bilayer. 相似文献
8.
We describe the synthesis of a series of alpha-galacto-omega-polyamine double-chain bolaamphiphiles (Gal-CL) and report on the gene transfer mediated with lipoplexes they form either when used in conjunction with DOPE or with pcTG90:DOPE. Lipofection was investigated with human HepG2 and murine BNL-CL2 hepatocytes expressing the asialoglycoprotein (ASGP) receptor which displays a high affinity for galactosyl residues, and with A549 cells which do not express ASGP. Our results show that cationic N/P = 5 and 2.5 Gal-CL lipoplexes constitute very efficient nonspecific gene transfer systems. Lipofection experiments performed in the presence of asialofetuin (a high affinity ligand of ASGP) led us to evidence also the involvement of a specific receptor-mediated endocytosis pathway for the transfection of the ASGP(+) HepG2 or BNL-CL2 hepatocytes with some Gal-CL formulations. This work suggests that targetable lipopolyamines presenting a single galactose residue appear as promising synthetic vectors for specific gene delivery to ASGP(+) cells. 相似文献
9.
Chitosan is a widely available, mucoadhesive polymer that is able to increase cellular permeability and improve the bioavailability of orally administered protein drugs. It can also be readily formed into nanoparticles able to entrap drugs or condense plasmid DNA. Studies on the formulation and oral delivery of such chitosan nanoparticles have demonstrated their efficacy in enhancing drug uptake and promoting gene expression. This review summarizes some of these findings and highlights the potential of chitosan as a component of oral delivery systems. 相似文献
10.
Topical or transdermal drug delivery is challenging because the skin acts as a natural and protective barrier. Therefore, several methods have been examined to increase the permeation of therapeutic molecules into and through the skin. One approach is to use the nanoparticulate delivery system. Starting with liposomes and other vesicular systems, several other types of nanosized drug carriers have been developed such as solid lipid nanoparticles, nanostructured lipid carriers, polymer-based nanoparticles and magnetic nanoparticles for dermatological applications. This review article discusses how different particulate systems can interact and penetrate into the skin barrier. In this review, the effectiveness of nanoparticles, as well as possible mode of actions of nanoparticles, is presented. In addition to nanoparticles, cell-penetrating peptide (CPP)-mediated drug delivery into the skin and the possible mechanism of CPP-derived delivery into the skin is discussed. Lastly, the effectiveness and possible mechanism of CPP-modified nanocarriers into the skin are addressed. 相似文献
11.
《Molecular membrane biology》2013,30(7):247-259
AbstractTopical or transdermal drug delivery is challenging because the skin acts as a natural and protective barrier. Therefore, several methods have been examined to increase the permeation of therapeutic molecules into and through the skin. One approach is to use the nanoparticulate delivery system. Starting with liposomes and other vesicular systems, several other types of nanosized drug carriers have been developed such as solid lipid nanoparticles, nanostructured lipid carriers, polymer-based nanoparticles and magnetic nanoparticles for dermatological applications. This review article discusses how different particulate systems can interact and penetrate into the skin barrier. In this review, the effectiveness of nanoparticles, as well as possible mode of actions of nanoparticles, is presented. In addition to nanoparticles, cell-penetrating peptide (CPP)-mediated drug delivery into the skin and the possible mechanism of CPP-derived delivery into the skin is discussed. Lastly, the effectiveness and possible mechanism of CPP-modified nanocarriers into the skin are addressed. 相似文献
12.
We describe the synthesis and cellular delivery properties of multivalent and branched delivery systems consisting of cell-penetrating peptides assembled onto a peptide scaffold using native chemical ligation. A trimeric delivery system presenting three copies of the prototypical cell-penetrating peptide TAT shows an endosomolytic activity much higher than its monomeric and dimeric counterparts. This novel reagent promotes the endosomal release of macromolecules internalized into cells by endocytosis, and as a result, it can be used to achieve cytosolic delivery of bioactive but cell-impermeable macromolecules in either cis (covalent conjugation) or trans (simple coincubation). 相似文献
13.
A dramatic surge in the development of peptides for gene delivery in vitro and in vivo has been witnessed in the past decade. A better understanding of the structural and mechanistic properties of peptides has been an important step for the rational design of optimal peptide-based gene delivery systems. Research has focused on the design of short synthetic peptides that overcome both extracellular and intracellular limitations of other gene delivery systems by binding reversibly and condensing DNA, specifically targeting cells and/or tissues, rapidly releasing plasmids into the cytoplasm and mediating efficient nuclear translocation. 相似文献
14.
Drug and gene delivery using gold nanoparticles 总被引:2,自引:0,他引:2
Monolayer-functionalized gold nanoparticles provide attractive vehicles for pharmaceutical delivery applications as a result
of their size and the unique properties and release mechanisms imparted by their monolayer. This review provides examples
of recent advances in the field of drug and gene delivery using gold nanoparticles. 相似文献
15.
Jaroslav Malina Hana Kostrhunova Vojtech Novohradsky Peter Scott Viktor Brabec 《Nucleic acids research》2022,50(2):674
The design of efficient and safe gene delivery vehicles remains a major challenge for the application of gene therapy. Of the many reported gene delivery systems, metal complexes with high affinity for nucleic acids are emerging as an attractive option. We have discovered that certain metallohelices—optically pure, self-assembling triple-stranded arrays of fully encapsulated Fe—act as nonviral DNA delivery vectors capable of mediating efficient gene transfection. They induce formation of globular DNA particles which protect the DNA from degradation by various restriction endonucleases, are of suitable size and electrostatic potential for efficient membrane transport and are successfully processed by cells. The activity is highly structure-dependent—compact and shorter metallohelix enantiomers are far less efficient than less compact and longer enantiomers. 相似文献
16.
Saeed AO Magnusson JP Moradi E Soliman M Wang W Stolnik S Thurecht KJ Howdle SM Alexander C 《Bioconjugate chemistry》2011,22(2):156-168
Multifunctional and modular block copolymers prepared from biocompatible monomers and linked by a bioreducible disulfide linkage have been prepared using a combination of ring-opening and atom-transfer radical polymerizations (ATRP). The presence of terminal functionality via ATRP allowed cell-targeting folic acid groups to be attached in a controllable manner, while the block copolymer architecture enabled well-defined nanoparticles to be prepared by a water-oil-water double emulsion procedure to encapsulate DNA with high efficiency. Gene delivery assays in a Calu-3 cell line indicated specific folate-receptor-mediated uptake of the nanoparticles, and triggered release of the DNA payload via cleavage of the disulfide link resulted in enhanced transgene expression compared to nonbioreducible analogues. These materials offer a promising and generic means to deliver a wide variety of therapeutic payloads to cells in a selective and tunable way. 相似文献
17.
18.
We present the synthesis of dual-responsive (pH and temperature) magnetic core-shell nanoparticles utilizing the grafting-from approach. First, oleic acid stabilized superparamagnetic maghemite (γ-Fe(2)O(3)) nanoparticles (NPs), prepared by thermal decomposition of iron pentacarbonyl, were surface-functionalized with ATRP initiating sites bearing a dopamine anchor group via ligand exchange. Subsequently, 2-(dimethylamino)ethyl methacrylate (DMAEMA) was polymerized from the surface by ATRP, yielding dual-responsive magnetic core-shell NPs (γ-Fe(2)O(3)@PDMAEMA). The attachment of the dopamine anchor group on the nanoparticle's surface is shown to be reversible to a certain extent, resulting in a grafting density of 0.15 chains per nm(2) after purification. Nevertheless, the grafted NPs show excellent long-term stability in water over a wide pH range and exhibit a pH- and temperature-dependent reversible agglomeration, as revealed by turbidimetry. The efficiency of γ-Fe(2)O(3)@PDMAEMA hybrid nanoparticles as a potential transfection agent was explored under standard conditions in CHO-K1 cells. Remarkably, γ-Fe(2)O(3)@PDMAEMA led to a 2-fold increase in the transfection efficiency without increasing the cytotoxicity, as compared to polyethyleneimine (PEI), and yielded on average more than 50% transfected cells. Moreover, after transfection with the hybrid nanoparticles, the cells acquired magnetic properties that could be used for selective isolation of transfected cells. 相似文献
19.
DNA transport through the cell membrane is an essential requirement for gene therapy, which utilizes oligonucleotides and plasmid DNA. However, membrane transport of DNA is an inefficient process, and the mechanism(s) by which this process occurs is not clear. Although viral vectors are effective in gene therapy, the immune response elicited by viral proteins poses a major problem. Therefore, several laboratories are involved in the development of nonviral DNA delivery vehicles. These vehicles include polyamines, polycationic lipids, and neutral polymers, capable of condensing DNA to nanoparticles with radii of 20-100 nm. Although the structural and energetic forces involved in DNA condensation have been studied by physical biochemists for the past 25 years, this area has experienced a resurgence of interest in recent years because of the influx of biotechnologists involved in developing gene therapy protocols to combat a variety of human diseases. Despite an intense effort to study the mechanism(s) of DNA condensation using a variety of microscopic, light scattering, fluorescence, and calorimetric techniques, the precise details of the energetics of DNA nanoparticle formation and their packing assembly are not known at present. Future studies aimed at defining the mechanism(s) of DNA compaction and structural features of DNA nanoparticles might aid in the development of novel gene delivery vehicles. 相似文献
20.
Hanwen Sun Xinjun Zhu Lianying Zhang Xiangling Gu Jinghe Wang Jing Li Yancong Zhang 《Biotechnology and Bioprocess Engineering》2013,18(4):648-654
Poly(2-(diethylamino)ethyl methacrylate) coated magnetic nanoparticles (PDEA-MNPs) were synthesized as a new gene nanocarrier to delivery plasmids (pEGFPN1 and pRL-TK) into human hepatoma (Hep G2) cells. The PDEA-MNPs shows the pH-sensitive property. These nanoparticles are positively charged at acidic pH and negatively charged at neutral or alkaline pH. The PDEAMNPs exhibited a low cytotoxicity in Hep G2 cells. PDEA-MNPs could bind and protect DNA from DNase I degradation. The transfection study demonstrated that the PDEA-MNPs could carry plasmid into Hep G2 cells and exhibited a high gene transfection efficiency. These results indicated that the novel magnetic nanoparticles could enhance gene transfection in vitro and hold the potential to be a promising non-viral nanodevice. 相似文献