首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Type VI secretion system (T6SS) is a highly conserved bacterial protein secretion system and is precisely regulated in Gram-negative pathogens. In Vibrio alginolyticus, an important fish pathogen, two complete T6SS gene clusters (T6SSVA1 and T6SSVA2) were identified. In this study, expression of a hemolysin coregulated protein (Hcp1), which is one of the hallmarks of T6SS, was found to be strictly regulated in this bacterium. We showed that the expression of Hcp1 was growth phase-dependent and the production of Hcp1 reached a maximum in the exponential phase. The expression of Hcp1 was positively and negatively regulated by quorum sensing regulators LuxO and LuxR, respectively. In addition, we observed that Hcp1 expression required the alternative sigma factor RpoN and the enhancer-binding protein VasH, which is encoded in T6SSVA1 gene cluster. Moreover, LuxR, RpoN, and VasH could positively regulate the expression of other T6SS genes. Taken together, we demonstrated that the expression of T6SS in V. alginolyticus was under the regulation of quorum sensing and alternative sigma factor.  相似文献   

3.
4.
The homolog of the chromosomally encoded stationary-phase sigma factor RpoS in Borrelia burgdorferi was inactivated using gyrB(r) as a selectable marker. Two-dimensional nonequilibrium pH gradient electrophoresis of stationary-phase cell lysates identified at least 11 differences between the protein profiles of the rpoS mutant and wild-type organisms. Wild-type B. burgdorferi had a growth phase-dependent resistance to 1 N NaCl, similar to the stationary-phase response reported for other bacteria. The B. burgdorferi rpoS mutant strain was less resistant to osmotic stress in stationary phase than the isogenic rpoS wild-type organism. The results indicate that the B. burgdorferi rpoS homolog influences protein composition and participates in stationary-phase-dependent osmotic resistance. This rpoS mutant will be useful for studying regulation of gene expression in response to changing environmental conditions.  相似文献   

5.
The information responsible for biosynthesis of the lantibiotic subtilin is organized in an operon-like structure that starts with the spaB gene. The spaB gene encodes an open reading frame consisting of 1,030 amino acid residues, and it was calculated that a protein having a theoretical molecular mass of 120.5 kDa could be produced from this gene. This is consistent with the apparent molecular weight for SpaB of 115,000 which was estimated after sodium dodecyl sulfate-gel electrophoresis and identification with SpaB-specific antibodies. The SpaB protein is very similar to proteins EpiB and NisB, which were identified previously as being involved in epidermin and nisin biosynthesis. Upstream from SpaB a characteristic sigma A promoter sequence was identified. An immunoblot analysis revealed that SpaB expression was strongly regulated. No SpaB protein was detected in the early logarithmic growth phase, and maximum SpaB expression was observed in the early stationary growth phase. The expression of SpaB was strongly correlated with subtilin biosynthesis. Deletion mutations in either of two recently identified regulatory genes, spaR and spaK, which act as a "two-component" regulatory system necessary for growth phase-dependent induction of subtilin biosynthesis (C. Klein, C. Kaletta, and K. D. Entian, Appl. Environ. Microbiol. 59:296-303, 1993), also resulted in failure of SpaB expression. To investigate the intracellular localization of SpaB, vesicles of Bacillus subtilis were prepared. The SpaB protein cosedimented with the vesicle fraction and was released only after vigorous resuspension of the vesicles. Our results suggest that SpaB is membrane associated and that subtilin biosynthesis occurs at the cytoplasmic membrane of B. subtilis.  相似文献   

6.
7.
8.
9.
10.
The food-borne pathogen Listeria monocytogenes can acquire enhanced resistance to lethal acid conditions through multiple mechanisms. We investigated contributions of the stress-responsive alternative sigma factor, sigma(B), which is encoded by sigB, to growth phase-dependent acid resistance (AR) and to the adaptive acid tolerance response in L. monocytogenes. At various points throughout growth, we compared the relative survival of L. monocytogenes wild-type and DeltasigB strains that had been exposed to either brain heart infusion (pH 2.5) or synthetic gastric fluid (pH 2.5) with and without prior acid adaptation. Under these conditions, survival of the DeltasigB strain was consistently lower than that of the wild-type strain throughout all phases of growth, ranging from 4 orders of magnitude less in mid-log phase to 2 orders of magnitude less in stationary phase. Survival of both DeltasigB and wild-type L. monocytogenes strains increased by 6 orders of magnitude upon entry into stationary phase, demonstrating that the L. monocytogenes growth phase-dependent AR mechanism is sigma(B) independent. sigma(B)-mediated contributions to acquired acid tolerance appear to be greatest in early logarithmic growth. Loss of a functional sigma(B) reduced the survival of L. monocytogenes at pH 2.5 to a greater extent in the presence of organic acid (100 mM acetic acid) than in the presence of inorganic acid alone (HCl), suggesting that L. monocytogenes protection against organic and inorganic acid may be mediated through different mechanisms. sigma(B) does not appear to contribute to pH(i) homeostasis through regulation of net proton movement across the cell membrane or by regulation of pH(i) buffering by the GAD system under the conditions examined in this study. In summary, a functional sigma(B) protein is necessary for full resistance of L. monocytogenes to lethal acid treatments.  相似文献   

11.
12.
13.
14.
15.
16.
17.
The rpoS gene encodes the sigma factor which was identified in several gram-negative bacteria as a central regulator during stationary phase. rpoS gene regulation is known to respond to cell density, showing higher expression in stationary phase. For Pseudomonas aeruginosa, it has been demonstrated that the cell-density-dependent regulation response known as quorum sensing interacts with this regulatory response. Using the rpoS promoter of P. putida, we identified a genomic Tn5 insertion mutant of P. putida which showed a 90% decrease in rpoS promoter activity, resulting in less RpoS being present in a cell at stationary phase. Molecular analysis revealed that this mutant carried a Tn5 insertion in a gene, designated psrA (Pseudomonas sigma regulator), which codes for a protein (PsrA) of 26.3 kDa. PsrA contains a helix-turn-helix motif typical of DNA binding proteins and belongs to the TetR family of bacterial regulators. The homolog of the psrA gene was identified in P. aeruginosa; the protein showed 90% identity to PsrA of P. putida. A psrA::Tn5 insertion mutant of P. aeruginosa was constructed. In both Pseudomonas species, psrA was genetically linked to the SOS lexA repressor gene. Similar to what was observed for P. putida, a psrA null mutant of P. aeruginosa also showed a 90% reduction in rpoS promoter activity; both mutants could be complemented for rpoS promoter activity when the psrA gene was provided in trans. psrA mutants of both Pseudomonas species lost the ability to induce rpoS expression at stationary phase, but they retained the ability to produce quorum-sensing autoinducer molecules. PsrA was demonstrated to negatively regulate psrA gene expression in Pseudomonas and in Escherichia coli as well as to be capable of activating the rpoS promoter in E. coli. Our data suggest that PsrA is an important regulatory protein of Pseudomonas spp. involved in the regulatory cascade controlling rpoS gene regulation in response to cell density.  相似文献   

18.
19.
The intracellular levels of two principal sigma subunits, sigma 70 (sigma D, the rpoD gene product) and sigma 38 (sigma s, the rpoS gene product), in Escherichia coli MC4100 were determined by a quantitative Western immunoblot analysis. Results indicate that the level of sigma 70 is maintained at 50 to 80 fmol per micrograms of total proteins throughout the transition from the exponential growth phase to the stationary phase, while the level of sigma 38 protein is below the detection level at the exponential growth phase but increases to 30% of the level of sigma 70 when cell growth stops to enter into the stationary phase. Beside the stationary phase, the increase in sigma 38 level was observed in two cases: exposure to heat shock at the exponential phase and osmotic shock at the stationary phase.  相似文献   

20.
Ribosomal genes are strongly regulated dependent on growth phase in all organisms, but this regulation is poorly understood in Archaea. Moreover, very little is known about growth phase-dependent gene regulation in Archaea. SSV1-based lacS reporter gene constructs containing the Sulfolobus 16S/23S rRNA gene core promoter, the TF55α core promoter, or the native lacS promoter were tested in Sulfolobus solfataricus cells lacking the lacS gene. The 42-bp 16S/23S rRNA gene and 39-bp TF55α core promoters are sufficient for gene expression in S. solfataricus. However, only gene expression driven by the 16S/23S rRNA gene core promoter is dependent on the culture growth phase. This is the smallest known regulated promoter in Sulfolobus. To our knowledge, this is the first study to show growth phase-dependent rRNA gene regulation in Archaea.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号