首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Luit Slooten  Adriaan Nuyten 《BBA》1983,725(1):49-59
Rhodospirillum rubrum chromatophores catalyze the formation of ADP-arsenate during illumination with ADP, Mg2+ and arsenate. The reaction was measured with (1) firefly luciferase, (2) a coupled enzyme assay involving hexokinase and glucose-6-phosphate dehydrogenase, and (3) a glass electrode. ADP-arsenate hydrolyzed spontaneously with rate constants ranging from 14 to 43 min?1. Magnesium, arsenate and phosphate accelerated hydrolysis of ADP-arsenate. From a comparison of the three methods, with ADP as the substrate, it is estimated that φR (i.e., the ratio between the quantum yields of ADP-arsenate and ATP for light emission from luciferase) is 0.19–0.23. Furthermore, arsenylation rates were 46–52% of phosphorylation rates in experiments with 30 μ M ADP and 0.8 mM arsenate or phosphate. Similarly, the Vapp for arsenylation of GDP or IDP was 47–59% of the Vapp for phosphorylation during measurements in the presence of 1 mM arsenate or phosphate. The Kapp(GDP) was higher during arsenylation than during phosphorylation; the Kapp(IDP) was about the same during arsenylation as during phosphorylation. It is suggested that a shift in the equilibrium of substrates and products on the enzyme, toward hydrolysis, is the main cause of the relatively low arsenylation rates.  相似文献   

2.
The rates of respiration in the presence of ADP and of phosphorylation as an ATP-ase activity of rat liver mitochondria was inhibited was in vitro by morphine with Ki=6.5 mM. The uncoupler-stimulated respiration of the mitochondria and the activity of ATP-ase and synthesis of ATP in the submitochondrial particles were not altered in the presence of morphine. It is suggested that morphine inhibited the adenine nucleotide transport through the mitochondrial membrane  相似文献   

3.
1. Investigation of a number of reactions involving both internal and externally added adenine nucleotides of isolated liver mitochondria has revealed that atractylate and oligomycin differ markedly in the site of their inhibitory action. 2. Both atractylate and oligomycin inhibited the respiratory-chain-level phosphorylation of added ADP. Neither compound inhibited the substrate-level phosphorylation of internal (endogenous) ADP or the respiration-dependent accumulation of bivalent metal ions (Ca2+, Sr2+ or Mn2+). 3. Atractylate, but not oligomycin, inhibited the substrate-level phosphorylation of externally added ADP, the ATP- and carnitine-dependent reduction of nicotinamide nucleotide by palmitate and the ATP-induced activation of succinate oxidation. 4. Oligomycin, but not atractylate, inhibited the respiratory-chain-linked phosphorylation of internal ADP, and the dephosphorylation of internal ATP that occurred on the addition of antimycin. 5. The enhancement of arsenate-stimulated respiration by ADP was prevented by atractylate added either before or after the ADP. Oligomycin abolished both the arsenate and ADP stimulation. 6. It is suggested that atractylate prevents the passage of adenine nucleotides across the mitochondrial membrane, whereas oligomycin interferes with the formation of a `high-energy' phosphorylated intermediate.  相似文献   

4.
A comparison has been made of cauliflower mitochondria, which have no 2,4-dinitrophenol-stimulated ATPase (EC 3,6,1,4), with corn mitochondria, which do. Unlike corn mitochondria, cauliflower mitochondria show poor initial respiratory control ratios and phosphate uptake, but these are normalized after the first ADP addition. Sonication or high pH treatment releases a high rate of oligomycin-sensitive ATPase, indicating ATP transport into cauliflower mitochondria is the limiting factor. A brief period of respiration will activate, or “prime,” the 2,4-dinitrophenol-stimulated ATPase of cauliflower mitochondria, and the activity is inhibited by atractyloside, mersalyl, and oligomycin. Influx pumping of phosphate or arsenate extends the time the priming period lasts after respiration ceases to 1–2 min unless the 2,4-dinitrophenol is added before the ATP, in which case the priming is collapsed. Respiratory priming seems to consist of creating a transmembrane potential, possibly in the form of a phosphate gradient, for driving the ATP4?-ADP3? transporter.  相似文献   

5.
The effects of phthalate esters on the oxidation of succinate, glutamate, beta-hydroxybutyrate and NADH by rat liver mitochondria were examined and it was found that di-n-butyl phthalate (DBP) strongly inhibited the succinate oxidation by intact and sonicated rat mitochondria, but did not inhibit the State 4 respiration with NAD-linked substrates such as glutamate and beta-hydroxybutyrate. However, oxygen uptake accelerated by the presence of ADP and substrate (State 3) was inhibited and the rate of oxygen uptake decreased to that without ADP (State 4). It was concluded that phthalate esters were electron and energy transport inhibitors but not uncouplers. Phthalate esters also inhibited NADH oxidation by sonicated mitochondria. The degree of inhibition depended on the carbon number of alkyl groups of phthalate esters, and DBP was the most potent inhibitor of respiration. The activity of purified beef liver glutamate dehydrogenase [EC 1.4.1.3] was slightly inhibited by phthalate esters.  相似文献   

6.
The trinuclear cyanine dye, tri-S-C7(5), at about 10 microM stimulated State 4 respiration of rat liver mitochondria more than 6-fold and released oligomycin-inhibited respiration completely. Thus, the dye is concluded to be a very effective cationic uncoupler of oxidative phosphorylation in mitochondria. However, for exhibition of its uncoupling action, the presence of Pi (or arsenate) was necessary, and a phosphate-transport inhibitor, N-ethylmaleimide or mersalyl, inhibited its action. The stimulation of phosphate transport via the Pi carrier by the dye is suggested to be directly related to the uncoupling action.  相似文献   

7.
Haem is a prosthetic group for haem proteins, which play an essential role in oxygen transport, respiration, signal transduction, and detoxification. In haem biosynthesis, the haem precursor protoporphyrin IX (PP IX) must be accumulated into the mitochondrial matrix across the inner membrane, but its mechanism is largely unclear. Here we show that adenine nucleotide translocator (ANT), the inner membrane transporter, contributes to haem biosynthesis by facilitating mitochondrial accumulation of its precursors. We identified that haem and PP IX specifically bind to ANT. Mitochondrial uptake of PP IX was inhibited by ADP, a known substrate of ANT. Conversely, ADP uptake into mitochondria was competitively inhibited by haem and its precursors, suggesting that haem-related porphyrins are accumulated into mitochondria via ANT. Furthermore, disruption of the ANT genes in yeast resulted in a reduction of haem biosynthesis by blocking the translocation of haem precursors into the matrix. Our results represent a new model that ANT plays a crucial role in haem biosynthesis by facilitating accumulation of its precursors into the mitochondrial matrix.  相似文献   

8.
Studies on synaptosome mitochondrial respiration are complicated by “free” mitochondria. Veratridine stimulation of synaptosomal respiration was due to increased Na+ cycling at the synaptosome membrane associated with increased oxidative phosphorylation of intraterminal ADP and was inhibited by oligomycin, ouabain or Na+ free medium. Atractylate or carboxyatractyloside failed to block veratridine-stimulated respiration but inhibited exogenous-ADP-stimulated respiration. Protein synthesis in the synaptosome fraction was inhibited by oligomycin, valinomycin or 2,4-dinitrophenol but was unaffected by excess atractylate. No change in synaptosomal adenine nucleotide content was found in the presence of atractylate, although a significant decrease in the [ATP]/[ADP] was found with oligomycin, veratridine or valinomycin. These findings show that atractylate does not modify intraterminal mitochondrial energy transduction and indirectly suggest an impermeability of the synaptosome membrane to atractylate.  相似文献   

9.
T.A. Out  K. Krab  A. Kemp  E.C. Slater 《BBA》1977,459(3):612-616
Even when oxidative phosphorylation is blocked completely by addition of high concentrations of oligomycin plus aurovertin, the addition of ADP to a suspension of mitochondria containing a high concentration of ATP inside the mitochondria induces a stimulation of respiration and oxidation of nicotinamide nucleotide.It is concluded that transport of ADP into mitochondria with a high endogenous ATP/ADP ratio requires energy.  相似文献   

10.
In the presence of K(+), addition of ATP or ethanol to yeast mitochondria triggers the depletion of the transmembrane potential (DeltaPsi) and this is prevented by millimolar concentrations of phosphate (PO(4)). Different monovalent and polyvalent anions were tested for their protective effects on mitochondria from Saccharomyces cerevisiae. Only arsenate (AsO(4)) and sulfate (SO(4)) were as efficient as PO(4) to protect mitochondria against the K(+) mediated swelling, depletion of the DeltaPsi, and decrease in the ratio of uncoupled state to state 4 respiration rates. Protection by PO(4), SO(4) or AsO(4) was inhibited by mersalyl, suggesting that these anions interact with a site located in the matrix side. In addition, the effects of SO(4) and AsO(4) on the F(1)F(0)-ATPase were tested: both SO(4) and AsO(4) inhibited the synthesis of ATP following competitive kinetics against PO(4) and non-competitive kinetics against ADP. The mersalyl sensitive uptake of (32)PO(4) was not inhibited by SO(4) or AsO(4), suggesting that the synthesis of ATP was inhibited at the F(1)F(0)-ATPase. The hydrolysis of ATP was not inhibited, only a stimulation was observed when AsO(4) or sulfite (SO(3)) were added. It is suggested that the structure and charge similarities of PO(4), AsO(4) and SO(4) result in undiscriminated binding to at least two sites located in the mitochondrial matrix: at one site, occupation by any of these three anions results in protection against uncoupling by K(+); at the second site, in the F(1)F(0)-ATPase, AsO(4) and SO(4) compete for binding against PO(4) leading to inhibition of the synthesis of ATP.  相似文献   

11.
Németi B  Anderson ME  Gregus Z 《Biochimie》2012,94(6):1327-1333
The environmentally prevalent arsenate (As(V)) undergoes reduction in the body to the much more toxic arsenite (As(III)). Phosphorolytic enzymes and ATP synthase can promote the reduction As(V) by converting it into arsenylated products in which the pentavalent arsenic is more reducible by glutathione (GSH) to As(III) than in inorganic As(V). Glutathione synthetase (GS) can catalyze the arsenolysis of GSH (γ-Glu-Cys-Gly) yielding two arsenylated products, i.e. γ-Glu-Cys-arsenate and ADP-arsenate. Thus, GS may also promote the reduction of As(V) by GSH. This hypothesis was tested with human recombinant GS, a Mg(2+) dependent enzyme. GS markedly increased As(III) formation when incubated with As(V), GSH, Mg(2+) and ADP, but not when GSH, Mg(2+) or ADP were separately omitted. Phosphate, a substrate competitive with As(V) in the arsenolysis of GSH, as well as the products of GSH arsenolysis or their analogs, e.g. glycine and γ-Glu-aminobutyrate, decreased As(V) reduction. Replacement of ADP with ATP or an analog that cannot be phosphorylated or arsenylated abolished As(V) reduction, indicating that GS-supported As(V) reduction requires formation of ADP-arsenate. In the presence of ADP, however, ATP (but not its metabolically inert analog) tripled As(V) reduction because ATP permits GS to remove the arsenolysis inhibitory glycine and γ-Glu-Cys by converting them into GSH. GS failed to promote As(V) reduction when GSH was replaced with ophthalmic acid, a GSH analog substrate of GS containing no SH group (although ophthalmic acid did undergo GS-catalyzed arsenolysis), indicating that the SH group of GSH is important for As(V) reduction. Our findings support the conclusion that GS promotes reduction of As(V) by catalyzing the arsenolysis of GSH, thus producing ADP-arsenate, which upon being released from the enzyme is readily reduced by GSH to As(III).  相似文献   

12.
The sodium pump of human red blood cells mediates a Rb:Rb exchange that is dependent for maximal rates upon the simultaneous presence of intracellular ATP (or ADP) and phosphate. We have measured ouabain-sensitive 86Rb uptake into resealed ghosts of human red cells containing ADP and show that arsenate will substitute for phosphate in supporting the Rb:Rb exchange transport mode. The concentration dependence of arsenate-supported Rb:Rb exchange in ghosts containing 2 mM ADP shows both activating and inhibiting phases; the dependence upon phosphate shows similar characteristics. Elevation of the external [Rb] lowers the apparent affinity for arsenate since there is a shift to higher concentrations of arsenate in the activating and inhibiting phases of the arsenate concentration dependence curve. Similarly, elevation of [ADP] substantially reduces the inhibition of Rb:Rb exchange observed at higher [arsenate]. These effects are also observed in phosphate-supported Rb:Rb exchange. The phosphate requirement for Rb:Rb exchange involves phosphorylation of the sodium pump protein; the close agreement between the effects of arsenate and phosphate in supporting Rb:Rb exchange makes it likely that arsenylation of the sodium pump occurs during Rb:Rb exchange. Arsenate efflux from red blood cell ghosts into arsenate-free chloride medium is partially inhibited (77-80%) by DNDS (4,4'-dinitro-2,2'-stilbenedisulfonic acid), this compares with 82-87% inhibition by DNDS of phosphate efflux under the same conditions. It appears that Band III, the red cell anion transport system, accepts arsenate in a similar fashion to phosphate and that a fraction of the flux of both anions may occur through pathways other than Band III. Thus, in human red blood cells, both the sodium pump and the anion exchange transport system will accept arsenate as a phosphate congener and the protein-arsenate interactions are very similar to those with phosphate.  相似文献   

13.
1. A study has been made of the oxygen consumption of kidney homogenates in relation to the ADP concentration as regulated by the cell-membrane adenosine triphosphatase. Stimulation of this enzymic activity by Na(+) and K(+) caused parallel increases in oxygen consumption and ADP concentration. Similarly, inhibition with ouabain caused a parallel fall. The membrane adenosine triphosphatase concerned in active transport therefore appears to regulate respiration through its control of ADP concentration. 2. The respiration of homogenates and mitochondria was also stimulated by K(+) in a way independent of adenosine-triphosphatase activity. It was shown that K(+) facilitates oxidative phosphorylation and the respiratory response to ADP. A K(+) concentration of 25-50mm was needed for maximum oxidative phosphorylation in the presence of physiological concentration of Na(+). Na(+) counteracted K(+) in the effects on mitochondria. It is concluded that K(+) regulates cellular respiration at two structures, one directly in mitochondria, and the second indirectly through control of ADP production at the cell membrane.  相似文献   

14.
The trinuclear cyanine dye, tri-S-C7(5), at about 10 μM stimulated State 4 respiration of rat liver mitochondria more than 6-fold and released oligomycin-inhibited respiration completely. Thus, the dye is concluded to be a very effective cationic uncoupler of oxidative phosphorylation in mitochondria. However, for exhibition of its uncoupling action, the presence of Pi (or arsenate) was necessary, and a phosphate-transport inhibitor, N-ethylmaleimide or mersalyl, inhibited its action. The stimulation of phosphate transport via the Pi carrier by the dye is suggested to be directly related to the uncoupling action.  相似文献   

15.
1. Mitochondria isolated from cultures of Acanthamoeba castellanii exhibit respiratory control and oxidize alpha-oxoglutarate, succinate and NADH with ADP:O ratios of about 2.4, 1.4 and 1.25 respectively. 2. Mitochondria from cultures of which the respiration was stimulated up to 50% by 1mm-cyanide (type-A mitochondria) and from cyanide-sensitive cultures (type-B mitochondria) had similar respiratory-control ratios and ADP:O ratios. 3. State-3 rates of respiration were generally more cyanide-sensitive than State-4 rates, and the respiration of type-A mitochondria was more cyanide-resistant than that of type-B mitochondria. 4. Salicylhydroxamic acid alone had little effect on respiratory activities of either type of mitochondria, but when added together with cyanide, irrespective of the order of addition, inhibition was almost complete. 5. Oxidation of externally added NADH by type-A mitochondria was mainly via an oxidase with a low affinity for oxygen (K(m)[unk]15mum), which was largely cyanide-sensitive and partially antimycin A-sensitive; this electron-transport pathway was inhibited by ADP. 6. Cyanide-insensitive but salicylhydroxamic acid-sensitive respiration was stimulated by AMP and ADP, and by ATP after incubation in the presence of MgCl(2). 7. Addition of rotenone to mitochondria oxidizing alpha-oxoglutarate lowered the ADP:O ratios by about one-third and rendered inhibition by cyanide more complete. 8. The results suggest that mitochondria of A. castellanii possess branched pathways of electron transport which terminate in three separate oxidases; the proportions of electron fluxes via these pathways vary at different stages of growth.  相似文献   

16.
The direct addition of Cu2+ to unfertilized eggs of Mytilus edulis results in a stimulation of respiration with maximal stimulation occurring at a Cu2+ concentration of ca 0.5 mM. By contrast, the addition of Zn2+ has no effect on egg respiration. The uncoupler CCCP produces a 5/6 fold stimulation of egg respiration but the addition of ADP leads to only a small release of respiration. In contrast, sperm respiration is unaffected by Cu2+, inhibited by Zn2+ and CCCP produces only a small respiratory stimulation. The addition of Cu2+ to respiring Mytilus mantle tissue mitochondria produces an initial stimulation of State 4 oxidation which is then followed by a progressive inhibition. It is suggested that respiration in the unfertilized egg may be inhibited by a high ATP/ADP ratio in the cytosol. Respiration can, therefore, be released by either the addition of a H+-translocating uncoupler or by Cu2+ which may act by stimulating mitochondrial K+ influx.  相似文献   

17.
The aim was to test the hypothesis that rotenone-insensive electron transport (bypass of complex I) may underlie rapid state 4 (ADP-limited) mitochondrial respiration. A comparison of mitochondria from soybean ( Glycine max L. cv. Bragg) cotyledons and nodules showed that ADP-sufficient (state 3) malate plus pyruvate oxidation by mitochondria from 7-day-old cotyledons was inhibited 50% by rotenone and state 4 rates were rapid, whereas nodule mitochondria were 80% inhibited by rotenone and had slower state 4 rates of malate plus pyruvate oxidation. Respiration of malate alone (pH 7.6) by cotyledon mitochondria was slow, especially in the absence of ADP; subsequent addition of pyruvate dramatically increased state 4 oxygen uptake concomitant with a rapid rise in mitochondrial NADH (determined by fluorimetry). Rotenone had no effect on this increased rate of state 4 respiration. The rate of malate oxidation by nodule mitochondria was relatively rapid compared with cotyledon mitochondria. The addition of pyruvate in state 4 caused a slow increase in matrix NADH and only a slight stimulation of oxygen uptake. Rotenone inhibited state 4 malate plus pyruvate oxidation by 50% in these mitochondria. From a large number of cotyledon and nodule mitochondrial preparations, a close correlation was found between the rate of state 4 oxygen uptake and rotenone-resistance. During cotyledon development increased rotenone-resistance was associated with an increase in the alternative oxidase. Addition of pyruvate to cotyledon mitochondria, during state 4 oxidation of malate in the presence of antimycin A, significantly stimulated O2 uptake and also almost eliminated respiratory control. Such combined operation of the rotenone-insensitive bypass and the alternative oxidase in vivo will significantly affect the extent to which adenylates control the rate of electron transport.  相似文献   

18.
In newborn rat liver, the adenine nucleotide content (ATP + ADP + AMP) of mitochondria increases severalfold within 2 to 3 h of birth. The net increase in mitochondrial adenines suggests a novel mechanism by which mitochondria are able to accumulate adenine nucleotides from the cytosol (J. R. Aprille and G. K. Asimakis, 1980, Arch. Biochem. Biophys.201, 564.). This was investigated further in vitro. Isolated newborn liver mitochondria incubated with 1 mM ATP for 10 min at 30 °C doubled their adenine nucleotide content with effects on respiratory functions similar to those observed in vivo: State 3 respiration and adenine translocase activity increased, but uncoupled respiration was unchanged. The mechanism for net uptake of adenine nucleotides was found to be specific for ATP or ADP, but not AMP. Uptake was concentration dependent and saturable. The apparent Km′s for ATP and ADP were 0.85 ± 0.27 mM and 0.41 ± 0.20 mM, respectively, measured by net uptake of [14C]ATP or [14C]ADP. The specific activities of net ATP and ADP uptake averaged 0.332 ± 0.062 and 0.103 ± 0.002 nmol/min/mg protein, respectively. ADP was a competitive inhibitor of net ATP uptake. If Pi was omitted from the incubations, net uptake of ATP or ADP was reduced by 51%. Either mersalyl or N-ethylmaleimide severely inhibited the accumulation of adenine nucleotides. Net ATP uptake was stoichiometrically dependent on MgCl2, suggesting that Mg2+ is accumulated along with ATP (or ADP). Uptake was energy dependent as indicated by the following results: Net AdN uptake (especially ADP uptake) was stimulated by the addition of an oxidizable substrate (glutamate) and inhibited by FCCP (an uncoupler). Antimycin A had no effect on net ATP uptake but inhibited net ADP uptake, suggesting that ATP was able to serve as an energy source for its own accumulation. If carboxyatractyloside was added to inhibit the exchange translocase, thereby preventing rapid access of exogenous ATP to the matrix, net ATP uptake was inhibited; carboxyatractyloside had no effect on ADP uptake. It was concluded that the net uptake of adenine nucleotides from the extramitochondrial space occurs by a specific transport process distinct from the classic adenine nucleotide exchange translocase. The accumulation of adenine nucleotides may regulate matrix reactions which are allosterically affected by adenines or which require adenines as a substrate.  相似文献   

19.
It has been proposed that hexokinase bound to mitochondria occupies a preferred site to which ATP from oxidative phosphorylation is channeled directly (Bessman, S. (1966) Am. J. Medicine 40, 740-749). We have investigated this problem in isolated Zajdela hepatoma mitochondria. Addition of ADP to well-coupled mitochondria in the presence of an oxidizable substrate initiates the synthesis of glucose 6-phosphate via bound hexokinase. This reaction is only partially inhibited by oligomycin, carboxyatractyloside, carbonyl cyanide m-chlorophenylhydrazone (CCCP) or any combination of these, suggesting a source of ATP in addition to oxidative phosPhorylation. This source appears to be adenylate kinase, since Ado2P5, an inhibitor of the enzyme, suppresses hexokinase activity by about 50% when added alone or suppresses activity completely when added together with any of the inhibitors of oxidative phosphorylation. Ado2P5 does not uncouple oxidative phosphorylation nor does it inhibit ADP transport (state 3 respiration) or hexokinase. The relative amount of ATP contributed by adenylate kinase is dependent upon the ADP concentration. At low ADP concentrations, glucose phosphorylation is supported by oxidative phosphorylation, but as the adenine nucleotide translocator becomes saturated the ATP contributed by adenylate kinase increases due to the higher apparent Km of the enzyme. Under conditions of our standard experiment ([ADP] = 0.5 mM), adenylate kinase provides about 50% of the ATP used by hexokinase in well-coupled mitochondria. In spite of this, externally added ATP supported higher initial rates of hexokinase activity than ADP. Our findings demonstrate that oxidative phosphorylation is not a specific or preferential source of ATP for hexokinase bound to hepatoma mitochondria. The apparent lack of a channeling mechanism for ATP to hexokinase in these mitochondria is discussed.  相似文献   

20.

1. 1. The inhibition of the ADP-stimulated respiration of potato mitochondria by carboxyatractyloside is relieved by high concentration of ADP or by the uncoupler carbonyl cyanide p-trifluoromethoxyphenylhydrazone (FCCP). Atractyloside is a much less potent inhibitor than carboxyatractyloside. The inhibition of the ADP-stimulated respiration required about 60-times more atractyloside than carboxyatractyloside.

2. 2. [35S]carboxyatractyloside and [3H]bongkrekic acid bind to potato mitochondria with high affinity (Kd = 10 to 20 nM, n = 0.6–0.7 nmol per mg protein). Added ADP competes with carboxyatractyloside for binding; on the contrary ADP increases the amount of bound bongkrekic acid. [3H]atractyloside binds to potato mitochondria with a much lower affinity (Kd = 0.45 μM) than carboxyatractyloside or bongkrekic acid.

3. 3. Bound [3H]atractyloside is displaced by ADP, carboxyatractyloside and bongkrekic acid. The displacement of bound [35S]carboxyatractyloside by bongkrekic acid and of bound [3H]bongkrekic acid by carboxyatractyloside is markedly increased by ADP.

4. 4. Bongkrekic acid competes with [35S]carboxyatractyloside for binding. Addition of a small concentration of ADP considerably enhances the inhibitory effect of bongkrekic acid on [35S]carboxyactratyloside binding.

5. 5. The adenine nucleotide content of potato mitochondria is of the order of 1 nmol per mg protein. ADP transport in potato mitochondria is inhibited by atractyloside 30- to 40-times less efficiently than by carboxyatractyloside.

Abbreviations: FCCP, carbonyl cyanide p-trifluoromethoxyphenylhydrazone  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号