首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The mechanism of membrane interaction of two amphipathic antimicrobial peptides, MSI-78 and MSI-594, derived from magainin-2 and melittin, is presented. Both the peptides show excellent antimicrobial activity. The 8-anilinonaphthalene-1-sulfonic acid uptake experiment using Escherichia coli cells suggests that the outer membrane permeabilization is mainly due to electrostatic interactions. The interaction of MSI-78 and MSI-594 with lipid membranes was studied using 31P and 2H solid-state NMR, circular dichroism, and differential scanning calorimetry techniques. The binding of MSI-78 and MSI-594 to the lipid membrane is associated with a random coil to alpha-helix structural transition. MSI-78 and MSI-594 also induce the release of entrapped dye from POPC/POPG (3:1) vesicles. Measurement of the phase-transition temperature of peptide-DiPoPE dispersions shows that both MSI-78 and MSI-594 repress the lamellar-to-inverted hexagonal phase transition by inducing positive curvature strain. 15N NMR data suggest that both the peptides are oriented nearly perpendicular to the bilayer normal, which infers that the peptides most likely do not function via a barrel-stave mechanism of membrane-disruption. Data obtained from 31P NMR measurements using peptide-incorporated POPC and POPG oriented lamellar bilayers show a disorder in the orientation of lipids up to a peptide/lipid ratio of 1:20, and the formation of nonbilayer structures at peptide/lipid ratio>1:8. 2H-NMR experiments with selectively deuterated lipids reveal peptide-induced disorder in the methylene units of the lipid acyl chains. These results are discussed in light of lipid-peptide interactions leading to the disruption of membrane via either a carpet or a toroidal-type mechanism.  相似文献   

2.
Sung WS  Park SH  Lee DG 《FEBS letters》2008,582(16):2463-2466
We investigated the antimicrobial effects of Urechistachykinins I and II (UI and UII) and their modes of action. UI and UII showed antimicrobial activities without a hemolytic effect. To investigate the mechanism(s) of UI and UII, cellular localization was examined. Confocal microscopy results showed that peptides were located in the cell envelope. To elucidate the physical changes of membrane induced by UI and UII in Candida albicans, flow cytometry analyses were performed by using bis-(1,3-dibutylbarbituric acid) trimethine oxonol, and changes in membrane dynamics were assessed using 1,6-diphenyl-1,3,5-hexatriene. The results suggest that UI and UII may exert their antimicrobial effect by disrupting the cell membranes.  相似文献   

3.
The osmotin proteins of several plants display antifungal activity, which can play an important role in plant defense against diseases. Thus, this protein can be useful as a source for biotechnological strategies aiming to combat fungal diseases. In this work, we analyzed the antifungal activity of a cacao osmotin-like protein (TcOsm1) and of two osmotin-derived synthetic peptides with antimicrobial features, differing by five amino acids residues at the N-terminus. Antimicrobial tests showed that TcOsm1 expressed in Escherichia coli inhibits the growth of Moniliophthora perniciosa mycelium and Pichia pastoris X-33 in vitro. The TcOsm1-derived peptides, named Osm-pepA (H-RRLDRGGVWNLNVNPGTTGARVWARTK-NH2), located at R23-K49, and Osm-pepB (H-GGVWNLNVNPGTTGARVWARTK-NH2), located at G28-K49, inhibited growth of yeasts (Saccharomyces cerevisiae S288C and Pichia pastoris X-33) and spore germination of the phytopathogenic fungi Fusarium f. sp. glycines and Colletotrichum gossypi. Osm-pepA was more efficient than Osm-pepB for S. cerevisiae (MIC = 40 μM and MIC = 127 μM, respectively), as well as for P. pastoris (MIC = 20 μM and MIC = 127 μM, respectively). Furthermore, the peptides presented a biphasic performance, promoting S. cerevisiae growth in doses around 5 μM and inhibiting it at higher doses. The structural model for these peptides showed that the five amino acids residues, RRLDR at Osm-pepA N-terminus, significantly affect the tertiary structure, indicating that this structure is important for the peptide antimicrobial potency. This is the first report of development of antimicrobial peptides from T. cacao. Taken together, the results indicate that the cacao osmotin and its derived peptides, herein studied, are good candidates for developing biotechnological tools aiming to control phytopathogenic fungi.  相似文献   

4.
Lipopeptide MSI-843 consisting of the nonstandard amino acid ornithine (Oct-OOLLOOLOOL-NH2) was designed with an objective towards generating non-lytic short antimicrobial peptides, which can have significant pharmaceutical applications. Octanoic acid was coupled to the N-terminus of the peptide to increase the overall hydrophobicity of the peptide. MSI-843 shows activity against bacteria and fungi at micromolar concentrations. It permeabilizes the outer membrane of Gram-negative bacterium and a model membrane mimicking bacterial inner membrane. Circular dichroism investigations demonstrate that the peptide adopts α-helical conformation upon binding to lipid membranes. Isothermal titration calorimetry studies suggest that the peptide binding to membranes results in exothermic heat of reaction, which arises from helix formation and membrane insertion of the peptide. 2H NMR of deuterated-POPC multilamellar vesicles shows the peptide-induced disorder in the hydrophobic core of bilayers. 31P NMR data indicate changes in the lipid head group orientation of POPC, POPG and Escherichia colitotal lipid bilayers upon peptide binding. Results from 31P NMR and dye leakage experiments suggest that the peptide selectively interacts with anionic bilayers at low concentrations (up to 5 mol%). Differential scanning calorimetry experiments on DiPOPE bilayers and 31P NMR data from E.coli total lipid multilamellar vesicles indicate that MSI-843 increases the fluid lamellar to inverted hexagonal phase transition temperature of bilayers by inducing positive curvature strain. Combination of all these data suggests the formation of a lipid-peptide complex resulting in a transient pore as a plausible mechanism for the membrane permeabilization and antimicrobial activity of the lipopeptide MSI-843.  相似文献   

5.
The method of fluorescence resonance energy transfer (FRET) has been employed to monitor cytochrome c interaction with bilayer phospholipid membranes. Liposomes composed of phosphatidylcholine and varying amounts of anionic lipid cardiolipin (CL) were used as model membranes. Trace amount of fluorescent lipid derivative, anthrylvinyl-phosphatidylcholine was incorporated into the membranes to serve energy donor for heme moiety of cytochrome c. Energy transfer efficiency was measured at different lipid and protein concentrations to obtain extensive set of data, which were further analyzed globally in terms of adequate models of protein adsorption and energy transfer on the membrane surface. It has been found that the cytochrome c association with membranes containing 10 mol% CL can be described in terms of equilibrium binding model (yielding dissociation constant Kd = 0.2-0.4 microM and stoichiometry n = 11-13 lipid molecules per protein binding site) combined with FRET model assuming uniform acceptor distribution with the distance of 3.5-3.6 nm between the bilayer midplane and heme moiety of cytochrome c. However, increasing the CL content to 20 or 40 mol% (at low ionic strength) resulted in a different behavior of FRET profiles, inconsistent with the concepts of equilibrium adsorption of cytochrome c at the membrane surface and/or uniform acceptor distribution. To explain this fact, several possibilities are analyzed, including cytochrome c-induced formation of non-bilayer structures and clusters of charged lipids, or changes in the depth of cytochrome c penetration into the bilayer depending on the protein surface density. Additional control experiments have shown that only the latter process can explain the peculiar concentration dependences of FRET at high CL content.  相似文献   

6.
In this study, we investigated the antimicrobial effect of tea polyphenols (TP) against Serratia marcescens and examined the related mechanism. Morphology changes of S. marcescens were first observed by transmission electron microscopy after treatment with TP, which indicated that the primary inhibition action of TP was to damage the bacterial cell membranes. The permeability of the outer and inner membrane of S. marcescens dramatically increased after TP treatment, which caused severe disruption of cell membrane, followed by the release of small cellular molecules. Furthermore, a proteomics approach based on two-dimensional gel electrophoresis and MALDI-TOF/TOF MS analysis was used to study the difference of membrane protein expression in the control and TP treatment S. marcescens. The results showed that the expression of some metabolism enzymes and chaperones in TP-treated S. marcescens significantly increased compared to the untreated group, which might result in the metabolic disorder of this bacteria. Taken together, our results first demonstrated that TP had a significant growth inhibition effect on S. marcescens through cell membrane damage.  相似文献   

7.
Deprived of heme and partially unfolded hemoglobin, myoglobin and cytochrome c display microbicidal activity against a broad spectrum of microorganisms with half maximal lethal dose estimated at micromolar concentrations. The intact proteins were ineffective. Antibacterial activity of these apohemoproteins was also sustained after digestion to approximately 50 amino acids long peptides but further fragmentation abolished microbicidal properties. The most active fragment of apomyoglobin (corresponding to 56–131 region) showed a pronounced effect on the E. coli membrane permeabilization and its action was sensitive to salt as well as to divalent cations concentrations. The membrane-directed effect was specific toward bacteria but no lipopolysaccharide binding properties were observed. No hemolytic properties, even at high peptide concentrations were found; however, a slight but dose-independent cytotoxic effect was observed on fibroblasts and hepatoma cells. The presented data suggest a `carpet-like' mechanism of the membrane-directed activity and may result from exceptional abilities of hemoprotein-derived peptides to form alpha-helical structures. We postulate that the antimicrobial peptides obtained from the heme-containing proteins should be named hemocidins, in contrast to, e.g., hemorphins displaying opioid-like activity.  相似文献   

8.
Peptide fragments possessing antimicrobial activity were obtained by protease digestion of goose egg white lysozyme. Digested peptide purified from RP-HPLC which showed no lysozyme activity exhibited bactericidal activity toward Gram-negative and Gram-positive bacteria. LC/MS–MS and automated Edman degradation revealed the amino acid sequence to be Thr-Ala-Lys-Pro-Glu-Gly-Leu-Ser-Tyr. This sequence corresponds to amino acid positions 20–28, located at the N-terminal outer part of goose lysozyme. The peptide acted on bacterial membrane as shown by scanning electron microscopy. The mechanism of action could be explained from a helical structure that may be formed by the centered Pro residue and the terminal Lys residue after the peptide attaches to a cell membrane. This is the first study to report that a peptide derived from the protease digests of G-type lysozyme possesses antimicrobial activity with broad spectrum activity. Our result is comparative to the previous reports of Chicken lysozyme and T4 phage lysozyme, which showed antimicrobial activity after digestion with protease. These results might contribute to the usage of antimicrobial peptides engineered by genetic or chemical synthesis.  相似文献   

9.
Magainins are antimicrobial peptides that selectively disrupt bacterial cell membranes. In an effort to determine the propensity for oligomerization of specific highly active magainin analogues in membrane mimetic systems, we studied the structures and lipid interactions of two synthetic variants of magainins (MSI-78 and MSI-594) originally designed by Genaera Corp. Using NMR experiments on these peptides solubilized in dodecylphosphocholine (DPC) micelles, we found that the first analogue, MSI-78, forms an antiparallel dimer with a "phenylalanine zipper" holding together two highly helical protomers, whereas the second analogue, MSI-594, whose phenylalanines 12 and 16 were changed into glycine and valine, respectively, does not dimerize under our experimental conditions. In addition, magic angle spinning solid-state NMR experiments carried out on multilamellar vesicles were used to corroborate the helical conformation of the peptides found in detergent micelles and support the existence of a more compact structure for MSI-78 and a pronounced conformational heterogeneity for MSI-594. Since magainin activity is modulated by oligomerization within the membrane bilayers, this study represents a step forward in understanding the role of self-association in determining magainin function.  相似文献   

10.
Four new lignans, (7′R,8′S)-4,4'-Dimethoxy-strebluslignanol (1), 3'-Hydroxy-isostrebluslignaldehyde (2), 3,3'-Methylene-bis(4-hydroxybenzaldehyde) (3), and 4-Methoxy-isomagnaldehyde (4), and six known lignans (510), were isolated from the roots of Streblus asper. The structures of these molecules were elucidated through various spectroscopic methods of analysis, including 1D and 2D NMR. The stereochemistry at the chiral centres was determined using the CD spectrum and from coupling constant and optical rotation data. Compounds 1–6 showed good antimicrobial activity against Saccharomyces cerevisiae (ATCC 9763), Bacillus subtilis (ATCC 6633), Pseudomonas aeruginosa (ATCC 9027), Escherichia coli (ATCC 11775), and Staphylococcus aureus (ATCC 25923), with MIC values ranging from 0.0150 to 0.0940 μM.  相似文献   

11.
Antimicrobial properties of allicin from garlic   总被引:32,自引:0,他引:32  
Allicin, one of the active principles of freshly crushed garlic homogenates, has a variety of antimicrobial activities. Allicin in its pure form was found to exhibit i) antibacterial activity against a wide range of Gram-negative and Gram-positive bacteria, including multidrug-resistant enterotoxicogenic strains of Escherichia coli; ii) antifungal activity, particularly against Candida albicans; iii) antiparasitic activity, including some major human intestinal protozoan parasites such as Entamoeba histolytica and Giardia lamblia; and iv) antiviral activity. The main antimicrobial effect of allicin is due to its chemical reaction with thiol groups of various enzymes, e.g. alcohol dehydrogenase, thioredoxin reductase, and RNA polymerase, which can affect essential metabolism of cysteine proteinase activity involved in the virulence of E. histolytica.  相似文献   

12.
Antimicrobial properties of phenolic compounds from berries   总被引:6,自引:0,他引:6  
AIMS: To investigate the antimicrobial properties of phenolic compounds present in Finnish berries against probiotic bacteria and other intestinal bacteria, including pathogenic species. METHODS AND RESULTS: Antimicrobial activity of pure phenolic compounds representing flavonoids and phenolic acids, and eight extracts from common Finnish berries, was measured against selected Gram-positive and Gram-negative bacterial species, including probiotic bacteria and the intestinal pathogen Salmonella. Antimicrobial activity was screened by an agar diffusion method and bacterial growth was measured in liquid culture as a more accurate assay. Myricetin inhibited the growth of all lactic acid bacteria derived from the human gastrointestinal tract flora but it did not affect the Salmonella strain. In general, berry extracts inhibited the growth of Gram-negative but not Gram-positive bacteria. These variations may reflect differences in cell surface structures between Gram-negative and Gram-positive bacteria. Cloudberry, raspberry and strawberry extracts were strong inhibitors of Salmonella. Sea buckthorn berry and blackcurrant showed the least activity against Gram-negative bacteria. CONCLUSION: Different bacterial species exhibit different sensitivities towards phenolics. SIGNIFICANCE AND IMPACT OF THE STUDY: These properties can be utilized in functional food development and in food preservative purposes.  相似文献   

13.
Animals posses a large variety of antimicrobial peptides (AMPs) that serve as effective components in innate host defenses against microbial infections. These antimicrobial peptides differ in amino acid composition, range of antimicrobial specificities, hemolysis, cytotoxicity and mechanisms of action. This study was designed to evaluate their therapeutic potential of the following six antimicrobial peptides initially found from animals: cecropin P1, indolicidin, LL-37, palustrin-OG1, LFP-20 and LFB-11. Our results indicated that cecropin P1 possessed the most desired biological activity, with fast and potent antimicrobial activity but only slight hemolytic or cytotoxic activity against human cells. Indolicidin was more effective against gram-positive bacteria but with higher hemolytic and cytotoxic activity on human peripheral blood mononuclear cell (PBMCs) (P < 0.05). Although LFP-20 and LFB-11 had moderate activity against tested strains and need 30 min to kill E. coli, they showed almost no hemolytic and cytotoxic activity towards PBMCs (P < 0.01). Indolicidin could form pores of well-defined structure in bacterial membranes whereas lysis of E. coli cells was observed after addition LFB-11 and LL-37 at 1 × MIC for 1 h. LL-37 treatment could lead to the leakage of entire bacterial cytoplasmic contents. The most obvious phenomenon was protuberant structures on the E. coli cell surface after incubation with LFP-20, cecropin P1 and palustrin-OG1. The results presented here illustrate that AMPs derived from different animals exhibited different antimicrobial characteristics. Because of their potent and broad-spectrum antimicrobial activity, low cytotoxicity towards normal cells, and the unique mechanism of action, these peptides may provide the impetus for the development of novel strategies for the prevention of bacterial infections in animals.  相似文献   

14.
Styraxjaponoside C was investigated with respect to its antifungal activity and mechanisms of action. Devoid of hemolytic activity, Styraxjaponoside C demonstrated an antifungal effect against the human pathogenic yeast Candida albicans in an energy-independent manner. To characterize the mechanisms of the antifungal activity of Styraxjaponoside C, fluorescence analysis with membrane probe 1,6-diphenyl-1,3,5-hexatriene, and flow cytometric analysis on C. albicans were conducted. The results showed that Styraxjaponosdie C induced cytoplasmic membrane perturbation. The current study suggested that Styraxjaponoside C was active against C. albicans with membrane-active mechanisms.  相似文献   

15.
A novel series of thiophene derived Schiff bases and their transition metal- [Co(II), Cu(II), Zn(II), Ni(II)] based compounds are reported. The Schiff bases act as tridentate ligands toward metal ions via azomethine-N, deprotonated-N of ammine substituents and S-atom of thienyl moiety. The synthesized ligands along with their metal complexes were screened for their in vitro antibacterial activity against six bacterial pathogens (Escherichia coli, Shigella flexneri, Pseudomonas aeruginosa, Salmonella typhi, Staphylococcus aureus and Bacillus subtilis) and for antifungal activity against six fungal pathogens (Trichophytonlongifusus, Candida albicans, Aspergillus flavus, Microsporum canis, Fusarium solani and Candida glabrata). The results of antimicrobial studies revealed the free ligands to possess potential activity which significantly increased upon chelation.  相似文献   

16.
The interaction of an antimicrobial peptide, MSI-78, with phospholipid bilayers has been investigated using atomic force microscopy, circular dichroism, and nuclear magnetic resonance (NMR). Binding of amphipathic peptide helices with their helical axis parallel to the membrane surface leads to membrane thinning. Atomic force microscopy of supported 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) bilayers in the presence of MSI-78 provides images of the membrane thinning process at a high spatial resolution. This data reveals that the membrane thickness is not reduced uniformly over the entire bilayer area. Instead, peptide binding leads to the formation of distinct domains where the bilayer thickness is reduced by 1.1 +/- 0.2 nm. The data is interpreted using a previously published geometric model for the structure of the peptide-lipid domains. In this model, the peptides reside at the hydrophilic-hydrophobic boundary in the lipid headgroup region, which leads to an increased distance between lipid headgroups. This picture is consistent with concentration-dependent 31P and 2H NMR spectra of MSI-78 in mechanically aligned DMPC bilayers. Furthermore, 2H NMR experiments on DMPC-d54 multilamellar vesicles indicate that the acyl chains of DMPC are highly disordered in the presence of the peptide as is to be expected for the proposed structure of the peptide-lipid assembly.  相似文献   

17.
In this work, we present the first characterization of the cell lysing mechanism of MSI-78, an antimicrobial peptide. MSI-78 is an amphipathic alpha-helical peptide designed by Genaera Corporation as a synthetic analog to peptides from the magainin family. (31)P-NMR of mechanically aligned samples and differential scanning calorimetry (DSC) were used to study peptide-containing lipid bilayers. DSC showed that MSI-78 increased the fluid lamellar to inverted hexagonal phase transition temperature of 1,2-dipalmitoleoyl-phosphatidylethanolamine indicating the peptide induces positive curvature strain in lipid bilayers. (31)P-NMR of lipid bilayers composed of MSI-78 and 1-palmitoyl-2-oleoyl-phosphatidylethanolamine demonstrated that the peptide inhibited the fluid lamellar to inverted hexagonal phase transition of 1-palmitoyl-2-oleoyl-phosphatidylethanolamine, supporting the DSC results, and the peptide did not induce the formation of nonlamellar phases, even at very high peptide concentrations (15 mol %). (31)P-NMR of samples containing 1-palmitoyl-2-oleoyl-phosphatidylcholine and MSI-78 revealed that MSI-78 induces significant changes in the bilayer structure, particularly at high peptide concentrations. At lower concentrations (1-5%), the peptide altered the morphology of the bilayer in a way consistent with the formation of a toroidal pore. Higher concentrations of peptide (10-15%) led to the formation of a mixture of normal hexagonal phase and lamellar phase lipids. This work shows that MSI-78 induces significant changes in lipid bilayers via positive curvature strain and presents a model consistent with both the observed spectral changes and previously published work.  相似文献   

18.
Aims: To isolate the biologically active fraction of the lipopeptide biosurfactant produced by a marine Bacillus circulans and study its antimicrobial potentials. Methods and Results: The marine isolate B. circulans was cultivated in glucose mineral salts medium and the crude biosurfactant was isolated by chemical isolation method. The crude biosurfactants were solvent extracted with methanol and the methanol extract was subjected to reverse phase high‐performance liquid chromatography (HPLC). The crude biosurfactants resolved into six major fractions in HPLC. The sixth HPLC fraction eluting at a retention time of 27·3 min showed the maximum surface tension‐reducing property and reduced the surface tension of water from 72 mNm?1 to 28 mNm?1. Only this fraction was found to posses bioactivity and showed a pronounced antimicrobial action against a panel of Gram‐positive and Gram‐negative pathogenic and semi‐pathogenic micro‐organisms including a few multidrug‐resistant (MDR) pathogenic clinical isolates. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of this antimicrobial fraction of the biosurfactant were determined for these test organisms. The biosurfactant was found to be active against Gram‐negative bacteria such as Proteus vulgaris and Alcaligens faecalis at a concentration as low as 10 μg ml?1. The biosurfactant was also active against methicillin‐resistant Staphylococcus aureus (MRSA) and other MDR pathogenic strains. The chemical identity of this bioactive biosurfactant fraction was determined by post chromatographic detection using thin layer chromatography (TLC) and also by Fourier transform infrared (FTIR) spectroscopy. The antimicrobial HPLC fraction resolved as a single spot on TLC and showed positive reaction with ninhydrin, iodine and rhodamine‐B reagents, indicating its lipopeptide nature. IR absorption by this fraction also showed similar and overlapping patterns with that of other lipopeptide biosurfactants such as surfactin and lichenysin, proving this biosurfactant fraction to be a lipopeptide. The biosurfactant did not show any haemolytic activity when tested on blood agar plates, unlike the lipopeptide biosurfactant surfactin produced by Bacillus subtilis. Conclusions: The biosurfactant produced by marine B. circulans had a potent antimicrobial activity against Gram‐positive and Gram‐negative pathogenic and semi‐pathogenic microbial strains including MDR strains. Only one of the HPLC fractions of the crude biosurfactants was responsible for its antimicrobial action. The antimicrobial lipopeptide biosurfactant fraction was also found to be nonhaemolytic in nature. Significance and impact of the study: This work presents a nonhaemolytic lipopeptide biosurfactant produced by a marine micro‐organism possessing a pronounced antimicrobial action against a wide range of bacteria. There is a high demand for new antimicrobial agents because of the increased resistance shown by pathogenic micro‐organisms against the existing antimicrobial drugs. This study provides an insight into the search of new bioactive molecules from marine micro‐organisms.  相似文献   

19.
A novel antimicrobial peptide derived from ovalbumin has been discovered. First, the peptide fragment RKIKVYLPRMK (TK9.1) was identified based on computerized predictions of the secondary structure of peptides in a protein data bank. Using HeliQuest, the sequence was developed into RKIKRYLRRMI (TK9.1.3), which was synthesized using Fmoc‐solid phase peptide synthesis, and found to have strongly antimicrobial activity against Gram‐positive and Gram‐negative bacteria, and fungi but not cytotoxic to HeLa cells and hemolysis in mouse red blood cells. Although ovalbumin itself does not have an antibacterial activity, our results suggest that it may supply the organisms that consume it with antimicrobial peptides, in support of their immunodefence.  相似文献   

20.
Novel cell lines, designated NM78-AM and NM78-MM, have been established from a malignant melanoma of the cheek oral mucosa. NM78-AM cells were spherical, grew in suspension as clusters, and produced no melanin. In contrast, NM78-MM cells were adherent and produced melanin granules. Initially, NM78-AM cells were grown on fibroblast feeder cells or in growth media supplemented with 10% conditioned medium from fibroblasts, but eventually grew in standard growth media alone. NM78-AM cells had interdigitating microvilli and formed cell clusters. They had large nucleoli, desmosomes, lipid droplets, and well-developed Golgi apparatuses. In contrast, NM78-MM cells grew as adherent neuron-like cells. They had large prominent nucleoli, irregular nuclear membranes, a number of mitochondria, well-developed Golgi apparatuses, melanosomes at various stages of development in the cytoplasm, and the cells secreted melanin granules. Projections from these melanotic cells formed anastomoses with each other. NM78-MM cells stained immunofluorescently for internexin, neuron specific enolase, NF-200, and glial fibrillary acidic protein. These cells were severely aneuploid, approximating to triploidy, and had many marker chromosomes. We used a real-time monitoring system to evaluate oxygen concentrations in culture medium to investigate the susceptibility of both cell lines to various anti-cancer drugs. NM78-AM cells were slightly sensitive to actinomycin D, but not to cisplatin, irinotecan, the irinotecan metabolite SN-38, taxol, taxotere, bleomycin and methotrexate; NM78-MM cells were sensitive to cisplatin, and not to taxol, taxotere, carboplatin, and irinotecan. These new cell lines, NM78-AM and NM78-MM, will be very important for the development of new chemotherapeutics for oral malignant melanoma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号