首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
N Stange  H Beier 《The EMBO journal》1987,6(9):2811-2818
An intron-containing tobacco tRNA(Tyr) precursor synthesized in a HeLa cell nuclear extract has been used to develop a cell-free processing and splicing system from wheat germ. Removal of 5' and 3' flanking sequences, accurate excision of the intervening sequence, ligation of the resulting tRNA halves, addition of the 3'-terminal CCA sequence and modification of seven nucleosides were achieved in appropriate wheat germ S23 and S100 extracts. The maturation of pre-tRNA(Tyr) in these extracts resembles the pathway observed in vivo for tRNA biosynthesis in Xenopus oocytes and yeast in that processing of the flanks precedes intron excision. Most of the modified nucleosides (m2(2) G, psi 35, psi 55, m7G and m1A) are introduced into the intron-containing pre-tRNA with mature ends, whereas two others (m1G and psi 39) are only found in the mature tRNA(Tyr). Processing and splicing proceed very efficiently in the wheat germ extracts, leading to complete maturation of 5' and 3' ends followed by about 65% conversion to mature tRNA(Tyr) under our standard conditions. The activity of the wheat germ endonuclease is stimulated 3-fold by the non-ionic detergent Triton X-100. All previous attempts to demonstrate the presence of a splicing endonuclease in wheat germ had failed (Gegenheimer et al., 1983). Hence, this is the first cell-free plant extract which supports pre-tRNA processing and splicing in vitro.  相似文献   

2.
Previous experiments had established that galectin-3 (Gal3) is a factor involved in cell-free splicing of pre-mRNA. Addition of monoclonal antibody NCL-GAL3, whose epitope maps to the NH2-terminal 14 amino acids of Gal3, to a splicing-competent nuclear extract inhibited the splicing reaction. In contrast, monoclonal antibody anti-Mac-2, whose epitope maps to residues 48-100 containing multiple repeats of a 9-residue motif PGAYPGXXX, had no effect on splicing. Consistent with the notion that this region bearing the PGAYPGXXX repeats is sequestered through interaction with the splicing machinery and is inaccessible to the anti-Mac-2 antibody, a synthetic peptide containing three perfect repeats of the sequence PGAYPGQAP (27-mer) inhibited the splicing reaction, mimicking a dominant-negative mutant. Addition of a peptide corresponding to a scrambled sequence of the same composition (27-mer-S) failed to yield the same effect. Finally, GST-hGal3(1-100), a fusion protein containing glutathione-S-transferase and a portion of the Gal3 polypeptide including the PGAYPGXXX repeats, also exhibited a dominant-negative effect on splicing.  相似文献   

3.
4.
5.
6.
The secondary structure of the SP6/mouse insulin precursor RNA was determined by psoralen cross-linking experiments. A series of long-range contacts occur within the left half of the pre-mRNA that contains the intervening sequence. Multiple secondary structures for the pre-mRNA exist since some of the interactions share common sites. In splicing buffer but without the splicing extract added, many of these interactions are stable up to at least 50 degrees C. These interactions, however, are dissociated during the in vitro splicing reaction. This dissociation requires ATP and it occurs during the first 30 min. of the splicing reaction. Pre-mRNAs containing psoralen cross-links in different locations within the RNA molecule were purified and used as substrates for in vitro splicing. Psoralen cross-links at any of the double-stranded regions resulted in complete inhibition of the splicing reaction. This indicates that destabilization of the secondary structure of the SP6/mouse insulin pre-mRNA is necessary for in vitro splicing.  相似文献   

7.
In Neurospora, the gene encoding the mitochondrial large (25S) ribosomal RNA contains an intervening sequence of 2.3 kb. We have identified eight nuclear mutants that are defective in splicing the mitochondrial large ribosomal RNA and that accumulate unspliced precursor RNA. These mutants identify three different nuclear genes required for the same mitochondrial RNA splicing reaction. Some of the mutants have unique phenotypic characteristics (for example, accumulation of an unusual intron RNA) that may provide insight into specific aspects of mitochondrial RNA splicing. Mutations at one locus, cyt4, are subject to partial phenotypic suppression by the electron-transport inhibitor antimycin. This phenomenon suggests that at least one component required for mitochondrial RNA splicing is regulated such that its synthesis or activity is increased in response to impairment of electron transport.  相似文献   

8.
By adopting a monoclonal antibody approach, we have identified a novel splicing factor of 35 kDa which we have termed 9G8. The isolation and characterization of cDNA clones indicate that 9G8 is a novel member of the serine/arginine (SR) splicing factor family because it includes an N-terminal RNA binding domain (RBD) and a C-terminal SR domain. The RNA binding domain of 9G8 is highly homologous to those of the SRp20 and RBP1 factors (79-71% identity), but the homology is less pronounced in the cases of SF2/ASF and SC35/PR264 (45-37% identity). Compared with the other SR splicing factors, 9G8 presents some specific sequence features because it contains an RRSRSXSX consensus sequence repeated six times in the SR domain, and a CCHC motif in its median region, similar to the zinc knuckle found in the SLU7 splicing factor in yeast. Complete immunodepletion of 9G8 from a nuclear extract, which is accompanied by a substantial depletion of other SR factors, results in a loss of splicing activity. We show that a recombinant 9G8 protein, expressed using a baculovirus vector and excluding other SR factors, rescues the splicing activity of a 9G8-depleted nuclear extract and an S100 cytoplasmic fraction. This indicates that 9G8 plays a crucial role in splicing, similar to that of the other SR splicing factors. This similarity was confirmed by the fact that purified human SC35 also rescues the 9G8-depleted extract. The identification of the 9G8 factor enlarges the essential family of SR splicing factors, whose members have also been proposed to play key roles in alternative splicing.  相似文献   

9.
10.
Mild heat treatment of HeLa cell nuclear extracts (NE) selectively inhibits pre-mRNA splicing. Heat-inactivated extracts can be complemented by a small amount of untreated NE. Utilizing this complementation assay and a combination of ion-exchange, affinity, and hydrophobic chromatography, a heat reversal factor (HRF) was purified from NE that is required to rescue pre-mRNA splicing from a heat-inactivated extract. This activity in its most purified form consistently copurified in a fraction containing two 70-kDa proteins and a minor polypeptide of approximately 100 kDa. It was free of the major small nuclear RNAs, sensitive to protease, and required to rescue spliceosome formation from a heat-inactivated nuclear extract. These results suggest that this factor is a protein that may be an important component in pre-mRNA splicing, or alternatively, it may be involved in renaturation of a heat-sensitive splicing factor.  相似文献   

11.
Trans splicing of nematode pre-messenger RNA in vitro   总被引:9,自引:0,他引:9  
G J Hannon  P A Maroney  J A Denker  T W Nilsen 《Cell》1990,61(7):1247-1255
In nematodes, a fraction of mRNAs contains a common 22 nucleotide 5' terminal spliced leader (SL) sequence derived by trans splicing. Here, we show that a cell-free extract prepared from developing embryos of the parasitic nematode Ascaris lumbricoides catalyzes accurate and efficient SL addition to a synthetic pre-mRNA at an authentic trans splice acceptor site. SL addition occurs via a trans splicing reaction that proceeds through Y-branched intermediates. The branchpoint is located at either of two adenosine residues located 18 and 19 nucleotides upstream of the splice acceptor site.  相似文献   

12.
An SP6/mouse insulin RNA precursor containing two exons and one intron can be spliced in a partially purified nuclear extract isolated from MOPC-315 mouse myeloma cells. We have detected the putative RNA splicing intermediate (intron-3'exon) in a lariat form, the excised intron in a lariat form, and the mRNA spliced product. The in vitro splicing reaction of gel-purified RNA precursors requires ATP and Mg2+ and was accompanied by the formation of a 60-40S ribonucleoprotein complex. The formation of the 60S complex requires ATP. At least two Sm snRNPs containing U1 and U2 RNAs are components of the 60-40S complex. The assemble of those snRNPs occurs early during the splicing reaction and it requires ATP and intron containing pre-mRNAs.  相似文献   

13.
The RNA-catalysed self-splicing reaction of group II intron RNA is assumed to proceed by two consecutive transesterification steps, accompanied by lariat formation. This is effectively analogous to the small nuclear ribonucleoprotein (snRNP)-mediated nuclear pre-mRNA splicing process. Upon excision from pre-RNA, a group II lariat intervening sequence (IVS) has the capacity to re-integrate into its cognate exons, reconstituting the original pre-RNA. The process of reverse self-splicing is presumed to be a true reversion of both transesterification steps used in forward splicing. To investigate the fate of the esterified phosphate groups in splicing we assayed various exon substrates (5'E-*p3'E) containing a unique 32P-labelled phosphodiester at the ligation junction. In combined studies of alternating reverse and forward splicing we have demonstrated that the labelled phosphorus atom is displaced in conjunction with the 3' exon from the ligation junction to the 3' splice site and vice versa. Neither the nature of the 3' exon sequence nor its sequence composition acts as a prominent determinant for both substrate specificity and site-specific transesterification reactions catalysed by bI1 IVS. A cytosine ribonucleotide (pCp; pCOH) or even deoxyoligonucleotides could function as an efficient substitute for the authentic 3' exon in reverse and in forward splicing. Furthermore, the 3' exon can be single monophosphate group. Upon incubation of 3' phosphorylated 5' exon substrate (5'E-*p) with lariat IVS the 3'-terminal phosphate group is transferred in reverse and forward splicing like an authentic 3' exon, but with lower efficiency. In the absence of 3' exon nucleotides, it appears that substrate specificity is provided predominantly by the base-pairing interactions of the intronic exon binding site (EBS) sequences with the intron binding site (IBS) sequences in the 5' exon. These studies substantiate the predicted transesterification pathway in forward and reverse splicing and extend the catalytic repertoire of group II IVS in that they can act as a potential and sequence-specific transferase in vitro.  相似文献   

14.
15.
16.
17.
Splicing of plant pre-mRNAs in animal systems and vice versa   总被引:18,自引:0,他引:18  
V L van Santen  R A Spritz 《Gene》1987,56(2-3):253-265
To investigate similarities and differences of pre-mRNA splicing between higher plants and animals, we tested whether pre-mRNAs of higher plants can be accurately spliced in animal systems, and whether an animal pre-mRNA can be spliced in plant cells. Pre-mRNAs of the maize bronze locus and oat phytochrome type 3 are accurately spliced with moderate efficiency in a human (HeLa cell) nuclear extract. The first intervening sequence (IVS1) of bean phaseolin pre-mRNA is not excised in the human nuclear extract, but is removed (although at low efficiency) in intact monkey cells. However, the IVS1 of human alpha-globin pre-mRNA is not removed in tobacco cells. Our data suggest that the mechanisms of pre-mRNA splicing are similar, but not identical, in plants and animals.  相似文献   

18.
19.
Mapping the spliced and unspliced late lytic SV40 RNAs.   总被引:63,自引:0,他引:63  
C J Lai  R Dhar  G Khoury 《Cell》1978,14(4):971-982
  相似文献   

20.
Structural requirements for the function of a yeast chromosomal replicator   总被引:76,自引:0,他引:76  
S Kearsey 《Cell》1984,37(1):299-307
We have investigated the role of small nuclear ribonucleoprotein particles (snRNPs) in the in vitro splicing of messenger RNA precursors by a variety of procedures. Removal of the U-type snRNPs from the nuclear extracts of HeLa cells with protein A-Sepharose-coupled human autoimmune antibodies leads to complete loss of splicing activity. The inhibition of splicing can be prevented by saturating the coupled antibodies with purified nucleoplasmic U snRNPs prior to incubation with nuclear extract. We further demonstrate that an intact 5' terminus of U1 snRNA is required for the functioning of U1 snRNP in the splicing reaction. Antibodies directed against the trimethylated cap structure of the U snRNAs inhibit splicing. Upon removal of the first eight nucleotides of the U1 snRNA in the particles by site-directed hydrolysis with ribonuclease H in the presence of a synthetic complementary oligodeoxynucleotide splicing is completely abolished. These results are in strong support of current models suggesting that a base-pairing interaction between the 5' terminus of the U1 snRNA and the 5' splice site of a mRNA precursor is a prerequisite for proper splicing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号