首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Amoxicillin is a penicillin derivative belonging to a group of beta-lactam antibiotics used in Helicobacter pylori eradication. Clinical application of amoxicillin is underlined by its antibacterial activity, but little is known about its interaction with DNA of human cells. Using the alkaline comet assay we investigated the genotoxicity of amoxicillin in human peripheral blood lymphocytes as well as in H. pylori-infected and non-infected human gastric mucosa cells. To assess the role of reactive oxygen species in the genotoxicity of amoxicillin we employed a set of antioxidant and free radical scavengers, including Vitamins C and E, melatonin and the nitrone spin trap N-tert-butyl-alpha-phenyl-nitrone (PBN). Amoxicillin-induced DNA damage was completely repaired after 60 min. The vitamins, melatonin and the spin trap decreased the extent of the damage. The cells exposed to amoxicillin and treated with endonuclease III and 3-methyladenine-DNA glycosylase II, the enzymes recognizing oxidized bases displayed greater extent of DNA damage than those not treated with these enzymes. H. pylori non-infected gastric mucosa cells exposed to hydrogen peroxide repaired their DNA in a 60 min incubation, but the infected cells were not able to do so. The action of DNA repair enzymes, the vitamins, melatonin and PBN indicated that amoxicillin-induced oxidative DNA damage. The drug did not induce DNA strand breaks in isolated pUC19 plasmid DNA. Our results suggest that amoxicillin can induce DNA damage in human lymphocytes and gastric mucosa cells and this effect may follow from the production of reactive oxygen species. Cellular activation of the drug is needed to induce DNA damage. Free radical scavengers and antioxidants may be used to assist H. pylori eradication with amoxicillin to protect DNA of the host cells. Our results suggest also that H. pylori infection may alter gastric mucosa cells response to DNA-damaging agents and in this way contribute to initiation/promotion of cancer transformation of these cells induced by external or internal carcinogens.  相似文献   

2.
DNA damage may be associated with type 2 diabetes mellitus (T2DM) and its complications mainly through oxidative stress. Little is known about DNA repair disturbances potentially contributing to the overall extent of DNA damage in T2DM, which, in turn, may be linked with genomic instability resulting in cancer. To assess whether DNA repair may be perturbed in 2DM we determined: (1) the level of endogenous basal DNA damage, this means damage recognized in the alkaline comet assay (DNA strand breaks and alkali labile sites) as well as endogenous oxidative and alkylative DNA damage (2) the sensitivity to DNA-damaging agents hydrogen peroxide and doxorubicin and the efficacy of removing of DNA damage induced by these agents in peripheral blood lymphocytes of T2DM patients and healthy individuals. The level of DNA damage and the kinetics of DNA repair was evaluated by the alkaline single cell gel electrophoresis (comet assay). Oxidative and alkylative DNA damage were assayed with the use of DNA repair enzymes endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg), recognizing oxidized DNA bases and 3-methyladenine-DNA glycosylase II (AlkA) recognizing alkylated bases. The levels of basal endogenous and oxidative DNA damage in diabetes patients were higher than in control subjects. There was no difference between the level of alkylative DNA in the patients and the controls. Diabetes patients displayed higher susceptibility to hydrogen peroxide and doxorubicin and decreased efficacy of repairing DNA damage induced by these agents than healthy controls. Our results suggest that type 2 diabetes mellitus may be associated not only with the elevated level of oxidative DNA damage but also with the increased susceptibility to mutagens and the decreased efficacy of DNA repair. These features may contribute to a link between diabetes and cancer and metrics of DNA damage and repair, measured by the comet assay, may be markers of risk of cancer in diabetes.  相似文献   

3.
Impaired DNA repair may fuel up malignant transformation of breast cells due to the accumulation of spontaneous mutations in target genes and increasing susceptibility to exogenous carcinogens. Moreover, the effectiveness of DNA repair may contribute to failure of chemotherapy and resistance of breast cancer cells to drugs and radiation. The breast cancer susceptibility genes BRCA1 and BRCA2 are involved in DNA repair. To evaluate further the role of DNA repair in breast cancer we determined: (1) the kinetics of removal of DNA damage induced by hydrogen peroxide and the anticancer drug doxorubicin, and (2) the level of basal, oxidative and alkylative DNA damage before and during/after chemotherapy in the peripheral blood lymphocytes of breast cancer patients and healthy individuals. The level of DNA damage and the kinetics of DNA repair were evaluated by alkaline single cell gel electrophoresis (comet assay). Oxidative and alkylative DNA damage were assayed with the use of DNA repair enzymes endonuclease III (Endo III) and formamidopyrimidine-DNA glycosylase (Fpg), recognizing oxidized DNA bases and 3-methyladenine-DNA glycosylase II (AlkA) recognizing alkylated bases. We observed slower kinetics of DNA repair after treatment with hydrogen peroxide and doxorubicin in lymphocytes of breast cancer patients compared to control individuals. The level of basal, oxidative and alkylative DNA damage was higher in breast cancer patients than in the control and the difference was more pronounced when patients after chemotherapy were engaged, but usually the level of DNA damage in these patients was too high to be measured with our system. Our results indicate that peripheral blood lymphocytes of breast cancer patients have more damaged DNA and display decreased DNA repair efficacy. Therefore, these features can be considered as risk markers for breast cancer, but the question whether they are the cause or a consequence of the illness remains open. Nevertheless, our results suggest that research on the mutagen sensitivity and efficacy of DNA repair could impact the development of new diagnostic and screening strategies as well as indicate new targets to prevent and cure cancer. Moreover, the comet assay may be applied to evaluate the suitability of a particular mode of chemotherapy to a particular cancer patient.  相似文献   

4.
The pathogenesis of stomach cells can be associated with their susceptibility to exogenous dietary irritants, like nitrosamines such as dimethylnitrosamines (DMNA), and to the effects of non-dietary factors, including Helicobacter pylori infection. We used N-methyl-N’-nitro N-nitrosoguanidyne (MNNG) as a surrogate agent that induces a spectrum of DNA damage similar to DMNA. Using the alkaline comet assay, we showed that antioxidants — vitamins C and E, quercetin, and melatonin — reduced the genotoxic effect of MNNG in H. pylori-infected and non-infected human gastric mucosa cells (GMCs). To compare the sensitivity of the stomach and the blood, the experiment was also carried out in peripheral blood. We observed a higher level of DNA damage induced by MNNG in H. pylori-infected than in noninfected GMCs. We did not note any difference in the efficacy of the repair of the damage in either type of GMC. H. pylori infection may play an important role in the pathogenesis of GMCs, as it can modulate their susceptibility to dietary mutagens/carcinogens, thus contributing to gastric cancer.  相似文献   

5.
BACKGROUND: Helicobacter pylori infection is associated with gastric cancer. Study with the Big Blue mouse model has reported a mutagenic effect associated with the H. pylori infection, as a result in part of oxidative DNA damage. The present work investigates the consequences of a deficiency in the OGG1 DNA glycosylase, responsible for the excision of 8-oxo guanine, on the inflammatory and genotoxic host response to the infection. MATERIALS AND METHODS: Big Blue Ogg1-/- C57BL/6 mice were orally inoculated with H. pylori strain SS1 or vehicle only, and sacrificed after 1, 3, or 6 months. The serologic response, histologic lesions, mutant frequency, and spectra of mutations were assessed in the stomach and compared to what observed in the wild-type (Wt) context. RESULTS: Inflammatory lesions induced in the gastric mucosa of H. pylori-infected mice, corresponding to a moderate gastritis, were less severe in Ogg1-/- than in Wt Big Blue mice. Analysis of antimicrobial humoral immunity exhibited a lower IgG2a serum level (Th1 response) after 6 months of infection in Ogg1-/- than in the Wt mice. In these conditions, the H. pylori-SS1 infection in the Ogg1-/- mice did not induce a mutagenic effect at the gastric epithelial cells level, either after 3 or 6 months. CONCLUSIONS: The inactivation of the OGG1 DNA glycosylase in mouse leads to less severe inflammatory lesions and abolished the mutagenic effect at the gastric epithelial cells level, induced by the H. pylori infection. These data suggest for the OGG1deficiency a protective role against inflammation and genotoxicity associated to the H. pylori infection.  相似文献   

6.
Type 2 diabetes mellitus is associated with elevated level of oxidative stress, which is one of the most important factors responsible for the development of chronic complications of this disease. Moreover, it was shown that diabetic patients had increased level of oxidative DNA damage and decreased effectiveness of DNA repair. These changes may be associated with increased risk of cancer in T2DM patients, since DNA damage and DNA repair play a pivotal role in malignant transformation. It was found that gliclazide, an oral hypoglycemic drug with antioxidant properties, diminished DNA damage induced by free radicals. Therefore, the aim of the present study was to evaluate the in vitro impact of gliclazide on: (i) endogenous basal and oxidative DNA damage, (ii) DNA damage induced by hydrogen peroxide and (iii) the efficacy of DNA repair of such damage. DNA damage and DNA repair in peripheral blood lymphocytes of 30 T2DM patients and 30 non-diabetic individuals were evaluated by alkaline single cell electrophoresis (comet) assay. The extent of oxidative DNA damage was assessed by DNA repair enzymes: endonuclease III and formamidopyrimidine-DNA glycosylase. The endogenous basal and oxidative DNA damages were higher in lymphocytes of T2DM patients compared to non-diabetic subjects and gliclazide decreased the level of such damage. The drug significantly decreased the level of DNA damage induced by hydrogen peroxide in both groups. Gliclazide increased the effectiveness of DNA repair in lymphocytes of T2DM patients (93.4% (with gliclazide) vs 79.9% (without gliclazide); P< or =0.001) and non-diabetic subjects (95.1% (with gliclazide) vs 90.5% (without gliclazide); P< or =0.001). These results suggest that gliclazide may protect against the oxidative stress-related chronic diabetes complications, including cancer, by decreasing the level of DNA damage induced by reactive oxygen species.  相似文献   

7.
Studies of DNA damage in gastric epithelial cells of Helicobacter pylori (H. pylori)-infected patients are conflicting, possibly due to different methods used for scoring DNA damage by Comet assay. Therefore, we compared the sensitivity of visual microscopic analysis (arbitrary units-scores and comets%) and image analysis system (tail moment), in the gastric epithelial cells from the antrum and corpus of 122 H. pylori-infected and 32 non-infected patients. The feasibility of cryopreserved peripheral blood lymphocytes and whole-blood cells for DNA damage biomonitoring was also investigated. In the antrum, the levels of DNA damage were significantly higher in H. pylori-infected patients with gastritis than in non-infected patients with normal mucosa, when evaluated by image analysis system, arbitrary units and comets%. In the corpus, the comets% was not sufficiently sensitive to detect the difference between H. pylori-infected patients with gastritis and non-infected patients with normal mucosa. The image analysis system was sensitive enough to detect differences between non-infected patients and H. pylori-infected patients with mild gastritis and between infected patients with moderate and severe gastritis, in both antrum and corpus, while arbitrary units and comets% were unable to detect these differences. In cryopreserved peripheral blood lymphocytes, the levels of DNA damage (tail moment) were significantly higher in H. pylori-infected patients with moderate and severe gastritis than in non-infected patients. Overall, our results indicate that the image analysis system is more sensitive and adequate to measure the levels of DNA damage in gastric epithelial cells than the other methods assayed.  相似文献   

8.
Idarubicin is an anthracycline antibiotic used in cancer therapy. Mitoxantrone is an anthracycline analog with presumed better antineoplastic activity and lesser toxicity. Using the alkaline comet assaywe showed that the drugs at 0.01-10 microM induced DNA damage in normal human lymphocytes. The effect induced by idarubicin was more pronounced than by mitoxantrone (P < 0.001). The cells treated with mitoxantrone at 1 microM were able to repair damage to their DNA within a 30-min incubation, whereas the lymphocytes exposed to idarubicin needed 180 min. Since anthracyclines are known to produce free radicals, we checked whether reactive oxygen species might be involved in the observed DNA damage. Catalase, an enzyme inactivating hydrogen peroxide, decreased the extent of DNA damage induced by idarubicin, but did not affect the extent evoked by mitoxantrone. Lymphocytes exposed to the drugs and treated with endonuclease III or formamidopyrimidine-DNA glycosylase (Fpg), enzymes recognizing and nicking oxidized bases, displayed a higher level of DNA damage than the untreated ones. 3-Methyladenine-DNA glycosylase II (AlkA), an enzyme recognizing and nicking mainly methylated bases in DNA, increased the extent of DNA damage caused by idarubicin, but not that induced by mitoxantrone. Our results indicate that the induction of secondary malignancies should be taken into account as side effects of the two drugs. Direct strand breaks, oxidation and methylation of the DNA bases can underlie the DNA-damaging effect of idarubicin, whereas mitoxantrone can induce strand breaks and modification of the bases, including oxidation. The observed in normal lymphocytes much lesser genotoxicity of mitoxantrone compared to idarubicin should be taken into account in planning chemotherapeutic strategies.  相似文献   

9.
Down's syndrome (DS) is associated with the presence of a third 21 chromosome and is generally considered as a non-cancer-prone genetic disease. However, leukaemias occur more frequently in children with the syndrome than in general population and there is an open question, whether the presence of an additional chromosome may contribute to genomic instability, which, in turn, may play a role in a higher susceptibility to cancer and leukaemias in particular. In order to assess genomic instability associated with the presence of a third 21 chromosome, we determined the level of endogenous DNA damage and susceptibility to a genotoxic stress-inducing factor, hydrogen peroxide and N-methyl-N'-nitro-N-nitrosoguanidyne (MNNG) as well as the ability to remove DNA damage in the peripheral blood lymphocytes of children with DS and healthy kids. The level of DNA damage and the kinetics of DNA repair were evaluated by alkaline comet assay. Oxidative DNA damage was assayed with DNA repair enzymes: endonuclease III-like NTH1 and formamidopyrimidine-DNA glycosylase. The cells taken from children with DS did not display an effective DNA repair after treatment with 10 mM hydrogen peroxide. No difference in the sensitivity to DNA-damaging agents and the efficacy of DNA repair due to age and gender in DS children was observed. These results suggest that children with DS may be characterized by the increased sensitivity to the DNA-damaging agents impaired cellular reaction to DNA damage, which, in turn, may increase the probability of cancers in these children. Therefore, a special care to avoid exposure to potential mutagenic factor my be considered in these children.  相似文献   

10.
Genotoxicity of acrylamide in human lymphocytes   总被引:8,自引:0,他引:8  
Acrylamide is used in the industry and can be a by-product in a high-temperature food processing. It is reported to interact with DNA, but the mechanism of this interaction is not fully understood. In the present study, we investigated the DNA-damaging potential of acrylamide (ACM) in normal human lymphocytes using the alkaline-, neutral- and 12.1 versions of the comet assay and pulsed-field gel electrophoresis. We also investigated effect of acrylamide on caspase-3 activity as well as its influence on the repair process of hydrogen peroxide-induced DNA damage. Acrylamide at 0.5-50 microM induced mainly alkali-labile sites. This damage was repaired during a 60-min repair incubation. Post-treatment of the damaged DNA with repair enzymes: thymine glycol DNA N-glycosylase (Nth) and formamidopyrimidine-DNA glycosylase (Fpg), recognizing oxidized DNA bases, as well as 3-methyladenine-DNA glycosylase II (Alk A), recognizing alkylated bases, caused an increase in the extent of DNA damage, indicating the induction of oxidative and alkylative DNA base modifications by acrylamide. Pre-treatment of the lymphocytes with N-tert-butyl-alpha-phenylnitrone (PBN), a spin trap, as well as vitamins C and E decreased the DNA-damaging effect of acrylamide, which suggest that free radicals/reactive oxygen species may be involved in this effect. Acrylamide impaired the repair of DNA damaged by hydrogen peroxide and increased the activity of caspase-3, which may indicate its potential to induce apoptosis. Our results suggest that acrylamide may exert a wide spectrum of diverse effects on DNA of normal cells, including mostly DNA base modifications and apoptosis. Acrylamide may also impair DNA repair. Free radicals may underline these effects and some dietary antioxidants can be considered as protective agents against genotoxic action of acrylamide. As normal lymphocytes contain cyp2e1 and P450, engaged in the bioactivation of ACM to glicidamide it is uncertain whether acrylamide causes all of measured effect per se or this is the result of the action of its metabolites.  相似文献   

11.
Using the alkaline comet assay, we showed that bleomycin at 0.1-5 microg/ml induced DNA strand breaks and/or alkali-labile sites, measurable as the comet tail moment, in human colonic mucosa cells. This DNA damage was completely repaired during a 120-minute post-treatment incubation of the cells. Post-treatment of the bleomycin-damaged DNA with 3-methyladenine-DNA glycosylase II (AlkA), an enzyme recognizing alkylated bases, gave rise to a significant increase in the extent of DNA damage, indicating that the drug could induce alkylative bases in DNA. We did not observe any change in the comet tail moment in the presence of catalase. Vitamin E ((+)-alpha -tocopherol) decreased DNA damage induced by bleomycin. The results obtained suggest that hydrogen peroxide might not be involved in the formation of DNA lesions induced by bleomycin in the colonic mucosa cells.  相似文献   

12.
Fuchs endothelial corneal dystrophy (FECD) is a slowly progressive eye disease leading to blindness, mostly affecting people above 40 years old. The only known method of curing FECD is corneal transplantation. The disease is characterized by the presence of extracellular deposits called “cornea guttata”, apoptosis of corneal endothelial cells, dysfunction of Descement’s membrane and corneal edema. Oxidative stress is suggested to play a role in FECD pathogenesis. Reactive oxygen species produced during the stress may damage biomolecules, including DNA. In the present study we evaluated the extent of endogenous DNA damage, including oxidatively modified DNA bases, and damage induced by hydrogen peroxide as well as the kinetics of DNA repair in peripheral blood mononuclear cells of 50 patients with FECD and 43 age-matched controls without visual disturbances. To quantify DNA damage and repair we used the alkaline comet assay technique with the enzymes recognizing oxidative DNA damage, hOGG1 and EndoIII. We did not observe differences in the extent of endogenous and hydrogen peroxide-induced DNA damage between FECD patients and controls. However, we found a lower efficacy of DNA repair in FECD patients as compared with control individuals. The results obtained suggest that the lowering of the DNA repair capacity may be one of the mechanisms underlying the role of oxidative stress in the FECD pathology.  相似文献   

13.
DNA repair is critical for genotoxic susceptibility and cancer development. Forty-seven patients with head and neck squamous cell carcinoma (HNSCC) and 38 healthy controls were enrolled in this study. Among the patients, 16 subjects had metastasis of HNSCC. The extent of DNA damage, including oxidative lesions, and efficiency of repair after genotoxic treatment with hydrogen peroxide were examined using the alkaline comet assay. HNSCC cells were sensitive to genotoxic treatment and displayed impaired DNA repair. In particular, lesions caused by hydrogen peroxide were repaired less effectively in cancer cells from patients with metastasis than in cells from healthy controls. We suggest that impaired DNA repair might play a role in genotoxic susceptibility of patients with head and neck cancer. Finally, as a consequence of this finding we have shown that treatment with DNA-reactive drugs could be considered as an effective therapy strategy for head and neck cancer.  相似文献   

14.
15.
Helicobacter pylori infection causes chronic inflammation, which can lead to gastric carcinoma. A double immunofluorescence labeling study demonstrated that the level of 8-nitroguanine and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) apparent in gastric gland epithelium was significantly higher in gastritis patients with H. pylori infection than in those without infection. A significant accumulation of proliferating cell nuclear antigen, a prognostic factor for gastric cancer, was observed in gastric gland epithelial cells in patients with H. pylori infection as compared to those without infection, and its accumulation was closely correlated with the formation of 8-nitroguanine and 8-oxodG. These results suggest that nitrosative and oxidative DNA damage in gastric epithelial cells and their proliferation by H. pylori infection may lead to gastric carcinoma. 8-Nitroguanine could be not only a promising biomarker for inflammation but also a useful indicator of the risk of gastric cancer development in response to chronic H. pylori infection.  相似文献   

16.
Eutsey R  Wang G  Maier RJ 《DNA Repair》2007,6(1):19-26
MutY is an adenine glycosylase that has the ability to efficiently remove adenines from adenine/7,8-dihydro-8-oxoguanine (8-oxo-G) or adenine/guanine mismatches, and plays an important role in oxidative DNA damage repair. The human gastric pathogen Helicobacter pylori has a homolog of the MutY enzyme. To investigate the physiological roles of MutY in H. pylori, we constructed and characterized a mutY mutant. H. pylori mutY mutants incubated at 5% O2 have a 325-fold higher spontaneous mutation rate than its parent. The mutation rate is further increased by exposing the mutant to atmospheric levels of oxygen, an effect that is not seen in an E. coli mutY mutant. Most of the mutations that occurred in H. pylori mutY mutants, as examined by rpoB sequence changes that confer rifampicin resistance, are GC to TA transversions. The H. pylori enzyme has the ability to complement an E. coli mutY mutant, restoring its mutation frequency to the wild-type level. Pure H. pylori MutY has the ability to remove adenines from A/8-oxo-G mismatches, but strikingly no ability to cleave A/G mismatches. This is surprising because E. coli MutY can more rapidly turnover A/G than A/8-oxo-G. Thus, H. pylori MutY is an adenine glycosylase involved in the repair of oxidative DNA damage with a specificity for detecting 8-oxo-G. In addition, H. pylori mutY mutants are only 30% as efficient as wild-type in colonizing the stomach of mice, indicating that H. pylori MutY plays a significant role in oxidative DNA damage repair in vivo.  相似文献   

17.
18.
Streptozotocin (STZ) is an antibiotic which can be used to induce diabetes in experimental animals in order to have an insight into pathogenesis of this disease. To use STZ as a diabetogenic substance, its molecular mode of action should be elucidated. Using the alkaline comet assay, we showed that STZ at concentrations in the range 0.01-100 micromol/L induced DNA damage in normal human lymphocytes and HeLa cancer cells in a dose-dependent manner. Lymphocytes were able to remove damage to their DNA within a 30-min repair incubation, whereas HeLa cells completed the repair in 60 min. Vitamins C and E at 10 and 50 micromol/L diminished the extent of DNA damage induced by 50 micromol/L STZ. Pretreatment of the lymphocytes with the nitrone spin trap, alpha-(4-pyridil-1-oxide)-N-tert-butylnitrone (POBN) or ebselen, which mimics glutathione peroxidase, or pyrrolidine dithiocarbamate (PDTC) reduced the extent of DNA damage evoked by STZ. The cells exposed to STZ and treated with endonuclease III (Endo III), formamidopyrimidine-DNA glycosylase (Fpg) and 3-methyladenine-DNA glycosylase II (AlkA), the enzymes recognizing oxidized and alkylated bases, displayed greater extent of DNA damage than those not treated with these enzymes. These results suggest that free radicals may be involved in the formation of DNA lesions induced by streptozotocin. The drug can also alkylate DNA bases. This broad range of DNA damage induced by STZ indicates that the drug may seriously affect genomic stability in normal and pathological cells.  相似文献   

19.
BACKGROUND: Epidemiological studies show that high intake of food-bound vitamin C and E reduces the risk of gastric cancer. Whether dietary supplementation with antioxidant micronutrients interferes with Helicobacter pylori infection and associated diseases is unclear. The aim of this study was to investigate if dietary vitamin C or E supplementation influences the progression of gastritis, gastric mucosal nitrosative and oxidative protein damage, gastric mucosal lipid peroxidation, or gastric mucosal oxidative DNA damage in H. pylori-infected Mongolian gerbils. MATERIALS AND METHODS: Gerbils were divided into four groups: H. pylori-infected animals fed with vitamin C- or vitamin E-supplemented food, and infected and uninfected animals given standard rodent food. Subgroups of animals were killed at different time-points until 52 weeks postinfection. Concentrations of 3-nitrotyrosine and thiobarbituric acid-reactive substances (TBARS) in the gastric mucosa were determined with an immunodot blot and a fluorometric method, respectively. Mucosal concentrations of carbonyl carbons on proteins and 8-hydroxydeoxyguanosine were determined by enzyme-linked immunosorbent assay. Gastritis was scored semiquantitatively. RESULTS: Vitamin supplements had no effect on the colonization with H. pylori. Vitamin C as well as vitamin E supplements reduced mucosal 3-nitrotyrosine concentrations to normal levels in infected animals. Vitamin E supplements decreased mucosal protein carbonyls and TBARS in short-term gastritis. In addition, vitamin C supplements caused attenuated mucosal oxidative DNA damage and milder mucosal inflammation in short-term gastritis. CONCLUSION: Vitamin C or vitamin E supplementation leads to some short-term protective effects on H. pylori-induced gastritis in Mongolian gerbils. These effects seem to subside over time when the infection persists.  相似文献   

20.
Organisms in polluted areas can be exposed to complex mixtures of chemicals; however, exposure to genotoxic contaminants can be particularly devastating. DNA damage can lead to necrosis, apoptosis, or heritable mutations, and therefore has the potential to impact populations as well as individuals. Single cell gel electrophoresis (the comet assay) is a simple and sensitive technique used to examine DNA damage in single cells. The lesion-specific DNA repair enzyme formamidopyrimidine glycoslyase (Fpg) can be used in conjunction with the comet assay to detect 8-oxoguanine and other damaged bases, which are products of oxidative damage. Fpg was used to detect oxidative DNA damage in experiments where isolated oyster (Crassostrea virginica) and clam (Mercenaria mercenaria) hemocytes were exposed to hydrogen peroxide. Standard enzyme buffers used with Fpg and the comet assay produced unacceptably high amounts of DNA damage in the marine bivalve hemocytes used in this study necessitating a modification of existing methods. A sodium chloride based reaction buffer was successfully used. Oxidative DNA damage can be detected in isolated oyster and clam hemocytes using Fpg and the comet assay when the sodium chloride reaction buffer and protocols outlined here are employed. The use of DNA repair enzymes, such as Fpg, in conjunction with the comet assay expands the usefulness and sensitivity of this assay, and provides important insights into the mechanisms of DNA damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号