首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The ancient bacterial lineage Thermus spp has a primitive form of outer membrane attached to the cell wall through SlpA, a protein that shows intermediate properties between S-layer proteins and outer membrane (OM) porins. In E. coli and related Proteobacteria, porins are secreted through the BAM (β-barrel assembly machinery) pathway, whose main component is BamA. A homologue to this protein is encoded in all the Thermus spp so far sequenced, so we wondered if this pathway could be responsible for SlpA secretion in this ancient bacterial model. To analyse this hypothesis, we attempted to get mutants on this BamAth of T. thermophilus HB27. Knockout and deletion mutants lacking the last 10 amino acids were not viable, whereas its depletion by means of a BamA antisense RNA lead defective attachment to the cell wall of its OM-like envelope. Such defects were related to defective folding of the SlpA protein that was more sensitive to proteases than in a wild-type strain. A similar phenotype was found in mutants lacking the terminal Phe of SlpA. Further protein–protein interaction assays confirmed the existence of specific binding between SlpA and BamAth. Taking together, these data suggest that SlpA is secreted through a BAM-like pathway in this ancestral bacterial lineage, supporting an ancient origin of this pathway before the evolution of the Proteobacteria.  相似文献   

2.
Lactobacillus brevis is a promising lactic acid bacterium for use as a probiotic dietary adjunct and a vaccine vector. The N-terminal region of the S-layer protein (SlpA) of L. brevis ATCC 8287 was recently shown to mediate adhesion to various human cell lines in vitro. In this study, a surface display cassette was constructed on the basis of this SlpA receptor-binding domain, a proteinase spacer, and an autolysin anchor. The cassette was expressed under control of the nisA promoter in Lactococcus lactis NZ9000. Western blot assay of lactococcal cell wall extracts with anti-SlpA antibodies confirmed that the SlpA adhesion domain of the fusion protein was expressed and located within the cell wall layer. Whole-cell enzyme-linked immunosorbent assay and immunofluorescence microscopy verified that the SlpA adhesion-mediating region was accessible on the lactococcal cell surface. In vitro adhesion assays with the human intestinal epithelial cell line Intestine 407 indicated that the recombinant lactococcal cells had gained an ability to adhere to Intestine 407 cells significantly greater than that of wild-type L. lactis NZ9000. Serum inhibition assay further confirmed that adhesion of recombinant lactococci to Intestine 407 cells was indeed mediated by the N terminus-encoding part of the slpA gene. The ability of the receptor-binding region of SlpA to adhere to fibronectin was also confirmed with this lactococcal surface display system. These results show that, with the aid of the receptor-binding region of the L. brevis SlpA protein, the ability to adhere to gut epithelial cells can indeed be transferred to another, nonadhesive, lactic acid bacterium.  相似文献   

3.
The beta-barrel assembly machinery (BAM) is an indispensable complex for protein transportation located at the outer membrane of bacteria. BAM is composed of five subunits (BamA-E) in the model bacterium Escherichia coli. DR_0379 is a BamA homolog in Deinococcus radiodurans, but the other subunits have not been detected in this species. In the present study, deletion of bamA resulted in decreased growth rate and altered morphology of D. radiodurans. ΔbamA cells underwent abnormal cell division, leading to aggregated bacteria of diverse size and shape, and the cell envelope was detached from the cell surface, resulting in reduced resistance to high ionic strength. Oxidative stress resistance was significantly enhanced in the mutant, which may be attributed to increased manganese ion concentration and Mn/Fe ratio. Numerous proteins were released into the medium from ΔbamA cells, including surface layer (S-layer) proteins and various transporters located in the periplasm and outer membrane. These results indicate that BamA affects the synthesis and assembly of the outer membrane and S-layer, and thereby influences material transport and cell division. The findings highlight the special functions of BamA in D. radiodurans, and promote our understanding of the multi-layer structure of the D. radiodurans cell envelope.  相似文献   

4.
We have isolated and analysed the cell envelope of the thermophilic bacterium Thermus thermophilus HB8. Isolated cell walls, characterized by the dominance of the S-layer protein SlpA, are found to be constituted by several protein complexes of high molecular weights. Further isolation steps, starting from the cell wall samples, led to the selective release of the S-layer protein SlpA in solution as confirmed by mass spectrometry. Blue Native gel electrophoresis on these samples showed that SlpA is organized into a specific hierarchical order of oligomeric states that are consistent with the complexes at high molecular weight identified on the total cell wall fraction. The analysis showed that SlpA bases this peculiar organization on monomers and exceptionally stable dimers, leading to the formation of tetramers, heptamers, and decamers. Furthermore, the two elementary units of SlpA, monomers and dimers, are regulated by the presence of calcium not only for the assembling of monomers into dimers, but also for the splitting of dimers into monomers. Finally, the SlpA protein was found to be subjected to specific proteolysis leading to characteristic degradation products. Findings are discussed in terms of S-layer assembling properties as bases for understanding its structure, turn-over and organization.  相似文献   

5.
The reassembly of the S-layer protein SlpA of Lactobacillus brevis ATCC 8287 on positively charged liposomes was studied by small angle X-ray scattering (SAXS) and zeta potential measurements. SlpA was reassembled on unilamellar liposomes consisting of 1-palmitoyl-2-oleyl-sn-glycero-3-phosphocholine and 1,2-dioleoyl-3-trimethylammonium-propane, prepared by extrusion through membranes with pore sizes of 50 nm and 100 nm. Similarly extruded samples without SlpA were used as a reference. The SlpA-containing samples showed clear diffraction peaks in their SAXS intensities. The lattice constants were calculated from the diffraction pattern and compared to those determined for SlpA on native cell wall fragments. Lattice constants for SlpA reassembled on liposomes (a = 9.29 nm, b = 8.03 nm, and γ = 84.9°) showed a marked change in the lattice constants b and γ when compared to those determined for SlpA on native cell wall fragments (a = 9.41 nm, b = 6.48 nm, and γ = 77.0°). The latter are in good agreement with values previously determined by electron microscopy. This indicates that the structure formed by SlpA is stable on the bacterial cell wall, but SlpA reassembles into a different structure on cationic liposomes. From the (10) reflection, the lower limit of crystallite size of SlpA on liposomes was determined to be 92 nm, corresponding to approximately ten aligned lattice planes.  相似文献   

6.
Several integral membrane proteins exhibiting undecaprenyl-pyrophosphate (C55-PP) phosphatase activity were previously identified in Escherichia coli that belonged to two distinct protein families: the BacA protein, which accounts for 75% of the C55-PP phosphatase activity detected in E. coli cell membranes, and three members of the PAP2 phosphatidic acid phosphatase family, namely PgpB, YbjG and LpxT. This dephosphorylation step is required to provide the C55-P carrier lipid which plays a central role in the biosynthesis of various cell wall polymers. We here report detailed investigations of the biochemical properties and membrane topology of the BacA protein. Optimal activity conditions were determined and a narrow-range substrate specificity with a clear preference for C55-PP was observed for this enzyme. Alignments of BacA protein sequences revealed two particularly well-conserved regions and several invariant residues whose role in enzyme activity was questioned by using a site-directed mutagenesis approach and complementary in vitro and in vivo activity assays. Three essential residues Glu21, Ser27, and Arg174 were identified, allowing us to propose a catalytic mechanism for this enzyme. The membrane topology of the BacA protein determined here experimentally did not validate previous program-based predicted models. It comprises seven transmembrane segments and contains in particular two large periplasmic loops carrying the highly-conserved active site residues. Our data thus provide evidence that all the different E. coli C55-PP phosphatases identified to date (BacA and PAP2) catalyze the dephosphorylation of C55-PP molecules on the same (outer) side of the plasma membrane.  相似文献   

7.
For Deinococcus radiodurans and other bacteria which are extremely resistant to ionizing radiation, ultraviolet radiation, and desiccation, a mechanistic link exists between resistance, manganese accumulation, and protein protection. We show that ultrafiltered, protein-free preparations of D. radiodurans cell extracts prevent protein oxidation at massive doses of ionizing radiation. In contrast, ultrafiltrates from ionizing radiation-sensitive bacteria were not protective. The D. radiodurans ultrafiltrate was enriched in Mn, phosphate, nucleosides and bases, and peptides. When reconstituted in vitro at concentrations approximating those in the D. radiodurans cytosol, peptides interacted synergistically with Mn2+ and orthophosphate, and preserved the activity of large, multimeric enzymes exposed to 50,000 Gy, conditions which obliterated DNA. When applied ex vivo, the D. radiodurans ultrafiltrate protected Escherichia coli cells and human Jurkat T cells from extreme cellular insults caused by ionizing radiation. By establishing that Mn2+-metabolite complexes of D. radiodurans specifically protect proteins against indirect damage caused by gamma-rays delivered in vast doses, our findings provide the basis for a new approach to radioprotection and insight into how surplus Mn budgets in cells combat reactive oxygen species.  相似文献   

8.
Summary The cytochemical localization of alkaline phosphatase activity in foetal rat hepatocytes was examined in relation to the pattern of cell to cell attachment during cell isolation and culture. In foetal hepatocytesin vivo, alkaline phosphatase was exclusively localized on the bile canalicular membrane. In freshly isolated foetal hepatocytes, however, the activity was present in the endoplasmic reticulum, nuclear envelope, Golgi apparatus, tubulo-vesicular organelles, and over the entire plasma membrane. In monolayer cells cultured for one or two days, the activity was localized on the reconstituted bile canalicular membrane, plasma membrane sites adjacent to neighbouring cells and on the bottom surface of the monolayer, but was detected in none of the intracellular organelles. Biochemical alkaline phosphatase activity did not change during isolation of the cells. These results suggest that, in foetal hepatocytes, loss of cell—cell contact may induce a temporal disturbance, or dedifferentiation, in their membrane system.  相似文献   

9.
10.
The Candida albicans plasma membrane plays important roles in cell growth and as a target for antifungal drugs. Analysis of Ca-Sur7 showed that this four transmembrane domain protein localized to stable punctate patches, similar to the plasma membrane subdomains known as eisosomes or MCC that were discovered in S. cerevisiae. The localization of Ca-Sur7 depended on sphingolipid synthesis. In contrast to S. cerevisiae, a C. albicans sur7Δ mutant displayed defects in endocytosis and morphogenesis. Septins and actin were mislocalized, and cell wall synthesis was very abnormal, including long projections of cell wall into the cytoplasm. Several phenotypes of the sur7Δ mutant are similar to the effects of inhibiting β-glucan synthase, suggesting that the abnormal cell wall synthesis is related to activation of chitin synthase activity seen under stress conditions. These results expand the roles of eisosomes by demonstrating that Sur7 is needed for proper plasma membrane organization and cell wall synthesis. A conserved Cys motif in the first extracellular loop of fungal Sur7 proteins is similar to a characteristic motif of the claudin proteins that form tight junctions in animal cells, suggesting a common role for these tetraspanning membrane proteins in forming specialized plasma membrane domains.  相似文献   

11.
12.
J. Lin  W. J. Uwate  V. Stallman 《Planta》1977,135(2):183-190
The pollen tube of Prunus avium (cherry) consists of a growth zone of vesicles at the tip and an assemblage of organelles typical of an actively metabolizing cell. Electron opaque globules are closely associated with the plasma membrane and fibrillar cell wall layer at the tip. Acid phosphatase (EC 3.1.3.2) activity is localized in the membranes of 120 nm vesicles and ER system, the lumen of 50 nm vesicles, the plasma membrane and the tube nucleus.  相似文献   

13.
Clostridium difficile is a leading cause of antibiotic-associated diarrhea, and a significant etiologic agent of healthcare-associated infections. The mechanisms of attachment and host colonization of C. difficile are not well defined. We hypothesize that non-toxin bacterial factors, especially those facilitating the interaction of C. difficile with the host gut, contribute to the initiation of C. difficile infection. In this work, we optimized a completely anaerobic, quantitative, epithelial-cell adherence assay for vegetative C. difficile cells, determined adherence proficiency under multiple conditions, and investigated C. difficile surface protein variation via immunological and DNA sequencing approaches focused on Surface-Layer Protein A (SlpA). In total, thirty-six epidemic-associated and non-epidemic associated C. difficile clinical isolates were tested in this study, and displayed intra- and inter-clade differences in attachment that were unrelated to toxin production. SlpA was a major contributor to bacterial adherence, and individual subunits of the protein (varying in sequence between strains) mediated host-cell attachment to different extents. Pre-treatment of host cells with crude or purified SlpA subunits, or incubation of vegetative bacteria with anti-SlpA antisera significantly reduced C. difficile attachment. SlpA-mediated adherence-interference correlated with the attachment efficiency of the strain from which the protein was derived, with maximal blockage observed when SlpA was derived from highly adherent strains. In addition, SlpA-containing preparations from a non-toxigenic strain effectively blocked adherence of a phylogenetically distant, epidemic-associated strain, and vice-versa. Taken together, these results suggest that SlpA plays a major role in C. difficile infection, and that it may represent an attractive target for interventions aimed at abrogating gut colonization by this pathogen.  相似文献   

14.
The localization of acid and alkaline phosphatases in Staphylococcus aureus was studied by fractionation of cells after treatment with the L-11 enzyme and by electron microscopic histochemistry. The two enzyme activities were located in distinctly different positions at the surface of the cells. Acid phosphatase appeared to be localized around the cell membrane of the bacteria, because the enzyme was recovered exclusively in the membrane fraction and because deposition of lead phosphate was detected by electron microscopic histochemistry on the inner surface of the cell membrane of intact bacteria and spheroplasts. The highest specific activity of alkaline phosphatase was also associated with the membrane fraction. However, on electron microscopic histochemistry of intact cells, the deposition of lead phosphate was only seen on the outer surface of the cell wall.  相似文献   

15.
Clostridium difficile is a major and growing problem as a hospital-associated infection that can cause severe, recurrent diarrhea. The mechanism by which the bacterium colonizes the gut during infection is poorly understood but undoubtedly involves protein components within the surface layer (S-layer), which play a role in adhesion. In C. difficile, the S-layer is composed of two principal components, the high and low molecular weight S-layer proteins, which are formed from the post-translational cleavage of a single precursor, SlpA. In the present study, we demonstrate that a recently characterized cysteine protease, Cwp84 plays a role in maturation of SlpA. Using a gene knock-out approach, we show that inactivation of the Cwp84 gene in C. difficile 630ΔErm results in a bacterial phenotype in which only immature, single chain SlpA comprises the S-layer. The Cwp84 knock-out mutants (CDΔCwp84) displayed significantly different colony morphology compared with the wild-type strain and grew more slowly in liquid medium. SlpA extracted from CDΔCwp84 was readily cleaved into its mature subunits by trypsin treatment. Addition of trypsin to the growth medium also cleaved SlpA on CDΔCwp84 and increased the growth rate of the bacterium in a dose-dependent manner. Using the hamster model for C. difficile infection, CDΔCwp84 was found to be competent at causing disease with a similar pathology to the wild-type strain. The data show that whereas Cwp84 plays a role in the cleavage of SlpA, it is not an essential virulence factor and that bacteria expressing immature SlpA are able to cause disease.  相似文献   

16.
We describe a novel membrane surface display system that allows the anchoring of foreign proteins in the cytoplasmic membrane (CM) of stable, cell wall-less L-form cells of Escherichia coli and Proteus mirabilis. The reporter protein, staphylokinase (Sak), was fused to transmembrane domains of integral membrane proteins from E. coli (lactose permease LacY, preprotein translocase SecY) and P. mirabilis (curved cell morphology protein CcmA). Both L-form strains overexpressed fusion proteins in amounts of 1 to 100 μg ml−1, with higher expression for those with homologous anchor motifs. Various experimental approaches, e.g., cell fractionation, Percoll gradient purification, and solubilization of the CM, demonstrated that the fusion proteins are tightly bound to the CM and do not form aggregates. Trypsin digestion, as well as electron microscopy of immunogold-labeled replicas, confirmed that the protein was localized on the outside surface. The displayed Sak showed functional activity, indicating correct folding. This membrane surface display system features endotoxin-poor organisms and can provide a novel platform for numerous applications.  相似文献   

17.
Summary Electron-cytochemical localization of alkaline phosphatase activity was performed on G cells of Necturus maculosus antral mucosa. Alkaline phosphatase activity was localized to the nuclear membrane, the Golgi/endoplasmic reticulum, and the limiting membranes of G cell peptide-secretion vesicles. There was no specific localization of alkaline phosphatase activity to the plasma membrane. Treatment of the tissues with levamisole (an alkaline phosphatase inhibitor) did not markedly reduce the specific alkaline phosphatase activity. Specific lead deposition was reduced by removal of the substrate from the reaction mixture. The results from this study on N. maculosus G cells demonstrate that alkaline phosphatase activity can be found in a non-mammalian gastric endocrine cell and that specific activity was localized primarily to those intracellular structures involved with protein biosynthesis.  相似文献   

18.
S-layer proteins of lactobacilli may be utilized for developing a surface display system in these bacteria. In this study, S-layer proteins of Lactobacillus brevis ATCC 367 were identified for the first time. Using the peptide fingerprint method, it was shown that the main protein of the S-layer of this strain, SlpE, having a mass of 52 kDa is the product of translation of the consecutive open reading frames LVIS_2086 and LVIS_2085. Repeated sequencing of a genome region of L. brevis ATCC 367, containing LVIS_2086 and LVIS_2085 loci, has showed that the LVIS_2086 sequence contains the TGG tryptophan codon instead of the TAG stop codon. Thus, LVIS_2085 and LVIS_2086 form a single slpE gene, the nucleotide sequence we deposited in the Genbank database under No. KY273133. The translation product of the slpE gene consists of 465 amino acids and has a calculated mass of 51.6 kDa, which corresponds to the experimentally obtained value. An S-layer protein with a mass of 56 kDa, identified as a form of the SlpE, is probably formed during the posttranslational modification. The concomitant 48 kDa S-protein was proven to be product of the LVIS- 2083 gene. The N-terminal domains of LVIS_2083 and SlpE have 70.7 and 96.5%, respectively, identity to the anchoring N-terminal domain of SlpA from L. brevis ATCC 8287, which is responsible for attachment to the cell wall. In this work, fusion proteins consisting of N-terminal domains of Lvis_2083 and SlpA proteins and the eGFP marker protein were obtained. The ability of fusion proteins SlpA_eGFP and Lvis_2083_eGFP, as well as the recombinant Lvis_2083 protein, to be specifically sorbed on the cell wall of L. brevis ATCC 8287, ATCC 367, and L. acidophilus ATCC 4356 strains has been demonstrated. It was shown that in the chimeric Lvis_2083_eGFP construction the N-terminal domain Lvis_2083 is responsible for an attachment to the cell wall and provides display of the functionally active eGFP protein on its surface. Thus, the N-terminal domain Lvis_2083 can be used as a basis of the protein display system on the cell surface of L. brevis strains in vitro.  相似文献   

19.
Regular surface protein layers (S-layers) from most Gram-positive bacteria and from the ancestral bacterium Thermus thermophilus attach to pyruvylated polysaccharides (SCWP) covalently bound to the peptidoglycan through their SLH domain. However, it is not known whether the synthesis of SCWP and S-layer is coordinated enough as to follow a similar pattern of incorporation to the cell wall during growth. In this work we analyse the localization of newly synthesized SCWP on the cell wall of T. thermophilus by immunoelectron microscopy. For this, we obtained mutants with a reduced amount of pyruvylated SCWP through mutation of the csaB gene encoding the SCWP-pyruvylating activity, and its upstream gene csaA, a putative sugar transporter. We hypothesized that CsaA would be required for the synthesis of the SCWP. However, we found that csaA mutants showed only a minor decrease in the amount of SCWP immunodetected on the cell walls in comparison with csaB mutants, revealing its irrelevance in the process. Complementation experiments of csaB mutants with CsaB expressed from inducible promoters revealed that newly synthesized SCWP was homogeneously distributed along the cell wall. Fusions with thermostable fluorescent protein revealed that CsaB was distributed also in homogeneous pattern associated with the membrane. These data support that synthesis of SCWP takes place in disperse and homogeneous form all over the cell surface, in contrast to the zonal incorporation at the cell centre recently demonstrated for SlpA.  相似文献   

20.
An extremophile D. radiodurans encodes a non-cold shock inducible cold shock protein homolog DR_0907 (also known as PprM). The DR_0907 ORF was deleted by knockout mutagenesis and the resultant deletion mutant (ΔpprM D. radiodurans) displayed growth defect as well as gamma-radiation sensitivity (D10 values = ΔpprM D. radiodurans: 12.1 kGy versus wild type (WT) D. radiodurans: 14 kGy). 2D gel based comparative proteomics revealed a comparable induction of DNA repair proteins in ΔpprM D. radiodurans and WT D. radiodurans recovering from 5 kGy gamma irradiation (60Co gamma source, dose rate: 2 kGy/h), suggesting that pprM does not cause radiation sensitivity through modulation of DdrO-regulated DNA repair genes. However, deletion of pprM did result in repression of several proteins that belonged to vital housekeeping pathways such as metabolism and protein homeostasis that might contribute to slow growth phenotype. These deficiencies intrinsic to ΔpprM D. radiodurans might also contribute to its radiation sensitivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号