首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Functionalized manoyl oxide derivatives have been proved over the years to evoke several biological responses. Among them, 3beta-hydroxy-manoyl oxide (1) and 3beta-acetoxy-manoyl oxide (2) have been shown to exhibit in vitro antimicrobial and cytotoxic activity, while N-imidazole-3 beta-thiocarbonyl ester of manoyl oxide (3) was found to exhibit potent cytotoxic effect. Their partitioning into phospholipid bilayers may lead to membrane structure modifications that are crucial in liposome development as they may influence their maintenance and integrity. DSC was used to study the modifications induced in DPPC bilayers by incorporating increasing concentrations of the three manoyl oxide derivatives. All derivatives were found to strongly affect the bilayer structural organization in terms of a decrease of the cooperativity, the fluidization and partially destabilization of the gel phase and the induction of a lateral phase separation in clustering domains. Derivatives 1 and 3 were incorporated into DPPC liposomes and their physicochemical stability was monitored at 4 degrees C. The stability of liposomes was strongly influenced by the presence of 1 and 3 at any molar ratio studied. DPPC/1 liposomes were found to retain its stability for 48 h at low concentration of 10% mol, while at higher concentrations up to 30% mol they collapsed into aggregated material. In all cases DPPC/3 liposomes were found unstable and sticky aggregated structures precipitated from the bulk suspension.  相似文献   

2.
Gold nanoparticles were prepared and loaded into the bilayer of dipalmitoylphosphatidylcholine (DPPC) liposomes, named as gold-loaded liposomes. Biophysical characterization of gold-loaded liposomes was studied by transmission electron microscopy (TEM) and Fourier transform infrared (FTIR) spectroscopy as well as turbidity and rheological measurements. FTIR measurements showed that gold nanoparticles made significant changes in the frequency of the CH2 stretching bands, revealing that gold nanoparticles increased the number of gauche conformers and create a conformational change within the acyl chains of phospholipids. The transmission electron micrographs (TEM) revealed that gold nanoparticles were loaded in the liposomal bilayer. The zeta potential of DPPC liposomes had a more negative value after incorporating of Au NPs into liposomal membranes. Turbidity studies revealed that the loading of gold nanoparticles into DPPC liposomes results in shifting the temperature of the main phase transition to a lower value. The membrane fluidity of DPPC bilayer was increased by loading the gold nanoparticles as shown from rheological measurements. Knowledge gained in this study may open the door to pursuing liposomes as a viable strategy for Au NPs delivery in many diagnostic and therapeutic applications.  相似文献   

3.
Abstract

A series of positively charged phospholipid and cholesterol derivatives was synthesized and evaluated as membrane components for liposomes. Small unilamellar liposomes containing up to 40 mole% of the synthetic lipids were prepared by sonication. Selected liposome preparations containing these synthetic lipid materials were found to be noncytotoxic in vitro by using a cell growth inhibition assay, whereas liposomes containing more classic positively charged components (stearylamine and cetyltrimethylammonium bromide) showed considerable cytotoxicity. Using an unanesthetized rabbit eye model, we have found that inclusion of the positively charged lipid derivatives into the liposomes significantly enhanced the ocular retention compared to neutral or negatively charged liposomes, presumably by molecular association with poly anionic corneal and conjunctival surface mucoglycoproteins. the increased retention was dependent on charge density and rigidity of the lipid bilayer. An assay for primary amino groups in these liposomes suggested that the distribution of the charged molecules between the inner and outer leaflets of the bilayer could be manipulated by lipid composition. Studies of liposomes containing cholesteryl esters of amino acids of various carbon chain lengths indicated that the charged amino groups need to extend from the surface of the lipid bilayers for better adhesion and retention. the ocular surface was saturable with respect to applied liposomes, which were cleared slowly from the eye with a half-time of clearance of about 2 hr. these data suggest a specific adhesion of the cationic liposomes to the surface of mucosal tissues.  相似文献   

4.
The high fluorescent potential and the exceptional photostability of lipophilic derivatives of perylene-3,4:9,10-bis(dicarboximides) are utilized for the fluorescence-labelling of liposomes. The preparation of the liposomes is effected by supersonic starting from a lipid mixture consisting of the matrix lipids soy lecithin, cholesterol, alpha-tocopherol and the perylene dyes. From a multitude of perylene derivatives investigated only those are optimally incorporated into the bilayer membrane of unilamellar liposomes which are substituted at both nitrogen atoms by one or two linear hydrocarbon groups. In order to attain an optimal fluorescent quantum yield, about 200 to 300 dye molecules can be incorporated per liposome. The liposomes thus obtained have a diameter of about 70 to 80 nm, are homogeneous and may be stored for more than seven months. Neither the fluorescent properties nor the stability of these liposomes are influenced by the additional incorporation of various ara C-derivatives and lipophilic anchor groups which subsequently enable the coupling of antibodies to the liposomes. As the water-insoluble perylene dyes are incorporated into the bilayer membrane, the aqueous inner volume of the liposomes remains available for a further utilization.  相似文献   

5.
Functionalized manoyl oxide derivatives have been proved over the years to evoke several biological responses. Among them, 3β-hydroxy-manoyl oxide (1) and 3β-acetoxy-manoyl oxide (2) have been shown to exhibit in vitro antimicrobial and cytotoxic activity, while N-imidazole-3 β-thiocarbonyl ester of manoyl oxide (3) was found to exhibit potent cytotoxic effect. Their partitioning into phospholipid bilayers may lead to membrane structure modifications that are crucial in liposome development as they may influence their maintenance and integrity. DSC was used to study the modifications induced in DPPC bilayers by incorporating increasing concentrations of the three manoyl oxide derivatives. All derivatives were found to strongly affect the bilayer structural organization in terms of a decrease of the cooperativity, the fluidization and partially destabilization of the gel phase and the induction of a lateral phase separation in clustering domains. Derivatives 1 and 3 were incorporated into DPPC liposomes and their physicochemical stability was monitored at 4°C. The stability of liposomes was strongly influenced by the presence of 1 and 3 at any molar ratio studied. DPPC/1 liposomes were found to retain its stability for 48 h at low concentration of 10% mol, while at higher concentrations up to 30% mol they collapsed into aggregated material. In all cases DPPC/3 liposomes were found unstable and sticky aggregated structures precipitated from the bulk suspension.  相似文献   

6.
Lipid vesicles with incorporated ion channels from polyene antibiotic amphotericin B were used to investigate structures of planar membranes formed by Shindler's techniques. A planar membrane assembled on the aperture in a lavsan film from two layers generated at the air-aqueous liposome suspension interface is not a simple bilayer but a bimolecular membrane containing numerous partly fused liposomes. A complete fusion of liposomal membranes with the planar bilayer is an unlikely event during membrane formation. A planar bimolecular lipid membrane without incorporated liposomes can be made by a method consisting of three stages: formation of a lipid layer on the air-water interface of a suspension containing liposomes, transfer of this layer along the surface of the solution into a chamber containing a solution without liposomes where a lipid monomolecular layer forms gradually (within about 20 min) at the air-water interface, assembling of the planar bilayer membrane from this monolayer. The knowledge of the planar membrane structure may be useful in experiments on incorporation of membrane proteins into a planar lipid bilayer.  相似文献   

7.
Lysosomes, enveloped viruses, as well as synaptic and secretory vesicles are all examples of natural nanocontainers (diameter ≈ 100 nm) which specifically rely on their lipid bilayer to protect and exchange their contents with the cell. We have applied methods primarily based on atomic force microscopy and finite element modeling that allow precise investigation of the mechanical properties of the influenza virus lipid envelope. The mechanical properties of small, spherical vesicles made from PR8 influenza lipids were probed by an atomic force microscopy tip applying forces up to 0.2 nN, which led to an elastic deformation up to 20%, on average. The liposome deformation was modeled using finite element methods to extract the lipid bilayer elastic properties. We found that influenza liposomes were softer than what would be expected for a gel phase bilayer and highly deformable: Consistent with previous suggestion that influenza lipids do not undergo a major phase transition, we observe that the stiffness of influenza liposomes increases gradually and weakly (within one order of magnitude) with temperature. Surprisingly, influenza liposomes were, in most cases, able to withstand wall-to-wall deformation, and forces >1 nN were generally required to puncture the influenza envelope, which is similar to viral protein shells. Hence, the choice of a highly flexible lipid envelope may provide as efficient a protection for a viral genome as a stiff protein shell.  相似文献   

8.
Abstract

Avoidance of lysosomal degradation of drugs entrapped in liposomes has been one of the major efforts in liposome research. The achievement of high drug deliver}' efficiency using pH-sensitive liposomes over the pH-insensitive liposomes has greatly influenced our strategies in liposome drug delivery. The success of pH-sensitive liposomes in delivering compounds such as fluorescence dye, anti-cancer reagents, toxins and DNA to target cells with high efficiency in vitro shows a great potential to apply the same strategy to in vivo systems. Using human plasma as a simplified model for blood, we have systematically examined the interaction of pH-sensitive liposomes composed of dioleoylphosphatidyl-ethanolamine (DOPE) and oleic acid (OA) with plasma components. Our results show that the bilayer structure of liposomes in plasma depends on their sizes. Small liposomes (d<200nm) were stabilized by plasma components while the larger ones (d>600nm) were rapidly lysed upon the exposure to plasma. Such differences in their stability in plasma may derive from their differences in lipid packing which determines the surface pressure of the membrane. Using purified serum proteins, we found that albumin such as bovine serum albumin (BSA) lyse liposomes by extracting OA from the bilayer. However, BSA induced lysis could be blocked by lipoproteins including HDL, LDL and VLDL, but not by immunoglobulins. Further studies with purified components of HDL demonstrated that apoAl, not the lipids of the HDL, contains the stabilization activity. The extraction of OA from liposomes and the insertion of plasma components into the bilayer modified the bilayer properties such that plasma stabilized liposomes were no longer pH sensitive. Using dipalmitoylsuccinylglycerol (DPSG), a double-chain pH senser for DOPE liposomes, we could preserve 50% pH sensitivity after plasma treatment. The potential application of such liposomes and other essential properties of pH-sensitive liposomes for drug delivery in vivo are also discussed.  相似文献   

9.
The localization of ubiquinone has been investigated in phospholipid bilayer vesicles in studies of fluorescence quenching of membrane-bound probes by ubiquinone homologs (Qn, where n is the number of the isoprenoid units of the chain). Fluorescence-quenching data obtained by using a set of anthroylstearate probes, having the fluorophore located at different depths, revealed that ubiquinone-3 is located throughout the whole bilayer thickness. From the bimolecular quenching constants in the membrane, lateral diffusion coefficients in two dimensions were calculated to span values of 10(-7)-10(-6) cm2.s-1. This suggests that ubiquinones laterally diffuse in a very fluid environment. On this basis, it is proposed that their translational diffusion in the bilayer takes place in two dimensions, with the quinone ring oscillating between the two bilayer surfaces within a hydrophobic environment not extending beyond the glycerol region. This model implies that the quinonic head is both settled near the polar surface of the bilayer and buried into the host hydrocarbon interior. This two-site distribution was confirmed for all Qn, except Q0, by their linear dichroism spectra in the bilayers provided by disc-like lyotropic nematic liquid crystals. These spectra also provided detailed information on the preferential orientations of the quinonic head of the different derivatives within the two sites. The mechanism by which the localization and orientation of Qn guest molecules inside the host bilayer is modulated by the isoprenoid chain length is discussed on a thermodynamical basis. Being that Qn is expected to be also widely contained in the highly curved cristae of the mitochondrial inner membrane, by using rod-like lyotropic nematic liquid crystals we searched out effects of the curvature of the host bilayer on those Qn distributions. The linear dichroism measurements reveal that Qn guest molecules are no longer obliged to find a partition between two different types of localizations when the host bilayer is highly curved. In this case all Qn, even the longest Q10, were found to stay parallel to the amphiphilic chains with a single site localization of the head near the polar interface. By the same linear dichroism technique, the local ordering of all Qn derivatives was also evaluated. The order parameters were found to be basically the same for all derivatives. This result is justified on the basis of the relaxation, caused by the surface curvature, of the lateral compression of the host chains.  相似文献   

10.
Solid state NMR techniques have been used to investigate the effect that two serotonin receptor 1a agonists (quipazine and LY-165,163) have on the phase behavior of, and interactions within, cholesterol/phosphocholine lipid bilayers. The presence of agonist, and particularly LY-165,163, appears to widen the phase transitions, an effect that is much more pronounced in the presence of cholesterol. It was found that both agonists locate close to the cholesterol, and their interactions with the lipids are modulated by the lipid phases. As the membrane condenses into mixed liquid-ordered/disordered phases, quipazine is pushed up toward the surface of the bilayer, whereas LY-165,163 moves deeper into the lipid chain region. In light of our results, we discuss the role of lipid/drug interactions on drug efficacy.  相似文献   

11.
A polymerizable electrolyte, 2-aminoethyl 1,6-heptadien-4-yl phosphate (AEHDP), which has the same hydrophilic head group as naturally occurring phospholipids, was prepared. Five equivalents of AEHDP were added to a suspension of liposomes (closed bilayer vesicles made of phospholipids) and layered on the liposomes. After polymerization by UV irradiation, the resulting polymer-coated liposomes were resistant to hydrolysis of their constituent phospholipids by phospholipase A2.  相似文献   

12.
There seems little doubt now that intravenous liposomal amphotericin B can be a useful treatment modality for the management of immunocompromised patients with suspected or proven disseminated fungal infections. Interestingly, the very significant reduction in toxicity reported when amphotericin B is part of a bilayer membrane is closely tied to the physical characteristics of the liposomes involved, although these are poorly understood at the molecular level. We record here an examination by spectroscopy and freeze-etch electron microscopy of unsonicated amphotericin B multilamellar vesicles prepared along the lines that we and others have followed for samples used in clinical trials and preclinical in vivo or in vitro studies. Our study has focussed on liposomes of 7:3 dimyristoylphosphatidylcholine/dimyristoylphosphatidylglycerol (DMPC/DMPG) bearing 0-25 mol% amphotericin B, since this lipid mixture has been the choice for the first clinical trials. Phase transition behaviour of these liposomes was examined by electron paramagnetic resonance (EPR) spectroscopy of a nitroxide spin label partitioning into the bilayers. The same experiments were then performed on similarly prepared liposomes of the disaturated species, dipalmitoylphosphatidylcholine (DPPC), and the diunsaturated species, dielaidoylphosphatidylcholine (DEPC). Partial phase diagrams were constructed for each of the lipid/drug mixtures. Melting curves and derived phase diagrams showed evidence that amphotericin B is relatively immiscible with the solid phase of bilayer membranes. The phase diagram for DEPC/amphotericin B was very similar to that of DPPC/amphotericin B, and both exhibited less extensive temperature ranges of phase separation than did the 7:3 DMPC/DMPG mixture with amphotericin B. Between 25 and 37 degrees C the measured fluidity of the 7:3 DMPC/DMPG liposomes was similar to that of the (unsaturated fatty acid) DEPC liposomes, and considerably higher than that seen for (saturated fatty acid) DPPC liposomes. Preparations of 7:3 DMPC/DMPG, DPPC, and DEPC containing 0-25 mol% amphotericin B were examined by freeze-etch electron microscopy at 35 and 22 degrees C (to cover the temperature range of the mammalian body core and periphery). The same liposome features were present in all three liposome types studied. The appearance of individual liposomes at x 100,000 magnification reflected their molecular characteristics, which were found to be significantly heterogeneous within each batch. The lipid/drug structures were bilayer in nature, although liposomes showing considerable disruption were common, particularly at the highest drug concentrations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
The effect of 5-n-alkylresorcinols, natural amphiphilic compounds, upon properties of phospholipid vesicles depends on their localization asymmetry. A significant increase of the bilayer permeability is observed when the title compounds are present only in the external medium. When these amphiphiles are preincorporated into the bilayer during its formation, the resulting liposomes effectively encapsulate water-soluble solutes which still remain in liposomes after 25 h. Additionally, the size of liposomes made of alkylresorcinol-phosphatidylcholine mixtures after eight cycles of freezing and thawing only (180-200 nm) is severalfold smaller than the size of vesicles prepared in a similar way from phospholipids only and the resulting liposomes are more homogeneous. These liposomes modified with alkylresorcinols are also stable during 40 day storage at both 4 degrees C and 20 degrees C, in contrast to control liposomes that already strongly aggregate after 10 days.  相似文献   

14.
Electron spin resonance (ESR) and atomic force microscopy (AFM) were used to study liposomes that were prepared from soybean phosphatidylcholine (PC); they incorporated plant antioxidants (ginger, allspice, and black-pepper extracts; clove oil; etc.) that were encapsulated in biopolymers (sodium caseinate or sodium caseinate–maltodextrin covalent conjugates). Plant antioxidants were shown to cause a 15–25% decrease in the microviscosity of deep-lying regions of the liposome lipid bilayer by ESR with a 16-doxylstearic acid spin probe. A ginger extract exerted the greatest effect (24%). Sodium caseinate and its covalent conjugates with maltodextrins (dextrose equivalents (DEs) 2 and 10) increased the microviscosity by 30–35% as compared with free and antioxidant-incorporating liposomes. AFM showed that antioxidants increased the cross-sectional area and volume of liposomes and that the polymers made liposomes denser and their structure more compact.  相似文献   

15.
N-Carboxy anhydrides of amino acid derivatives with hydrophobic side chains, N-carboxy anhydrides of gamma-dodecyl L-glutamate and gamma-benzyl D-glutamate, were polymerized in bilayer membrane of large unilamellar liposomes prepared by the injection method. Infrared spectra indicated that polypeptides isolated from the liposomes existed in two different conformational forms, namely the alpha-helix and the beta form. Studying osmotic shrinkage of liposomes, it was found that liposomal membrane was highly permeable to glucose in the presence of polypeptides in the membrane.  相似文献   

16.
The processes of membrane aggregation, permeability and fusion induced by cytotoxins from Central Asian cobra venom were investigated by studying optical density of liposome samples, permeability of liposome membranes for ferricyanide anions and exchange of lipid material between the membranes of adjacent liposomes. Cytotoxins Vc5 and Vc1 were found to induce aggregation of PC + CL and PC + PS liposomes. Cytotoxin Vc5 increased also the permeability of the liposomes for K3[Fe(CN)6] and enhanced their fusion. Cytotoxin Vc1 increased membrane permeability and enhanced fusion of PC + CL samples only. The changes in membrane permeability and fusion were found to occur within a single value of cytotoxin concentrations. The fusogenic properties of the cytotoxins studied are supposed to be due to the ability to dehydrate membrane surface and to destabilize the lipid bilayer structure. Fusion probability is largely defined by the phospholipid composition of the membranes. A model of interaction of cytotoxins with cardiolipin-containing membranes is offered.  相似文献   

17.
Two alternative mechanisms are frequently used to describe ionic permeation of lipid bilayers. In the first, ions partition into the hydrophobic phase and then diffuse across (the solubility-diffusion mechanism). The second mechanism assumes that ions traverse the bilayer through transient hydrophilic defects caused by thermal fluctuations (the pore mechanism). The theoretical predictions made by both models were tested for halide anions by measuring the permeability coefficients for chloride, bromide, and iodide as a function of bilayer thickness, ionic radius, and sign of charge. To vary the bilayer thickness systematically, liposomes were prepared from monounsaturated phosphatidylcholines (PC) with chain lengths between 16 and 24 carbon atoms. The fluorescent dye MQAE (N-(ethoxycarbonylmethyl)-6-methoxyquinolinium bromide) served as an indicator for halide concentration inside the liposomes and was used to follow the kinetics of halide flux across the bilayer membranes. The observed permeability coefficients ranged from 10(-9) to 10(-7) cm/s and increased as the bilayer thickness was reduced. Bromide was found to permeate approximately six times faster than chloride through bilayers of identical thickness, and iodide permeated three to four times faster than bromide. The dependence of the halide permeability coefficients on bilayer thickness and on ionic size were consistent with permeation of hydrated ions by a solubility-diffusion mechanism rather than through transient pores. Halide permeation therefore differs from that of a monovalent cation such as potassium, which has been accounted for by a combination of the two mechanisms depending on bilayer thickness.  相似文献   

18.
The relation between the various spatial structures of the gramicidin A channels and their ionic conductance has been studied. For this aim, various conformations of the peptide were pre-formed in liposomal bilayer and after subsequent fusion of liposomes with planar lipid bilayer the measured channel conductance was correlated with gramicidin structures established in liposomes. To form the single-stranded π6.3π 6.3 helix the peptide and lipid were co-dissolved in TFE prior to liposome preparation. THF and other solvents were used to form parallel (↑ ↑ π π) and antiparallel (↑ ↓ π π) double helices. Conformation of gramicidin in liposomes made by various phosphatidylcholines was monitored by CD spectroscopy, and computer analysis of the spectra obtained was performed. After fusion of gramicidin containing liposomes with planar bilayer membranes from asolectin, the histograms of single-channel conductance were obtained. The histograms had one or three distinct peaks depending on the liposome preparation. Assignment of the structure of the channel to conductance levels was made by correlation of CD data with conductance histograms. The channel-forming analogue, des(Trp-Leu)2-gramicidin A, has been studied by the same protocol. The channel conductances of gramicidin A and the shortened analogue increase in the following order: ↑ ↓ π π 2 ↑ ↑ π π < π 6.3π6.3. Single-channels formed by double helices have higher dispersity of conductance than the π6.3π6.3 helical channel. Lifetimes of the double helical and the π6.3π6.3 helical channels are very close to each other. The data obtained were compared with theoretically predicted properties of double helices [1].  相似文献   

19.
Electron spin resonance measurements were performed in order to investigate the influence of anti-cardiolipin antibodies on cardiolipin-containing liposomes. The physical state of the lipid structures and the alterations caused by the interaction with specific antibody were determined by measuring the freedom of motion of spin-labeled stearic acid derivatives incorporated into the lipid structures. The interaction of the cardiolipin-containing liposomes with the anti-cardiolipin antibodies reduced the mobility of the spin-labeled stearic acid probe I (12, 3), whose nitroxide group is assumed to be located near the polar region of the lipid bilayer. The restricted mobility, which qualitatively resembles the interaction of cardiolipin liposomes with calcium ions, is probably the result of a tighter packing of the polar groups in their crystalline array. The binding sites of the cardiolipin structures for anti-cardiolipin antibodies and Ca2 ions seem to be identical. As indicated by the spin-labeled stearic acid probe I (1, 14), the apolar region of the lipid bilayer is not affected by the interaction of the cardiolipin-containing liposomes with the anti-cardiolipin antibodies.  相似文献   

20.
Soybean agglutinin, peanut agglutinin, and concanavalin A were covalently bound by condensation reaction to gangliosides and ceramides incorporated within the bilayer of multilamellar and unilamellar liposomes. These modified liposomes had a much higher affinity for carrot and tobacco protoplasts except when concanavalin A was used.

In addition, soybean agglutinin and concanavalin A were attached by ligand-specific binding to liposomes containing cholesterol molecules derivatized with each lectin-specific sugar. This procedure allowed efficient crosslinking of liposomes to protoplasts. The same effect was achieved with soybean agglutinin and peanut agglutinin when derivatized cholesterol was replaced by gangliosides. The implications of these findings for the liposome-mediated nucleic acid transfer into protoplasts are discussed.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号