首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Ward JM  Sze H 《Plant physiology》1992,99(3):925-931
To determine whether the detergent-solubilized and purified vacuolar H+-ATPase from plants was active in H+ transport, we reconstituted the purified vacuolar ATPase from oat roots (Avena sativa var Lang). Triton-solubilized ATPase activity was purified by gel filtration and ion exchange chromatography. Incorporation of the vacuolar ATPase into liposomes formed from Escherichia coli phospholipids was accomplished by removing Triton X-100 with SM-2 Bio-beads. ATP hydrolysis activity of the reconstituted ATPase was stimulated twofold by gramicidin, suggesting that the enzyme was incorporated into sealed proteoliposomes. Acidification of K+-loaded proteoliposomes, monitored by the quenching of acridine orange fluorescence, was stimulated by valinomycin. Because the presence of K+ and valinomycin dissipates a transmembrane electrical potential, the results indicate that ATP-dependent H+ pumping was electrogenic. Both H+ pumping and ATP hydrolysis activity of reconstituted preparations were completely inhibited by <50 nanomolar bafilomycin A1, a specific vacuolar type ATPase inhibitor. The reconstituted H+ pump was also inhibited by N,N′-dicyclohexylcarbodiimide or NO3 but not by azide or vanadate. Chloride stimulated both ATP hydrolysis by the purified ATPase and H+ pumping by the reconstituted ATPase in the presence of K+ and valinomycin. Hence, our results support the idea that the vacuolar H+-pumping ATPase from oat, unlike some animal vacuolar ATPases, could be regulated directly by cytoplasmic Cl concentration. The purified and reconstituted H+-ATPase was composed of 10 polypeptides of 70, 60, 44, 42, 36, 32, 29, 16, 13, and 12 kilodaltons. These results demonstrate conclusively that the purified vacuolar ATPase is a functional electrogenic H+ pump and that a set of 10 polypeptides is sufficient for coupled ATP hydrolysis and H+ translocation.  相似文献   

2.
The ATP synthase of many archaea has the conserved sodium ion binding motif in its rotor subunit, implying that these A1AO-ATP synthases use Na+ as coupling ion. However, this has never been experimentally verified with a purified system. To experimentally address the nature of the coupling ion, we have purified the A1AO-ATP synthase from T. onnurineus. It contains nine subunits that are functionally coupled. The enzyme hydrolyzed ATP, CTP, GTP, UTP, and ITP with nearly identical activities of around 40 units/mg of protein and was active over a wide pH range with maximal activity at pH 7. Noteworthy was the temperature profile. ATP hydrolysis was maximal at 80 °C and still retained an activity of 2.5 units/mg of protein at 45 °C. The high activity of the enzyme at 45 °C opened, for the first time, a way to directly measure ion transport in an A1AO-ATP synthase. Therefore, the enzyme was reconstituted into liposomes generated from Escherichia coli lipids. These proteoliposomes were still active at 45 °C and coupled ATP hydrolysis to primary and electrogenic Na+ transport. This is the first proof of Na+ transport by an A1AO-ATP synthase and these findings are discussed in light of the distribution of the sodium ion binding motif in archaea and the role of Na+ in the bioenergetics of archaea.  相似文献   

3.
Summary Calpain I purified from human erythrocyte cytosol activates both the ATP hydrolytic activity and the ATP-dependent Ca2+ transport function of the Ca2+-translocating ATPase solubilized and purified from the plasma membrane of human erythrocytes and reconstituted into phosphatidylcholine vesicles. Following partial proteolysis of the enzyme by calpain I, both the initial rates of calcium ion uptake and ATP hydrolysis were increased to near maximal levels similar to those obtained upon addition of calmodulin. The proteolytic activation resulted in the loss of further stimulation of the rates of Ca2+ translocation or ATP hydrolysis by calmodulin as well as an increase of the affinity of the enzyme for calcium ion. However, the mechanistic Ca2+/ATP stoichiometric ratio was not affected by the proteolytic treatment of the reconstituted Ca2+-translocating ATPase. The proteolytic activation of the ATP hydrolytic activity of the reconstituted enzyme could be largely prevented by calmodulin. Different patterns of proteolysis were obtained in the absence or in the presence of calmodulin during calpain treatment: the 136-kDa enzyme was transformed mainly into a 124-kDa active ATPase fragment in the absence of calmodulin, whereas a 127-kDa active ATPase fragment was formed in the presence of calmodulin. This study shows that calpain I irreversibly activates the Ca2+ translocation function of the Ca2+-ATPase in reconstituted proteoliposomes by producing a calmodulin-independent active enzyme fragment, while calmodulin antagonizes this activating effect by protecting the calmodulin-binding domain against proteolytic cleavage by calpain.  相似文献   

4.
We have established a proteoliposome system as an osteoblast-derived matrix vesicle (MV) biomimetic to facilitate the study of the interplay of tissue-nonspecific alkaline phosphatase (TNAP) and NPP1 (nucleotide pyrophosphatase/phosphodiesterase-1) during catalysis of biomineralization substrates. First, we studied the incorporation of TNAP into liposomes of various lipid compositions (i.e. in pure dipalmitoyl phosphatidylcholine (DPPC), DPPC/dipalmitoyl phosphatidylserine (9:1 and 8:2), and DPPC/dioctadecyl-dimethylammonium bromide (9:1 and 8:2) mixtures. TNAP reconstitution proved virtually complete in DPPC liposomes. Next, proteoliposomes containing either recombinant TNAP, recombinant NPP1, or both together were reconstituted in DPPC, and the hydrolysis of ATP, ADP, AMP, pyridoxal-5′-phosphate (PLP), p-nitrophenyl phosphate, p-nitrophenylthymidine 5′-monophosphate, and PPi by these proteoliposomes was studied at physiological pH. p-Nitrophenylthymidine 5′-monophosphate and PLP were exclusively hydrolyzed by NPP1-containing and TNAP-containing proteoliposomes, respectively. In contrast, ATP, ADP, AMP, PLP, p-nitrophenyl phosphate, and PPi were hydrolyzed by TNAP-, NPP1-, and TNAP plus NPP1-containing proteoliposomes. NPP1 plus TNAP additively hydrolyzed ATP, but TNAP appeared more active in AMP formation than NPP1. Hydrolysis of PPi by TNAP-, and TNAP plus NPP1-containing proteoliposomes occurred with catalytic efficiencies and mild cooperativity, effects comparable with those manifested by murine osteoblast-derived MVs. The reconstitution of TNAP and NPP1 into proteoliposome membranes generates a phospholipid microenvironment that allows the kinetic study of phosphosubstrate catabolism in a manner that recapitulates the native MV microenvironment.  相似文献   

5.
Summary In reconstituted rabbit skeletal muscle (Ca2+ + Mg2+)-ATPase proteoliposomes, Ca2+-uptake is decreased by more than 90% with T2 cleavage (Arg-198). However, no difference in the ATP dependence of hydrolysis activity is seen between SR and trypsin-treated SR. A large decrease in E-P formation and hydrolysis activity of the enzyme appear only at T3 cleavage, which represents the cleavage of A1 fragment to A1a + A1b forms. The disappearance of hydrolysis activity due to digestion is prior to the disappearance of E-P formation. No significant difference is found in the passive Ca2+ efflux between control SR and tryptically digested SR in the absence of Mg+ ruthenium red or in the presence of ATP. However, the passive Ca2+ efflux rate for tryptically digested SR is much larger than control SR in the presence of Mg2+ + ruthenium red. These results show that the Ca2+ channel cannot be closed after trypsin digestion of SR membranes by the presence of the Ca2+ channel inhibitors, Mg2+ and ruthenium red. In the reconstituted ATPase proteoliposomes, the Ca2+ efflux rates are the same regardless of digestion (T2); also, efflux is not affected by the presence or absence of Mg2+ + ruthenium red. These results indicate that T2 cleavage causes uncoupling of the Ca2+-pump from ATP hydrolytic activity.A theoretical model is developed in order to fit the extent of tryptic digestion of the A fragment of the (Ca2+ + Mg2+)-ATPase polypeptide with the loss of Ca2+-transport. Fits of the theoretical equations to the data are consistent with that Ca2+-transport system appears to require a dimer of the polypeptide (Ca2+ + Mg2+)-ATPase.  相似文献   

6.
7.
Multidrug resistance (MDR) phenotype is characterized by the over-expression of P-glycoprotein (P-gp) on cell plasma membranes that extrudes several drugs out of cells. Cells that express the MDR phenotype are resistant to the mitochondrial related apoptosis and to several anticancer drugs. This study assessed the presence of P-gp in mitochondria and its role in parental drug-sensitive (P5) and in P5-derived MDR1 cells P1(0.5) hepatocellular carcinoma (HCC) cell lines and in drug-sensitive (PSI-2) and mdr1-transfected (PN1A) NIH/3T3 cells. By using Western blot analysis, confocal laser microscopy, measurements of Rhodamine 123 transport across mitochondrial membranes, MDR1 small interfering RNA and flow cytometry analysis, experiments indicate that P-gp is expressed in mitochondria of P1(0.5) and PN1A cells and it is functionally active. Rho 123 accumulation was largely reduced in mitochondria of P1(0.5) cells as compared to those of P5 cells; the reduced uptake of fluorescence in mitochondria of MDR cells was due to P-gp-mediated Rho 123 efflux. In conclusion, these data demonstrate that functionally active P-gp is expressed in the mitochondrial membrane of MDR-positive cells and pumps out anticancer drugs from mitochondria into cytosol. Therefore, P-gp could be involved in the protection of mitochondrial DNA from damage due to antiproliferative drugs.  相似文献   

8.
The glucose transport system from Saccharomyces cerevisiae was solubilized from isolated plasma membranes by the nonionic detergent, octylglucoside. The transport system was reconstituted into proteoliposomes with removal of detergent from the extract by dialysis, followed by the addition of asolectin liposomes to the dialyzed proteins with a freeze-thaw and brief bath-sonication step. The reconstituted proteoliposomes exhibit specific carrier-mediated facilitated diffusion of d-glucose, including stimulated equilibrium exchange and influx counterflow. Furthermore, the reconstituted facilitated diffusion system shows substrate specificities similar to those of the intact cell d-glucose transport system.  相似文献   

9.
Summary The lactose transport carrier from parental (X71/F'W3747) and mutant cells (54/F'5441) was reconstituted into proteoliposomes. Transport by the counterflow assay showed slightly greater activity in proteoliposomes prepared from extracts of the mutant membranes compared with that for the parental cell. The mutant carrier showed a threefold lowerK m but similarV max compared to the parent. On the other hand proteoliposomes from the mutant showed a defect in protonmotive force-driven accumulation, compared with the parent. With a pH gradient (inside alkaline) plus a membrane potential (inside negative) the parental proteoliposomes accumulated lactose 25-fold over the medium concentration while the mutant proteoliposomes accumulated sixfold. In a series of experiments proteoliposomes were exposed to proteolytic enzymes. Chrymotrypsin treatment resulted in 30% inhibition of counterflow activity for the reconstituted carrier from both parent and mutant. Papain produced 84% inhibition of transport by the reconstituted parental carrier but only 41% of that of the mutant. Trypsin and carboxypeptidase Y treatment had no effect on counterflow activity of either parent or mutant. Exposure of purified lactose carrier in proteoliposomes to carboxypeptidase Y resulted in the release of alanine and valine, the two C-terminal amino acids predicted from the DNA sequence.  相似文献   

10.

Key message

The vacuolar SlCAT2 was cloned, over-produced in E. coli and reconstituted in proteoliposomes.Arg, Ornithine and Lys were identified as substrates. Unexpectedly, also the organic cationsTetraethylammonium and Acetylcholine were transported indicating involvement of SlCAT2 insignaling.

Abstract

In land plants several transporters are involved in ion and metabolite flux across membranes of cells or intracellular organelles. The vacuolar amino acid transporter CAT2 from Solanum lycopersicum was investigated in this work. SlCAT2 was cloned from tomato flower cDNA, over-produced in Escherichia coli and purified by Nichel-chelating chromatography. For functional studies, the transporter was reconstituted in proteoliposomes. Competence of SlCAT2 for Arg transport was demonstrated measuring uptake of [3H]Arg in proteoliposomes which was trans-stimulated by internal Arg or ornithine. Uptake of [3H]Ornithine and [3H]Lys was also detected at lower efficiency with respect to [3H]Arg. Transport was activated by the presence of intraliposomal ATP suggesting regulation by the nucleotide. The prototype for organic cations tetraethylammonium (TEA) was also transported by SlCAT2. However, scarce reciprocal inhibition between TEA and Arg was found, while the biguanide metformin was able to strongly inhibit uptake of both substrates. These findings suggest that amino acids and organic cations may interact with the transporter through different functional groups some of which are common for the two types of substrates. Interestingly, reconstituted SlCAT2 showed competence for acetylcholine transport, which was also inhibited by metformin. Kinetics of Arg and Ach transport were performed from which Km values of 0.29 and 0.79 mM were derived, respectively.
  相似文献   

11.
P-glycoprotein (P-gp) appears to be associated within specialized raftlike membrane microdomains. The activity of P-gp is sensitive to its lipid environment, and a functional association in raft microdomains will require that P-gp retains activity in the microenvironment. Purified hamster P-gp was reconstituted in liposomes comprising sphingomyelin and cholesterol, both highly enriched in membrane microdomains and known to impart a liquid-ordered phase to bilayers. The activity of P-gp was compared with that of proteoliposomes composed of crude egg phosphatidylcholine (unsaturated) or dipalmitoyl phosphatidylcholine (saturated) in the presence or absence of cholesterol. The maximal rate of ATP hydrolysis was not significantly altered by the nature of the lipid species. However, the potencies of nicardipine and XR9576 to modulate the ATPase activity of P-gp were increased in the sphingolipid-based proteoliposomes. The drug-P-gp interaction was investigated by measurement of the rates of [(3)H]XR9576 association and dissociation from the transporter. The lipid environment of P-gp did not affect these kinetic parameters of drug binding. In summary, P-gp retains function in liquid-ordered cholesterol and sphingolipid model membranes in which the communication between the transmembrane and the nucleotide binding domains after drug binding to the protein is more efficient.  相似文献   

12.
The protein(s) that constitute(s) the ATP-driven Ca2+-translocator of plasma membrane enriched vesicles obtained by aqueous two-phase partitioning from leaves of Commelina communis L. has/have been solubilized and reincorporated into tightly sealed liposomes. The reconstituted Ca2+-transport system was studied using ATP-driven 45Ca2+ import into the proteoliposomes as a measure of activity. The detergent, 3-[(3-cholamidopropyl) dimethylammonio]-1-propane-sulfonate proved to be the most suitable and was used at 10 millimolar concentration, i.e. just above its critical micellar concentration. The presence of additional phospholipid (2 milligrams phosphatidylcholine per milliliter) and ATP (5 millimolar) improved the solubilization and/or reconstitution. The characteristics of the reconstituted system were similar to those of the plasma membrane-bound activity, including the apparent Km for Ca2+ (5.2 micromolar), inhibition by relatively high levels of vanadate (IC50 = 500 micromolar) and lacking response to added calmodulin. The reconstituted transport system was very strongly inhibited by erythrosine B (IC50 = 0.01 micromolar) and had a low apparent Km for ATP (11.4 micromolar). As in the plasma membrane vesicles, the protonophore carbonylcyanide m-chlorophenyl hydrazone did not affect Ca2+-transport detectably in the reconstituted system. However, low levels of the Ca2+-ionophore A 23187 instantaneously discharged 90% of the Ca2+ associated with the vesicles, proving that it had been accumulated in the intravesicular volume in soluble, freely exchangeable form. Ca2+-transport in the reconstituted system was thus primary active, through a Ca2+-translocating ATPase. The system reported here may serve as a valuable tool for purifying the Ca2+-ATPase and for studying structural and functional aspects of the purified enzyme.  相似文献   

13.
The reversibility of adenosine triphosphate cleavage by myosin   总被引:12,自引:12,他引:0  
For the simplest kinetic model the reverse rate constants (k−1 and k−2) associated with ATP binding and cleavage on purified heavy meromyosin and heavy meromyosin subfragment 1 from rabbit skeletal muscle in the presence of 5mm-MgCl2, 50mm-KCl and 20mm-Tris–HCl buffer at pH8.0 and 22°C are: k−1<0.02s−1 and k−1=16s−1. Apparently, higher values of k−1 and k−2 are found with less-purified protein preparations. The values of k−1 and k−2 satisfy conditions required by previous 18O-incorporation studies of H218O into the Pi moiety on ATP hydrolysis and suggest that the cleavage step does involve hydrolysis of ATP or formation of an adduct between ATP and water. The equilibrium constant for the cleavage step at the myosin active site is 9. If the cycle of events during muscle contraction is described by the model proposed by Lymn & Taylor (1971), the fact that there is only a small negative standard free-energy change for the cleavage step is advantageous for efficient chemical to mechanical energy exchange during muscle contraction.  相似文献   

14.
A carrier protein mediatine alanine transport was purified from the membranes of the thermophilic bacterium PS3, by ion exchange chromatography in the presence of both Triton X-100 and urea. The alanine carrier was recovered in the nonadsorbed fraction from either DEAE-or CM-cellulose columns, suggesting that its isoelectric point was in the neutral pH region. The final preparation contained virtually no electron transfer components, ATPase, or NADH dehydrogenase. Polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate revealed that the final preparation consisted of two major protein components with molecular weights of 36,000 and 9,400. Active transport of alanine after incorporation of the alanine carrier into reconstituted proteoliposomes was driven not only by an artificial membrane potential generated by potassium ion diffusion via valinomycin but also by mitochondrial cytochrome oxidase incorporated into the same liposomes and supplemented with both cytochrome c and ascorbic acid. The membrane-integrated portion (TF0) of the ATPase complex uncoupled alanine transport by conducting protons across the membrane.  相似文献   

15.
We report for the first time an analysis of the ATPase activity of human DNA topoisomerase (topo) IIβ. We show that topo IIβ is a DNA-dependent ATPase that appears to fit Michaelis–Menten kinetics. The ATPase activity is stimulated 44-fold by DNA. The kcat for ATP hydrolysis by human DNA topo IIβ in the presence of DNA is 2.25 s–1. We have characterised a topo IIβ derivative which carries a mutation in the ATPase domain (S165R). S165R reduced the kcat for ATP hydrolysis by 7-fold, to 0.32 s–1, while not significantly altering the apparent Km. The specificity constant for the interaction between ATP and topo IIβ (kcat/Kmapp) showed a 90% reduction for βS165R. The DNA binding affinity and ATP-independent DNA cleavage activity of the enzyme are unaffected by this mutation. However, the strand passage activity is reduced by 80%, presumably due to reduced ATP hydrolysis. The mutant enzyme is unable to complement ts yeast topo II in vivo. We have used computer modelling to predict the arrangement of key residues at the ATPase active site of topo IIβ. Ser165 is predicted to lie very close to the bound nucleotide, and the S165R mutation could thus influence both ATP binding and ADP dissociation.  相似文献   

16.
《FEBS letters》1986,208(1):138-142
Evidence is presented for a high proton translocation stoichiometry (H+/ATP) of approx. 9 in ATPase proteoliposomes with extremely low permeability for ions, reconstituted from a thermophilic cyanobacterium. A proportional relation between the phosphate potential (ΔGfp) and the proton-motive force (Δp) was observed in thermodynamic equilibrium. A bulk-to-bulk Δp was imposed by valinomycin-induced K diffusion potentials of different size while the initial ΔGfp was varied. In all cases equilibrium was reached in about 1.5 h. A high H/ATP ratio was also deduced from the relation between the initial rates of ATP synthesis or hydrolysis at varying ΔGfp and Δp. The implications of these results for the mechanism of energy transduction in energy-conserving membranes are discussed.  相似文献   

17.
Transport ratios of reconstituted (H+ + K+)-ATPase   总被引:2,自引:0,他引:2  
Gastric (H+ + K+)-ATPase was reconstituted into artificial phosphatidylcholine/cholesterol vesicles by means of a freeze-thaw-sonication procedure. The passive and active transport mediated by these vesicles were measured (Skrabanja, A.T.P., Asty, P., Soumarmon, A., De Pont, J.J.H.H.M. and Lewin, M.J.M. (1986) Biochim. Biophys. Acta 860, 131-136). To determine real initial velocities, the proteoliposomes were separated from non-incorporated enzyme, by means of centrifugation on a sucrose gradient. The purified proteoliposomes were used to measure active H+ and Rb+ transport, giving at room-temperature velocities of 46.3 and 42.5 mumol per mg per h, respectively. A transport ratio of two cations per ATP hydrolyzed was also measured. These figures indicate that the enzyme catalyzes an electroneutral H+-Rb+ exchange.  相似文献   

18.
Summary A vanadate-sensitive H+-translocating ATPase isolated from red beet plasma membrane has been solubilized in active form and successfully reconstituted into artificial proteoliposomes. The H+-ATPase was solubilized in active form with deoxycholate, CHAPSO or octylglucoside in the presence of glycerol. Following detergent removal by gel filtration and reconstitution into proteoliposomes, ATP:Mg-dependent H+ transport could be measured as ionophore-reversible quenching of acridine orange fluorescence. Solubilization resulted in a three-to fourfold purification of the plasma membrane ATPase, with some additional enrichment of specific activity following reconstitution. H+ transport activity was inhibited half-maximally between 1 and 5 M vanadate (Na3VO4) and nearly abolished by 100 M vanadate. ATPase activity of native plasma membrane showed aK i for vanadate inhibition of 9.5 M, and was inhibited up to 80% by 15 to 20 M vanadate (Na3VO4). ATPase activity of the reconstituted vesicles showed aK i of 2.6 M for vanadate inhibition. The strong inhibition by low concentrations of vanadate indicates a plasma membrane rather than a mitochondrial or tonoplast origin for the reconstituted enzyme.  相似文献   

19.
Binding protein-dependent transport systems mediate the accumulation of diverse substrates in bacteria. The binding protein-dependent galactose transport of Salmonella typhimurium has been reconstituted in proteoliposomes. The proteoliposomes were made with proteins solubilized and renatured from inclusion bodies produced by a bacterial strain containing a plasmid with the mgl (methylgalactose permease) operon of Salmonella typhimurium. Galactose transport is dependent both on the addition of the purified galactose binding protein to the transport assay, and on ATP. The interaction between the liganded galactose binding protein and proteoliposomes displays Michaelis type kinetics with a Km of around 15 microM. Galactose transport is coupled to ATP hydrolysis with a stoichiometry (ATP/galactose) of 2.5:1. Galactose transport in proteoliposomes is not significantly inhibited by the uncoupler carbonylcyanide m-chlorophenylhydrazone, but is inhibited by 0.5 mM vanadate. The present reconstitution of galactose transport in proteoliposomes suggests that the MglA, MglC and MglE proteins have been solubilized and renatured in an active form from the inclusion bodies of the mgl hyperproducing strain.  相似文献   

20.
The human Na+/multivitamin transporter (hSMVT) has been suggested to transport α-lipoic acid (LA), a potent antioxidant and anti-inflammatory agent used in therapeutic applications, e.g. in the treatment of diabetic neuropathy and Alzheimer disease. However, the molecular basis of the cellular delivery of LA and in particular the stereospecificity of the transport process are not well understood. Here, we expressed recombinant hSMVT in Pichia pastoris and used affinity chromatography to purify the detergent-solubilized protein followed by reconstitution of hSMVT in lipid bilayers. Using a combined approach encompassing radiolabeled LA transport and equilibrium binding studies in conjunction with the stabilized R-(+)- and S-(−)-enantiomers and the R,S-(+/−) racemic mixture of LA or lipoamide, we identified the biologically active form of LA, R-LA, to be the physiological substrate of hSMVT. Interaction of R-LA with hSMVT is strictly dependent on Na+. Under equilibrium conditions, hSMVT can simultaneously bind ∼2 molecules of R-LA in a biphasic binding isotherm with dissociation constants (Kd) of 0.9 and 7.4 μm. Transport of R-LA in the oocyte and reconstituted system is exclusively dependent on Na+ and exhibits an affinity of ∼3 μm. Measuring transport with known amounts of protein in proteoliposomes containing hSMVT in outside-out orientation yielded a catalytic turnover number (kcat) of about 1 s−1, a value that is well in agreement with other Na+-coupled transporters. Our data suggest that hSMVT-mediated transport is highly specific for R-LA at our tested concentration range, a finding with wide ramifications for the use of LA in therapeutic applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号