首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.

Background

The human brain is a highly complex system that can be represented as a structurally interconnected and functionally synchronized network, which assures both the segregation and integration of information processing. Recent studies have demonstrated that a variety of neuroimaging and neurophysiological techniques such as functional magnetic resonance imaging (MRI), diffusion MRI and electroencephalography/magnetoencephalography can be employed to explore the topological organization of human brain networks. However, little is known about whether functional near infrared spectroscopy (fNIRS), a relatively new optical imaging technology, can be used to map functional connectome of the human brain and reveal meaningful and reproducible topological characteristics.

Results

We utilized resting-state fNIRS (R-fNIRS) to investigate the topological organization of human brain functional networks in 15 healthy adults. Brain networks were constructed by thresholding the temporal correlation matrices of 46 channels and analyzed using graph-theory approaches. We found that the functional brain network derived from R-fNIRS data had efficient small-world properties, significant hierarchical modular structure and highly connected hubs. These results were highly reproducible both across participants and over time and were consistent with previous findings based on other functional imaging techniques.

Conclusions

Our results confirmed the feasibility and validity of using graph-theory approaches in conjunction with optical imaging techniques to explore the topological organization of human brain networks. These results may expand a methodological framework for utilizing fNIRS to study functional network changes that occur in association with development, aging and neurological and psychiatric disorders.  相似文献   

2.
Resting state-fMRI studies have found that the inter-areal correlations in cortical networks concentrate within ultra-low frequencies (0.01–0.04 Hz) while long-distance connections within subcortical networks distribute over a wider frequency range (0.01–0.14 Hz). However, the frequency characteristics of regional homogeneity (ReHo) in different areas are still unclear. To examine the ReHo properties in different frequency bands, a data-driven method, Empirical Mode Decomposition (EMD), was adopted to decompose the time series of each voxel into several components with distinct frequency bands. ReHo values in each of the components were then calculated. Our results showed that ReHo in cortical areas were higher and more frequency-dependent than those in the subcortical regions. BOLD oscillations of 0.02–0.04 Hz mainly contributed to the cortical ReHo, whereas the ReHo in limbic areas involved a wider frequency range and were dominated by higher-frequency BOLD oscillations (>0.08 Hz). The frequency characteristics of ReHo are distinct between different parts of the striatum, with the frequency band of 0.04–0.1 Hz contributing the most to ReHo in caudate nucleus, and oscillations lower than 0.02 Hz contributing more to ReHo in putamen. The distinct frequency-specific ReHo properties of different brain areas may arise from the assorted cytoarchitecture or synaptic types in these areas. Our work may advance the understanding of the neural-physiological basis of local BOLD activities and the functional specificity of different brain regions.  相似文献   

3.
An advanced graph theoretical approach is introduced that enables a higher level of functional interpretation of samples of directed networks with identical fixed pairwise different vertex labels that are drawn from a particular population. Compared to the analysis of single networks, their investigation promises to yield more detailed information about the represented system. Often patterns of directed edges in sample element networks are too intractable for a direct evaluation and interpretation. The new approach addresses the problem of simplifying topological information and characterizes such a sample of networks by finding its locatable characteristic topological patterns. These patterns, essentially sample-specific network motifs with vertex labeling, might represent the essence of the intricate topological information contained in all sample element networks and provides as well a means of differentiating network samples. Central to the accurateness of this approach is the null model and its properties, which is needed to assign significance to topological patterns. As a proof of principle the proposed approach has been applied to the analysis of networks that represent brain connectivity before and during painful stimulation in patients with major depression and in healthy subjects. The accomplished reduction of topological information enables a cautious functional interpretation of the altered neuronal processing of pain in both groups.  相似文献   

4.
Neuroimaging studies have shown that heroin addiction is related to abnormalities in widespread local regions and in the functional connectivity of the brain. However, little is known about whether heroin addiction changes the topological organization of whole-brain functional networks. Seventeen heroin-dependent individuals (HDIs) and 15 age-, gender-matched normal controls (NCs) were enrolled, and the resting-state functional magnetic resonance images (RS-fMRI) were acquired from these subjects. We constructed the brain functional networks of HDIs and NCs, and compared the between-group differences in network topological properties using graph theory method. We found that the HDIs showed decreases in the normalized clustering coefficient and in small-worldness compared to the NCs. Furthermore, the HDIs exhibited significantly decreased nodal centralities primarily in regions of cognitive control network, including the bilateral middle cingulate gyrus, left middle frontal gyrus, and right precuneus, but significantly increased nodal centralities primarily in the left hippocampus. The between-group differences in nodal centralities were not corrected by multiple comparisons suggesting these should be considered as an exploratory analysis. Moreover, nodal centralities in the left hippocampus were positively correlated with the duration of heroin addiction. Overall, our results indicated that disruptions occur in the whole-brain functional networks of HDIs, findings which may be helpful in further understanding the mechanisms underlying heroin addiction.  相似文献   

5.
By detecting spontaneous low-frequency fluctuations (LFF) of blood oxygen level–dependent (BOLD) signals, resting-state functional magnetic resonance imaging (rfMRI) measurements are believed to reflect spontaneous cerebral neural activity. Previous fMRI studies were focused on the examination of motor-related areas and little is known about the functional changes in the extra-motor areas in amyotrophic lateral sclerosis (ALS) patients. The aim of this study is to investigate functional cerebral abnormalities in ALS patients on a whole brain scale. Twenty ALS patients and twenty age- and sex-matched healthy volunteers were enrolled. Voxel-based analysis was used to characterize the alteration of amplitude of low frequency fluctuation (ALFF). Compared with the controls, the ALS patients showed significantly decreased ALFF in the visual cortex, fusiform gyri and right postcentral gyrus; and significantly increased ALFF in the left medial frontal gyrus, and in right inferior frontal areas after grey matter (GM) correction. Taking GM volume as covariates, the ALFF results were approximately consistent with those without GM correction. In addition, ALFF value in left medial frontal gyrus was negatively correlated with the rate of disease progression and duration. Decreased functional activity observed in the present study indicates the underlying deficits of the sensory processing system in ALS. Increased functional activity points to a compensatory mechanism. Our findings suggest that ALS is a multisystem disease other than merely motor dysfunction and provide evidence that alterations of ALFF in the frontal areas may be a special marker of ALS.  相似文献   

6.
The functional brain connectivity studies are generally based on the synchronization of the resting-state functional magnetic resonance imaging (fMRI) signals. Functional connectivity measures usually assume a stable relationship over time; however, accumulating studies have reported time-varying properties of strength and spatial distribution of functional connectivity. The present study explored the modulation of functional connectivity between two regions by a third region using the physiophysiological interaction (PPI) technique. We first identified eight brain networks and two regions of interest (ROIs) representing each of the networks using a spatial independent component analysis. A voxel-wise analysis was conducted to identify regions that showed modulatory interactions (PPI) with the two ROIs of each network. Mostly, positive modulatory interactions were observed within regions involved in the same system. For example, the two regions of the dorsal attention network revealed modulatory interactions with the regions related to attention, while the two regions of the extrastriate network revealed modulatory interactions with the regions in the visual cortex. In contrast, the two regions of the default mode network (DMN) revealed negative modulatory interactions with the regions in the executive network, and vice versa, suggesting that the activities of one network may be associated with smaller within network connectivity of the competing network. These results validate the use of PPI analysis to study modulation of resting-state functional connectivity by a third region. The modulatory effects may provide a better understanding of complex brain functions.  相似文献   

7.
Low frequency oscillations are essential in cognitive function impairment in schizophrenia. While functional connectivity can reveal the synchronization between distant brain regions, the regional abnormalities in task-independent baseline brain activity are less clear, especially in specific frequency bands. Here, we used a regional homogeneity (ReHo) method combined with resting-state functional magnetic resonance imaging to investigate low frequency spontaneous neural activity in the three different frequency bands (slow-5∶0.01–0.027 Hz; slow-4∶0.027–0.08 Hz; and typical band: 0.01–0.08 Hz) in 69 patients with schizophrenia and 62 healthy controls. Compared with controls, schizophrenia patients exhibited decreased ReHo in the precentral gyrus, middle occipital gyrus, and posterior insula, whereas increased ReHo in the medial prefrontal cortex and anterior insula. Significant differences in ReHo between the two bands were found in fusiform gyrus and superior frontal gyrus (slow-4> slow-5), and in basal ganglia, parahippocampus, and dorsal middle prefrontal gyrus (slow-5> slow-4). Importantly, we identified significant interaction between frequency bands and groups in the inferior occipital gyrus and caudate body. This study demonstrates that ReHo changes in schizophrenia are widespread and frequency dependent.  相似文献   

8.
Recent developments in graph theory have heightened the need for investigating the disruptions in the topological structure of functional brain network in major depressive disorder (MDD). In this study, we employed resting-state functional magnetic resonance imaging (fMRI) and graph theory to examine the whole-brain functional networks among 42 MDD patients and 42 healthy controls. Our results showed that compared with healthy controls, MDD patients showed higher local efficiency and modularity. Furthermore, MDD patients showed altered nodal centralities of many brain regions, including hippocampus, temporal cortex, anterior cingulate gyrus and dorsolateral prefrontal gyrus, mainly located in default mode network and cognitive control network. Together, our results suggested that MDD was associated with disruptions in the topological structure of functional brain networks, and provided new insights concerning the pathophysiological mechanisms of MDD.  相似文献   

9.
Recent studies have shown that multivariate pattern analysis (MVPA) can be useful for distinguishing brain disorders into categories. Such analyses can substantially enrich and facilitate clinical diagnoses. Using MPVA methods, whole brain functional networks, especially those derived using different frequency windows, can be applied to detect brain states. We constructed whole brain functional networks for groups of vascular dementia (VaD) patients and controls using resting state BOLD-fMRI (rsfMRI) data from three frequency bands - slow-5 (0.01∼0.027 Hz), slow-4 (0.027∼0.073 Hz), and whole-band (0.01∼0.073 Hz). Then we used the support vector machine (SVM), a type of MVPA classifier, to determine the patterns of functional connectivity. Our results showed that the brain functional networks derived from rsfMRI data (19 VaD patients and 20 controls) in these three frequency bands appear to reflect neurobiological changes in VaD patients. Such differences could be used to differentiate the brain states of VaD patients from those of healthy individuals. We also found that the functional connectivity patterns of the human brain in the three frequency bands differed, as did their ability to differentiate brain states. Specifically, the ability of the functional connectivity pattern to differentiate VaD brains from healthy ones was more efficient in the slow-5 (0.01∼0.027 Hz) band than in the other two frequency bands. Our findings suggest that the MVPA approach could be used to detect abnormalities in the functional connectivity of VaD patients in distinct frequency bands. Identifying such abnormalities may contribute to our understanding of the pathogenesis of VaD.  相似文献   

10.
Resting-state functional connectivity (RSFC) offers a novel approach to reveal the temporal synchronization of functionally related brain regions. Recent studies have identified several RSFCs whose strength was associated with reading competence in alphabetic languages. In the present study, we examined the role of intrinsic functional relations for reading a non-alphabetic language – Chinese – by correlating RSFC maps of nine Chinese reading-related seed regions and reaction time in the single-character reading task. We found that Chinese reading efficiency was positively correlated with the connection between left inferior occipital gyrus and left superior parietal lobule, between right posterior fusiform gyrus and right superior parietal lobule, and between left inferior temporal gyrus and left inferior parietal lobule. These results could not be attributed to inter-individual differences arising from the peripheral processes of the reading task such as visual input detection and articulation. The observed RSFC-reading correlation relationships are discussed in the framework of Chinese character reading, including visuospatial analyses and semantic/phonological processes.  相似文献   

11.
In order to assess whole-brain resting-state fluctuations at a wide range of frequencies, resting-state fMRI data of 20 healthy subjects were acquired using a multiband EPI sequence with a low TR (354 ms) and compared to 20 resting-state datasets from standard, high-TR (1800 ms) EPI scans. The spatial distribution of fluctuations in various frequency ranges are analyzed along with the spectra of the time-series in voxels from different regions of interest. Functional connectivity specific to different frequency ranges (<0.1 Hz; 0.1–0.25 Hz; 0.25–0.75 Hz; 0.75–1.4 Hz) was computed for both the low-TR and (for the two lower-frequency ranges) the high-TR datasets using bandpass filters. In the low-TR data, cortical regions exhibited highest contribution of low-frequency fluctuations and the most marked low-frequency peak in the spectrum, while the time courses in subcortical grey matter regions as well as the insula were strongly contaminated by high-frequency signals. White matter and CSF regions had highest contribution of high-frequency fluctuations and a mostly flat power spectrum. In the high-TR data, the basic patterns of the low-TR data can be recognized, but the high-frequency proportions of the signal fluctuations are folded into the low frequency range, thus obfuscating the low-frequency dynamics. Regions with higher proportion of high-frequency oscillations in the low-TR data showed flatter power spectra in the high-TR data due to aliasing of the high-frequency signal components, leading to loss of specificity in the signal from these regions in high-TR data. Functional connectivity analyses showed that there are correlations between resting-state signal fluctuations of distant brain regions even at high frequencies, which can be measured using low-TR fMRI. On the other hand, in the high-TR data, loss of specificity of measured fluctuations leads to lower sensitivity in detecting functional connectivity. This underlines the advantages of low-TR EPI sequences for resting-state and potentially also task-related fMRI experiments.  相似文献   

12.
The ABO locus in humans is characterized by elevated heterozygosity and very similar allele frequencies among populations scattered across the globe. Using knowledge of ABO protein function, we generated a simple model of asymmetric negative frequency dependent selection and genetic drift to explain the maintenance of ABO polymorphism and its loss in human populations. In our models, regardless of the strength of selection, models with large effective population sizes result in ABO allele frequencies that closely match those observed in most continental populations. Populations must be moderately small to fall out of equilibrium and lose either the A or B allele (Ne ≤ 50) and much smaller (Ne ≤ 25) for the complete loss of diversity, which nearly always involved the fixation of the O allele. A pattern of low heterozygosity at the ABO locus where loss of polymorphism occurs in our model is consistent with small populations, such as Native American populations. This study provides a general evolutionary model to explain the observed global patterns of polymorphism at the ABO locus and the pattern of allele loss in small populations. Moreover, these results inform the range of population sizes associated with the recent human colonization of the Americas.  相似文献   

13.
Brain activity during rest is spatially coherent over functional connectivity networks called resting-state networks. In resting-state functional magnetic resonance imaging, independent component analysis yields spatially distributed network representations reflecting distinct mental processes, such as intrinsic (default) or extrinsic (executive) attention, and sensory inhibition or excitation. These aspects can be related to different treatments or subjective experiences. Among these, exhaustion is a common psychological state induced by prolonged mental performance. Using repeated functional magnetic resonance imaging sessions and spatial independent component analysis, we explored the effect of several hours of sustained cognitive performances on the resting human brain. Resting-state functional magnetic resonance imaging was performed on the same healthy volunteers in two days, with and without, and before, during and after, an intensive psychological treatment (skill training and sustained practice with a flight simulator). After each scan, subjects rated their level of exhaustion and performed an N-back task to evaluate eventual decrease in cognitive performance. Spatial maps of selected resting-state network components were statistically evaluated across time points to detect possible changes induced by the sustained mental performance. The intensive treatment had a significant effect on exhaustion and effort ratings, but no effects on N-back performances. Significant changes in the most exhausted state were observed in the early visual processing and the anterior default mode networks (enhancement) and in the fronto-parietal executive networks (suppression), suggesting that mental exhaustion is associated with a more idling brain state and that internal attention processes are facilitated to the detriment of more extrinsic processes. The described application may inspire future indicators of the level of fatigue in the neural attention system.  相似文献   

14.
Spatial patterns of coherent activity across different brain areas have been identified during the resting-state fluctuations of the brain. However, recent studies indicate that resting-state activity is not stationary, but shows complex temporal dynamics. We were interested in the spatiotemporal dynamics of the phase interactions among resting-state fMRI BOLD signals from human subjects. We found that the global phase synchrony of the BOLD signals evolves on a characteristic ultra-slow (<0.01Hz) time scale, and that its temporal variations reflect the transient formation and dissolution of multiple communities of synchronized brain regions. Synchronized communities reoccurred intermittently in time and across scanning sessions. We found that the synchronization communities relate to previously defined functional networks known to be engaged in sensory-motor or cognitive function, called resting-state networks (RSNs), including the default mode network, the somato-motor network, the visual network, the auditory network, the cognitive control networks, the self-referential network, and combinations of these and other RSNs. We studied the mechanism originating the observed spatiotemporal synchronization dynamics by using a network model of phase oscillators connected through the brain’s anatomical connectivity estimated using diffusion imaging human data. The model consistently approximates the temporal and spatial synchronization patterns of the empirical data, and reveals that multiple clusters that transiently synchronize and desynchronize emerge from the complex topology of anatomical connections, provided that oscillators are heterogeneous.  相似文献   

15.
Resting-state functional MRI (rs-fMRI) has emerged as a powerful tool for investigating brain functional connectivity (FC). Research in recent years has focused on assessing the reliability of FC across younger subjects within and between scan-sessions. Test-retest reliability in resting-state functional connectivity (RSFC) has not yet been examined in older adults. In this study, we investigated age-related differences in reliability and stability of RSFC across scans. In addition, we examined how global signal regression (GSR) affects RSFC reliability and stability. Three separate resting-state scans from 29 younger adults (18–35 yrs) and 26 older adults (55–85 yrs) were obtained from the International Consortium for Brain Mapping (ICBM) dataset made publically available as part of the 1000 Functional Connectomes project www.nitrc.org/projects/fcon_1000. 92 regions of interest (ROIs) with 5 cubic mm radius, derived from the default, cingulo-opercular, fronto-parietal and sensorimotor networks, were previously defined based on a recent study. Mean time series were extracted from each of the 92 ROIs from each scan and three matrices of z-transformed correlation coefficients were created for each subject, which were then used for evaluation of multi-scan reliability and stability. The young group showed higher reliability of RSFC than the old group with GSR (p-value = 0.028) and without GSR (p-value <0.001). Both groups showed a high degree of multi-scan stability of RSFC and no significant differences were found between groups. By comparing the test-retest reliability of RSFC with and without GSR across scans, we found significantly higher proportion of reliable connections in both groups without GSR, but decreased stability. Our results suggest that aging is associated with reduced reliability of RSFC which itself is highly stable within-subject across scans for both groups, and that GSR reduces the overall reliability but increases the stability in both age groups and could potentially alter group differences of RSFC.  相似文献   

16.
Several methods have been applied to EEG or MEG signals to detect functional networks. In recent works using MEG/EEG and fMRI data, temporal ICA analysis has been used to extract spatial maps of resting-state networks with or without an atlas-based parcellation of the cortex. Since the links between the fMRI signal and the electromagnetic signals are not fully established, and to avoid any bias, we examined whether EEG alone was able to derive the spatial distribution and temporal characteristics of functional networks. To do so, we propose a two-step original method: 1) An individual multi-frequency data analysis including EEG-based source localisation and spatial independent component analysis, which allowed us to characterize the resting-state networks. 2) A group-level analysis involving a hierarchical clustering procedure to identify reproducible large-scale networks across the population. Compared with large-scale resting-state networks obtained with fMRI, the proposed EEG-based analysis revealed smaller independent networks thanks to the high temporal resolution of EEG, hence hierarchical organization of networks. The comparison showed a substantial overlap between EEG and fMRI networks in motor, premotor, sensory, frontal, and parietal areas. However, there were mismatches between EEG-based and fMRI-based networks in temporal areas, presumably resulting from a poor sensitivity of fMRI in these regions or artefacts in the EEG signals. The proposed method opens the way for studying the high temporal dynamics of networks at the source level thanks to the high temporal resolution of EEG. It would then become possible to study detailed measures of the dynamics of connectivity.  相似文献   

17.
The statistical mechanical approach to complex networks is the dominant paradigm in describing natural and societal complex systems. The study of network properties, and their implications on dynamical processes, mostly focus on locally defined quantities of nodes and edges, such as node degrees, edge weights and –more recently– correlations between neighboring nodes. However, statistical methods quickly become cumbersome when dealing with many-body properties and do not capture the precise mesoscopic structure of complex networks. Here we introduce a novel method, based on persistent homology, to detect particular non-local structures, akin to weighted holes within the link-weight network fabric, which are invisible to existing methods. Their properties divide weighted networks in two broad classes: one is characterized by small hierarchically nested holes, while the second displays larger and longer living inhomogeneities. These classes cannot be reduced to known local or quasilocal network properties, because of the intrinsic non-locality of homological properties, and thus yield a new classification built on high order coordination patterns. Our results show that topology can provide novel insights relevant for many-body interactions in social and spatial networks. Moreover, this new method creates the first bridge between network theory and algebraic topology, which will allow to import the toolset of algebraic methods to complex systems.  相似文献   

18.
The sidedness of the biosynthesis of phosphatidylcholine and its transbilayer movement in brain microsomes were investigated. Microsomes were labelled in vitro or in vivo either through Kennedy's pathway or by the base-exchange reaction. The vesicles were treated with phospholipase C under conditions where only the phospholipids present in the external leaflet were hydrolyzed. The incubation of microsomes with CDP-[14C]choline or [14C]choline showed that most of the newly synthesized phosphatidylcholine molecules were localized in the external leaflet. With time a few molecules were transferred into the inner leaflet. When phosphatidylcholine was labelled in vivo by intraventricular injection of [3H]choline the specific activities of the phosphatidylcholine in the outer leaflet were higher than those in the inner leaflet after short times of labelling but became similar after long times of labelling. The results suggest that in brain microsomes the synthesis of phosphatidylcholine through Kennedy's pathway or by the base-exchange reaction takes place on the external leaflet which corresponds to the cytoplasmic one in situ. The transfer of these molecules from the outer leaflet to the inner one is a slow process and the mechanisms that control the transbilayer movement of the phosphatidylcholine seem to be independent of those that control their biosynthesis.  相似文献   

19.
Keqin Li 《Cluster computing》2005,8(2-3):119-126
Multihop wireless networks are treated as random symmetric planar point graphs, where all the nodes have the same transmission power and radius, and vertices of a graph are drawn randomly over certain geographical region. Several basic and important topological properties of random multihop wireless networks are studied, including node degree, connectivity, diameter, bisection width, and biconnectivity. It is believed that such study has very useful implication in real applications.Keqin Li is currently a full professor of computer science in State University of New York at New Paltz. His research interests are mainly in design and analysis of algorithms, parallel and distributed computing, and computer networking, with particular interests in approximation algorithms, parallel algorithms, job scheduling, task dispatching, load balancing, performance evaluation, dynamic tree embedding, scalability analysis, parallel computing using optical interconnects, optical networks, and wireless networks. He has published over 190 journal articles, book chapters, and research papers in refereed international conference proceedings. He has also co-edited six international conference proceedings and a book entitled Parallel Computing Using Optical Interconnections published by Kluwer Academic Publishers in 1998. His current research (2001–2004) is supported by US National Science Foundation.Dr. Li has served in various capacities for numerous international conferences as program/steering/advisory committee member, workshop chair, track chair, and special session organizer. He received best paper awards in 1996 International Conference on Parallel and Distributed Processing Techniques and Applications, 1997 IEEE National Aerospace and Electronics Conference, and 2000 IEEE International Parallel and Distributed Processing Symposium. He received a recognition award from International Association of Science and Technology for Development in October 1998. He is listed in Whos Who in Science and Engineering, 7th edition, 2003–2004; Whos Who in America, 58th edition, 2004; Whos Who in the World, 20th edition, 2003. Dr. Li is a senior member of IEEE and a member of IEEE Computer Society and ACM.  相似文献   

20.

Background

Previous studies have defined low-frequency, spatially consistent intrinsic connectivity networks (ICN) in resting functional magnetic resonance imaging (fMRI) data which reflect functional interactions among distinct brain areas. We sought to explore whether and how repeated migraine attacks influence intrinsic brain connectivity, as well as how activity in these networks correlates with clinical indicators of migraine.

Methods/Principal Findings

Resting-state fMRI data in twenty-three patients with migraines without aura (MwoA) and 23 age- and gender-matched healthy controls (HC) were analyzed using independent component analysis (ICA), in combination with a “dual-regression” technique to identify the group differences of three important pain-related networks [default mode network (DMN), bilateral central executive network (CEN), salience network (SN)] between the MwoA patients and HC. Compared with the HC, MwoA patients showed aberrant intrinsic connectivity within the bilateral CEN and SN, and greater connectivity between both the DMN and right CEN (rCEN) and the insula cortex - a critical region involving in pain processing. Furthermore, greater connectivity between both the DMN and rCEN and the insula correlated with duration of migraine.

Conclusions

Our findings may provide new insights into the characterization of migraine as a condition affecting brain activity in intrinsic connectivity networks. Moreover, the abnormalities may be the consequence of a persistent central neural system dysfunction, reflecting cumulative brain insults due to frequent ongoing migraine attacks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号