首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
The role of preS domains of the hepatitis B virus (HBV) envelope proteins in the first steps of viral infection has been restricted to their implication in virus attachment to a putative hepatocyte receptor. In order to explore a fusion activity in these regions, we used recombinant preS domains to characterize their interaction with liposomes. Binding experiments carried out with NBD-labeled proteins indicated that preS were able to interact in a monomeric way with acidic phospholipid vesicles, being the partition coefficient similar to that described for peptides which can insert deeply into bilayers. Fluorescence depolarization of DPH-labeled vesicles confirmed the specificity for negative charged phospholipids. Upon interaction the proteins induced aggregation, lipid mixing and release of internal contents of acidic vesicles at both acid and neutral pH in a concentration-dependent manner. Taken together, all these data indicate that preS domains are able to insert into the hydrophobic core of the bilayer. Moreover, the insertion resulted in a protein conformational change which increased the helical content. Therefore all these results suggest that, besides their participation in the recognition of a cellular receptor, the preS domains could be involved in the fusion mechanism of HBV with the plasma membrane of target cells.  相似文献   

2.
3.
J Jung  HY Kim  T Kim  BH Shin  GS Park  S Park  YJ Chwae  HJ Shin  K Kim 《PloS one》2012,7(7):e41087
To investigate the contributions of carboxyl-terminal nucleic acid binding domain of HBV core (C) protein for hepatitis B virus (HBV) replication, chimeric HBV C proteins were generated by substituting varying lengths of the carboxyl-terminus of duck hepatitis B virus (DHBV) C protein for the corresponding regions of HBV C protein. All chimeric C proteins formed core particles. A chimeric C protein with 221-262 amino acids of DHBV C protein, in place of 146-185 amino acids of the HBV C protein, supported HBV pregenomic RNA (pgRNA) encapsidation and DNA synthesis: 40% amino acid sequence identity or 45% homology in the nucleic-acid binding domain of HBV C protein was sufficient for pgRNA encapsidation and DNA synthesis, although we predominantly detected spliced DNA. A chimeric C protein with 221-241 and 251-262 amino acids of DHBV C, in place of HBV C 146-166 and 176-185 amino acids, respectively, could rescue full-length DNA synthesis. However, a reciprocal C chimera with 242-250 of DHBV C ((242)RAGSPLPRS(250)) introduced in place of 167-175 of HBV C ((167)RRRSQSPRR(175)) significantly decreased pgRNA encapsidation and DNA synthesis, and full-length DNA was not detected, demonstrating that the arginine-rich (167)RRRSQSPRR(175) domain may be critical for efficient viral replication. Five amino acids differing between viral species (underlined above) were tested for replication rescue; R169 and R175 were found to be important.  相似文献   

4.
As a hepatitis B virus (HBV) envelope domain, preS plays significant roles in receptor recognition and viral infection. However, the regions critical for maintaining a stable and functional conformation of preS are still unclear and require further investigation. In order to unravel these regions, serially truncated fragments of preS were constructed and expressed in Escherichia coli. Their solubility, stability, secondary structure, and affinity to polyclonal antibodies and hepatocytes were examined. The results showed that amino acids 31-36 were vital for its stable conformation, and the absence of 10-36 amino acids significantly reduced its binding to polyclonal antibodies as well as hepatocytes. The most stable fragment 1-120 (preS1 + N-terminal 12 amino acids of preS2), perhaps the core of preS, was discovered, which bound to HepG2 cells most tightly. Moreover, the availability of large amounts of well-folded and stable preS1-120 enables us to carry out further structural determination and mechanistic study on HBV infection.  相似文献   

5.
P Ostapchuk  P Hearing    D Ganem 《The EMBO journal》1994,13(5):1048-1057
The envelope of hepatitis B virus contains three related glycoproteins (termed L, M and S) produced by alternative translation initiation in a single coding region. The smallest of these, the S protein, is a 24 kDa glycoprotein with multiple transmembrane domains. The M and L proteins contain the entire S domain at their C-termini, but harbor at their N-terminal additional (preS) domains of 55 or 174 amino acids, respectively. Most of these preS residues are displayed on the surface of mature virions and hence would be expected to be translocated into the endoplasmic reticulum (ER) lumen during biosynthesis. Using a coupled, in vitro translation/translocation system we now demonstrate that, contrary to expectation, virtually all preS residues of the L protein are cytoplasmically disposed in the initial translocation product. This includes some preS sequences which in the M protein are indeed translocated into the ER lumen. Since preS sequences are found on the external surface of the virion envelope, our results indicate that during or following budding a dramatic reorganization of either the envelope proteins or the lipid bilayer (or both components) must occur to allow surface display of these sequences. These findings imply that some membrane budding events can have remarkable and previously unsuspected topological consequences.  相似文献   

6.
The preS1 surface antigen of hepatitis B virus (HBV) is known to play an important role in the initial attachment of HBV to hepatocytes. We have characterized structural features of the full-length preS1 using heteronuclear NMR methods and discovered that this 119-residue protein is inherently unstructured without a unique tertiary structure under a nondenaturing condition. Yet, combination of various NMR parameters shows that the preS1 contains "pre-structured" domains broadly covering its functional domains. The most prominent domain is formed by residues 27-45 and overlaps with the putative hepatocyte-binding domain (HBD) encompassing residues 21-47, within which two well-defined pre-structured motifs, formed by Pro(32)-Ala(36) and Pro(41)-Phe(45) are found. Additional, somewhat less prominent, pre-structured motifs are also formed by residues 11-18, 22-25, 37-40, and 46-50. Overall results suggest that the preS1 is a natively unstructured protein (NUP) whose N-terminal 50 residues, populated with multiple pre-structured motifs, contribute critically to hepatocyte binding.  相似文献   

7.
我们构建了谷胱甘肽巯基转移酶(GST)和完整的或部分缺失的乙型肝炎病毒表面抗原前S区的融合基因,并在大肠杆菌中进行了表达。融合蛋白的产量随着前S区长度的增加而迅速降低,而且融合蛋白的前S区有严重的降解,主要降解位点在preS1区的a.a.75和preS2区的a.a.130和a.a.165左右。利用蛋白降解酶系缺陷型菌株进行的研究表明,这种降解酶存在于多个大肠杆菌株中而且和大肠杆菌中的两个主要的蛋白降解酶系Lon和htpR无关。具有重要生物学功能的前S区肽段(preS1a.a.1-65)因含有阻止分泌的滞留顺序而无法在哺乳动物细胞和酵母中大量表达,但滞留顺序的存在并没有影响含有这一肽段的融合蛋白在大肠杆菌中的表达和产物的纯化。GST融合表达系统产量高,纯化快速简便。用这一方法大量表达并得到的这一肽段不仅是研究乙型肝炎病毒的分子生物学的重要材料,而且可以作为新一代乙型肝炎疫苗的主要组成成分。  相似文献   

8.
Abstract: cDNAs encoding the full-length sequence for tryptophan hydroxylase, and deletion mutants consisting of the regulatory (amino acids 1–98) or catalytic (amino acids 99–444) domains of the enzyme, were cloned and expressed as glutathione S -transferase fusion proteins in E. coli . The recombinant fusion proteins could be purified to near homogeneity within minutes by affinity chromatography on glutathione-agarose. The full-length enzyme and the catalytic core expressed very high levels of tryptophan hydroxylase activity. The regulatory domain was devoid of activity. The full-length enzyme and the catalytic core, while adsorbed to glutathione-agarose beads, obeyed Michaelis-Menten kinetics, and the kinetic properties of each recombinant enzyme for cofactor and substrate compared very closely to native, brain tryptophan hydroxylase. Both active forms of the glutathione S -transferase-tryptophan hydroxylase fusion proteins had strict requirements for ferrous iron in catalysis and expressed much higher levels of activity ( V max) than the brain enzyme. Analysis of full-length tryptophan hydroxylase and the catalytic core by molecular sieve chromatography under nondenaturing conditions revealed that each fusion protein behaved as a tetrameric species. These results indicate that a truncated tryptophan hydroxylase, consisting of amino acids 99–444 of the full-length enzyme, contains the sequence motifs needed for subunit assembly. Both wild-type tryptophan hydroxylase and the catalytic core are expressed as apoenzymes which are converted to holoenzymes by exogenous iron. The tryptophan hydroxylase catalytic core is also as active as the full-length enzyme, suggesting the possibility that the regulatory domain exerts a suppressive effect on the catalytic core of tryptophan hydroxylase.  相似文献   

9.
Many studies have provided evidence that hepatitis B surface antigen (HBsAg) including preS1 and preS2 sequences could be an ideal candidate for a new hepatitis B virus (HBV) vaccine with higher efficacy. However, the large (L) protein containing the entire preS region expressed in mammalian cells is not efficiently assembled into particles and secreted. Here we report an alternative approach to include the dominant epitopes of preS1 and preS2 to the small (S) protein as fusion proteins by the recombinant DNA technology. Three fusion proteins containing preS2(120-146) and preS1(21-47) at the N-terminus and/or truncated C-terminus of S protein were expressed using the recombinant vaccinia virus system. All these fusion proteins were efficiently secreted in the particulate form, and displayed S, preS1 and/or preS2 antigenicity. Further analysis showed that these chimeric HBsAg particles elicited strong antibody responses against S, preS1 and preS2 antigens in BALB/c mice, suggesting that they could be promising candidates for a new recombinant vaccine to induce broader antibody response required for protection against hepatitis B viral infection.  相似文献   

10.
V Bruss  X Lu  R Thomssen    W H Gerlich 《The EMBO journal》1994,13(10):2273-2279
The preS domain at the N-terminus of the large envelope protein (LHBs) of the hepatitis B virus is involved in (i) envelopment of viral nucleocapsids and (ii) binding to the host cell. While the first function suggests a cytosolic location of the preS domain during virion assembly, the function as an attachment site requires its translocation across the lipid bilayer and final exposure on the virion surface. We compared the transmembrane topology of newly synthesized LHBs in the endoplasmic reticulum (ER) membrane with its topology in the envelope of secreted virions. Protease sensitivity and the absence of glycosylation suggest that the entire preS domain of newly synthesized LHBs remains at the cytosolic side of ER vesicles. However, virions secreted from transfected cell cultures or isolated from the blood of persistent virus carriers expose antibody binding sites and proteolytic cleavage sites of the preS domain at their surface in approximately half of the LHBs molecules. Thus, preS domains appear to be transported across the viral lipid barrier by a novel post-translational translocation mechanism to fulfil a dual function in virion assembly and attachment to the host cell.  相似文献   

11.
V Bruss 《Journal of virology》1997,71(12):9350-9357
Envelopment of the hepatitis B virus (HBV) nucleocapsid depends on the large envelope protein L, which is expressed as a transmembrane polypeptide at the endoplasmic reticulum membrane. Previous studies demonstrated that the cytosolic exposure of the N-terminal pre-S domain (174 amino acids) of L was required for virion formation. N-terminal truncations of L up to Arg 103 were tolerated. To map sites in the remaining C-terminal part of pre-S important for virion morphogenesis, a series of 11 L mutants with linker substitutions between Asn 98 and Pro 171 was generated. The mutants formed stable proteins and were secreted in transfected cell cultures, probably as components of subviral hepatitis B surface antigen particles. All four constructs with mutations between Asn 98 and Thr 125 were unable to complement in trans the block in virion formation of an L-negative HBV genome in cotransfected HuH7 cells. These mutants had a transdominant negative effect on virus yield in cotransfections with the wild-type HBV genome. In contrast, all seven mutants with substitutions downstream of Ser 124 were able to envelop the nucleocapsid and to secrete HBV. The sequence between Arg 103 and Ser 124 is highly conserved among different HBV isolates and also between HBV and the woodchuck hepatitis virus. Point mutations in this region introducing alanine residues at conserved positions blocked virion formation, in contrast to mutations at nonconserved residues. These results demonstrate that the pre-S sequence between Arg 103 and Ser 124 has an important function in HBV morphogenesis.  相似文献   

12.
During the life cycle of hepatitis B virus (HBV), the large envelope protein (L) plays a pivotal role. Indeed, this polypeptide is essential for viral assembly and probably for the infection process. By performing mutagenesis experiments, we have previously excluded a putative involvement of the pre-S2 domain of the L protein in viral infectivity. In the present study, we have evaluated the role of the pre-S1 region in HBV infection. For this purpose, 21 mutants of the L protein were created. The entire pre-S1 domain was covered by contiguous deletions of 5 amino acids. First, after transfection into HepG2 cells, the efficient expression of both glycosylated and unglycosylated L mutant proteins was verified. The secretion rate of envelope proteins was modified positively or negatively by deletions, indicating that the pre-S1 domain contains several regulating sequences able to influence the surface protein secretion. The ability of mutant proteins to support the production of virions was then studied. Only the four C-terminal deletions, covering the 17 amino acids suspected to interact with the cytoplasmic nucleocapsids, inhibited virion release. Finally, the presence of the modified pre-S1 domain at the external side of all secreted virions was confirmed, and their infectivity was assayed on normal human hepatocytes in primary culture. Only a short sequence including amino acids 78 to 87 tolerates internal deletions without affecting viral infectivity. These results confirm the involvement of the L protein in the infection step and demonstrate that the sequence between amino acids 3 and 77 is involved in this process.  相似文献   

13.
The small (S), middle (M) and large (L) envelope proteins of the hepatitis B virus (HBV) are initially synthesized as multispanning membrane proteins of the endoplasmic reticulum membrane. We now demonstrate that all envelope proteins synthesized in transfected cells or in a cell-free system adopt more than one transmembrane orientation. The L protein disposes its N-terminal preS domain both to the cytoplasmic and the luminal side of the membrane. This unusual topology does not depend on interaction with the viral nucleocapsid, but is preserved in secreted empty envelope particles. Pulse-chase analysis suggests a novel process of post-translational translocation leading to the non-uniform topology. Analysis of L deletion mutants indicates that the block to co-translational translocation can be attributed to a specific sequence within preS, suggesting that translocation of L may be regulated. Additional topological heterogeneity is displayed in the S region of the envelope proteins and in the S protein itself, as assayed in a cell-free system. S proteins integrated into microsomal membranes exhibit both a luminal and a cytoplasmic orientation of the internal hydrophilic region carrying the major antigenic determinants. This may explain the unusual partial glycosylation of the HBV envelope proteins.  相似文献   

14.
The virion of the hepatitis B virus (HBV) is a sphericalparticle of 42-nm diameter whose envelope contains threerelated surface glycoproteins called the large (L), middle(M) and small (S) proteins.All these proteins are expressedfrom one open reading frame using three in-frame startsites [1]. The L protein is the translation product of thewhole open reading frame. The M protein lacks the N-terminal amino acid residue 108–119 of Lprotein (the preS1sequence), and the S protein lacks the N…  相似文献   

15.
16.
17.
We used bacterially expressed beta-galactosidase fusion proteins to localize the phospholipid binding domain of Acanthamoeba myosin IC to the region between amino acids 701 and 888 in the NH2-terminal half of the tail. Using a novel immobilized ligand lipid binding assay, we determined that myosin I can bind to several different acidic phospholipids, and that binding requires a minimum of 5 mol% acidic phospholipid in a neutral lipid background. The presence of di- and triglycerides and sterols in the lipid bilayer do not contribute to the affinity of myosin I for membranes. We confirm that the ATP-insensitive actin binding site is contained in the COOH-terminal 30 kD of the tail as previously shown for Acanthamoeba myosin IA. We conclude that the association of the myosin IC tail with acidic phospholipid head groups supplies much of the energy for binding myosin I to biological membranes, but probably not specificity for targeting myosin I isoforms to different cellular locations.  相似文献   

18.
A direct involvement of the PreS domain of the hepatitis B virus (HBV) large envelope protein, and in particular amino acid residues 21 to 47, in virus attachment to hepatocytes has been suggested by many previous studies. Several PreS-interacting proteins have been identified. However, they share few common sequence motifs, and a bona fide cellular receptor for HBV remains elusive. In this study, we aimed to identify PreS-interacting motifs and to search for novel HBV-interacting proteins and the long-sought receptor. PreS fusion proteins were used as baits to screen a phage display library of random peptides. A group of PreS-binding peptides were obtained. These peptides could bind to amino acids 21 to 47 of PreS1 and shared a linear motif (W1T2X3W4W5) sufficient for binding specifically to PreS and viral particles. Several human proteins with such a motif were identified through BLAST search. Analysis of their biochemical and structural properties suggested that lipoprotein lipase (LPL), a key enzyme in lipoprotein metabolism, might interact with PreS and HBV particles. The interaction of HBV with LPL was demonstrated by in vitro binding, virus capture, and cell attachment assays. These findings suggest that LPL may play a role in the initiation of HBV infection. Identification of peptides and protein ligands corresponding to LPL that bind to the HBV envelope will offer new therapeutic strategies against HBV infection.  相似文献   

19.
The complete (encoding 55 amino acids, aa) or partial (encoding aa 1–26) preS2 region gene of hepatitis B virus (HBV) was fused to the 3-end of glutathion-S-transferase (GST) gene and expressed under the control of the inducible tac promoter in Escherichia coli at 37 °C. The fusion protein with the complete preS2 region was moderately expressed (8%) while the protein with the N-terminal 26 aa was expressed at a higher level, yielding about 20% of the total cellular proteins. The GST-preS2 (aa 1–26) protein, which contains the immunodominant epitope, was produced form the soluble protein fraction of the recombinant bacteria and purified by affinity chromatography using glutathione-agarose column. The purified preS2 fusion protein showed the antigenicity of preS2, as assessed by indirect and competitive ELISAs.  相似文献   

20.
In plant seeds, the storage triacylglycerol is packed in discrete particles called lipid bodies which consist of a lipid core surrounded by a phospholipid monolayer with embedded proteins. We have cloned and sequenced a nearly full-length cDNA for the major protein (L3) associated with the lipid bodies of maize. The L3-cDNA clone was identified by hybrid-selected translation analysis and contains the complete 3' noncoding region and an open reading frame of 432 nucleotides. This open reading frame encodes a polypeptide with amino acid composition, hydrophobicity, and predicted protease digestion pattern which correlate well with those of the authentic L3 protein. Analyses of predicted secondary structure and local hydropathy of the deduced amino acid sequence suggest three structural domains in the protein. An internal domain of 72 contiguous hydrophobic or neutral amino acids is bounded at the amino-terminal side by a hydrophilic alpha-helix and on the carboxyl-terminal side by an amphipathic alpha-helix. The data suggest that L3 is uniquely suited to interact with both lipid and phospholipid moieties of the lipid body. A simple model for the topology of L3 on the lipid body is proposed. The unusual structure of the lipid body protein is discussed and compared to those of the two well-studied classes of lipid-associated proteins, apolipoproteins and intrinsic membrane proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号