首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this work was to study the effects of warm (37°C) and cold (4°C) ischemia on different mitochondrial functions in rat brain, liver and kidney.After l0 to 60 minutes of ischemia at 37°C the energy coupled respiration as well as the ADP-induced malate-aspartate shuttle activity in brain and liver mitochondria or the rate of mitochondrial ATP synthesis in kidney were significantly decreased. However, the respiratory rates and the shuttle activity in the absence of ADP remained unchanged. These data suggest that ischemia primarily affects electron transport in the respiratory chain rather than the hydrogen shuttle and the energy coupling system. When the temperature during the indicated ischemic periods was decreased to 4°C, in brain and liver no significant alterations of these mitochondrial functions were found in comparison with the non-ischemic controls. When rat kidneys were stored for 36 hours at 4°C according to Collins mimicing transplantation conditions, the mitochondrial respiration and ATP synthesis were only slightly decreased. It therefore appears that hypothermia can prevent effectively mitochondrial dysfunction due to ischemia.  相似文献   

2.
31P-NMR has been used to quantify inorganic phosphate (Pi) and high-energy phosphates in the isolated, functioning perfused rat kidney, while monitoring oxygen consumption, glomerular filtration rate and sodium reabsorption. Compared with enzymatic analysis, 100% of ATP, but only 25% of ADP and 27% of Pi are visible to NMR. This is indicative that a large proportion of both ADP and Pi are bound in the intact kidney. NMR is measuring free, and therefore probably cytosolic concentrations of these metabolites. ATP synthesis rate, measured by saturation transfer NMR shows the P:O ratio of 2.45 for the intact kidney. This is close to the theoretical value, suggesting the NMR visible pool is that which is involved in oxidative phosphorylation. The energy cost of Na transport, calculated from the theoretical Na:ATP of 3.0 exceeded the measured rate of ATP synthesis. Instead, Na:ATP for active transport in the perfused kidney was 12. Since the phosphorylation potential ([ATP][ADP]×[Pi]) by NMR was 10 000 M?1, the free-energy of ATP hydrolysis was 52 kJ/mol. Using this figure, the rate of ATP hydrolysis observed could fully account for the observed rate of sodium reabsorption.  相似文献   

3.
Adenine nucleotides and respiration were assayed with rat kidney mitochondria depleted of adenine nucleotides by pyrophosphate treatment and by normothermic ischemia, respectively, with the aim of identifying net uptake of ATP as well as elucidating the contribution of adenine nucleotide loss to the ischemic impairment of oxidative phosphorylation. Treatment of rat kidney mitochondria with pyrophosphate caused a loss of adenine nucleotides as well as a decrease of state 3 respiration. After incubation of pyrophosphate-treated mitochondria with ATP, Mg2+ and phosphate, the content of adenine nucleotides increased. We propose that kidney mitochondria possess a mechanism for net uptake of ATP. Restoration of a normal content of matrix adenine nucleotides was related to full recovery of the rate of state 3 respiration. A hyperbolic relationship between the matrix content of adenine nucleotides and the rate of state 3 respiration was observed. Mitochondria isolated from kidneys exposed to normothermic ischemia were characterized by a decrease in the content of adenine nucleotides as well as in state 3 respiration. Incubation of ischemic mitochondria with ATP, Mg2+ and phosphate restored the content of adenine nucleotides to values measured in freshly-isolated mitochondria. State 3 respiration of ischemic mitochondria reloaded with ATP recovered only partially. The rate of state 3 respiration increased by ATP-reloading approached that of uncoupler-stimulated respiration measured with ischemic mitochondria. These findings suggest that the decrease of matrix adenine nucleotides contributes to the impairment of ischemic mitochondria as well as underlining the occurrence of additional molecular changes of respiratory chain limiting the oxidative phosphorylation.  相似文献   

4.
We have examined the effects of 25 min of ischemia in the isolated erythrocyte-perfused rat kidney (IEPK). We have previously shown that, in this model, perfusate flow rate is close to blood flow rates in vivo and morphology is normal. The functional and morphological consequences of both warm ischemia (at 37 degrees C) and ischemia induced during mild hypothermia (27 degrees C) were compared. (1) Warm ischemia resulted in a 51% increase in renal vascular resistance (RVR) during the reflow period, while glomerular filtration rate (GFR) was reduced to 24% of control levels. (2) Kidneys subjected to warm ischemia showed marked morphological damage localized to the proximal tubule. There was dilatation of the proximal segments and widespread loss of the proximal brush border due both to shedding into the lumen and interiorization into the cell. In contrast to the proximal tubular damage, the cells of the medullary thick ascending limb segments were intact. However, the lumena of many of these segments were filled with cytoplasmic blebs and necrotic cell debris. There was also pronounced vascular congestion of the capillary plexus in the inner stripe of the outer medulla. (3) Hypothermia to 27 degrees C resulted in almost complete protection against ischemic injury: RVR and GFR were not different from control values. Also, kidneys subjected to cold ischemia showed only isolated areas of mild brush border damage; no evidence of tubular obstruction or vascular congestion was present. (4) Thus, warm ischemia in the IEPK results in functional and morphological effects comparable to those found in vivo. Post-ischemic vasoconstriction as well as medullary congestion occur in the absence of systemic hormones and renal nerves. These consequences of ischemia are prevented by modest hypothermia.  相似文献   

5.
Non-heart-beating donors sustain an ischemic insult of unknown severity and duration, which can compromise the viability of the graft. This preliminary study aimed to assess whether electrical bioimpedance monitoring of cold preserved organs could be useful to identify kidneys that have suffered previous warm ischemia (WI). Two rat groups were studied during 24 h of preservation in University of Wisconsin solution (UW): a control cold ischemia group and another group subjected previously to 45 min of WI. Multi-frequency bioimpedance was monitored during preservation by means of a miniaturized silicon probe and the results were modeled according to the Cole equation. Tissular ATP content, lactate dehydrogenase in UW solution and histological injury were assessed. Renal function and cell injury, evaluated during 3 h of ex vivo reperfusion using the isolated perfused rat kidney model, demonstrated differences between groups. Bioimpedance results showed that the time constant and the high frequency resistivity parameters derived from the Cole equation were able to discriminate between groups at the beginning of the preservation (Deltatau approximately 78%, DeltaRinfinity approximately 36%), but these differences tended to converge as preservation time advanced. Nevertheless, another of the Cole parameters, alpha, showed increasing significant differences until 24 h of preservation (Deltaalpha approximately 15%).  相似文献   

6.
7.
Rat kidney cortex slices were tested for their gluconeogenic capacity after the kidney has been either subjected to warm ischemia or flushed with and stored in cold hyperosmotic media. Kidneys damaged by warm ischemia for up to 60 min did not lose their ability to convert pyruvate to glucose. However, they then rapidly lost this capacity so that after 2 hr of ischemia they were devoid of activity. This observation closely corresponded to survival of partially nephrectomized rats whose remaining kidney had been treated in a similar manner. Cortex slices obtained from kidneys flushed and stored in cold hyperosmotic media were found to lose most of their gluconeogenic capacity after 3 days of storage.  相似文献   

8.
ATP hydrolysis by ischemic mitochondria   总被引:5,自引:0,他引:5  
Cellular ATP levels are determined by the rates of ATP production and ATP hydrolysis. Both phenomena are affected by ischemia. Mitochondrial enzymes are damaged, inhibiting this organelle's ability to make ATP. Mitochondria are also uncoupled by ischemia and have the ability to hydrolyze ATP. We designed a series of experiments to determine whether decreased production or increased hydrolysis of ATP was the primary effect of mitochondrial damage. Rat hearts were subjected to 45 min of warm ischemia in order to induce irreversible cell damage. ATP or ADP was injected into cuvettes containing mitochondria isolated from normal myocardium or myocardium damaged by ischemia. Luciferin-luciferase, which fluoresces in the presence of ATP, was also added to the tubes as an indicator of ATP levels. Mixtures of uncoupled and coupled mitochondria were made and compared with the mitochondria damaged by ischemia. The results showed that mitochondria damaged by prolonged ischemia hydrolyze ATP more rapidly than normal mitochondria; however, normal mitochondria can easily compensate for increased ATP hydrolysis when in mixture with equal amounts of uncoupled mitochondria. These data suggests that the low cellular levels of ATP following irreversible ischemia are primarily due to decreased ATP synthesis and not to increased hydrolysis.  相似文献   

9.
Mitochondrial ATP-sensitive K+ channels (mitoKATP) have been proposed to mediate protection against ischemic injury by increasing high-energy intermediate levels. This study was designed to verify if mitochondria are an important factor in the loss of cardiac ATP associated to ischemia, and determine the possible role of mitoKATP in the control of ischemic ATP loss. Langendorff-perfused rat hearts subjected to ischemia were found to have significantly higher ATP contents when pretreated with oligomycin or atractyloside, indicating that mitochondrial ATP hydrolysis contributes toward ischemic ATP depletion. MitoKATP opening induced by diazoxide promoted a similar protection against ATP loss. Diazoxide also inhibited ATP hydrolysis in isolated, nonrespiring mitochondria, an effect accompanied by a drop in the membrane potential and Ca2+ uptake. In hearts subjected to ischemia followed by reperfusion, myocardial injury was prevented by diazoxide, but not atractyloside or oligomycin, which, unlike diazoxide, decreased reperfusion ATP levels. Our results suggest that mitoKATP-mediated protection occurs due to selective inhibition of mitochondrial ATP hydrolysis during ischemia, without affecting ATP synthesis after reperfusion.  相似文献   

10.
Acute kidney injury (AKI) is a frequent pathology with a high mortality rate after even a single AKI episode and a great risk of chronic kidney disease (CKD) development. To get insight into mechanisms of the AKI pathogenesis, there is a need to develop diverse experimental models of the disease. Photothrombosis is a widely used method for inducing ischemia in the brain. In this study, for the first time, we described photothrombosis-induced kidney ischemia as an appropriate model of AKI and obtained comprehensive characteristics of the photothrombotic lesion using micro-computed tomography (micro-CT) and histological techniques. In the ischemic area, we observed destruction of tubules, the loss of brush border and nuclei, connective tissue fibers disorganization, leukocyte infiltration, and hyaline casts formation. In kidney tissue and urine, we revealed increased levels in markers of proliferation and injury. The explicit long-term consequence of photothrombosis-induced kidney ischemia was renal fibrosis. Thus, we establish a new low invasive experimental model of AKI, which provides a reproducible local ischemic injury lesion. We propose our model of photothrombosis-induced kidney ischemia as a useful approach for investigating AKI pathogenesis, studying the mechanisms of kidney regeneration, and development of therapy against AKI and CKD.  相似文献   

11.
Renal cortex (C) has predominantly aerobic metabolism, whereas inner medulla (IM) has both aerobic and anaerobic capacities. This study was undertaken (1) to assess how well rat IM anaerobic metabolism maintains this region's ATP content during ischemia; and (2) to determine whether regional variations in adenylate pool/catabolite responses to ischemia exist, obscuring interpretation of cellular energetics in rat studies of acute renal failure (ARF). Adenine nucleotides/catabolites were measured in rat C, IM and outer medulla (OM) after 15 and 45 min of ischemia. After 15 min, all regions showed profound ATP depletion, although the IM maintained slightly higher (by 0.23 μmol/g) absolute ATP levels than C/OM tissues (normal ATP value = 8.7 μmol/g). By 45 min, significant differences in regional ATP levels did not exist. Striking regional catabolite differences were apparent at both 15 and 45 min. Most prominent were: (1) intrarenal purine base/inosine gradients, levels falling approx. 22–50% from C to IM; and (2) preferential OM AMP/IMP/adenosine accumulation. To assess whether more homogeneous results might be found in rabbit kidney, possibly making this animal preferable to rats for studies of renal ischemia, rabbit C, OM and IM adenylate pools were analyzed after 15 min of ischemia. C vs. IM ATP differences were greater (approx. 1.3 μmol/g) and large catabolite concentration differences were still apparent. Conclusions: (1) anaerobic mechanisms support IM ATP levels during ischemia but, in terms of normal concentrations, the impact is small, particularly in the rat; and (2) marked regional differences in adenylate catabolite levels exist within ischemic kidneys. These need to be recognized when analyzing adenylate pool responses in ischemic ARF.  相似文献   

12.
Summary The influence of fructose 2,6-bisphosphate on the activation of purified swine kidney phosphofructokinase as a function of the concentration of fructose 6P, ATP and citrate was investigated. The purified enzyme was nearly completely inhibited in the presence of 2 mM ATP. The addition of 20 nM fructose 2,6-P2 reversed the inhibition and restored more than 80% of the activity. In the absence of fructose 2,6-P2 the reaction showed a sigmoidal dependence on fructose 6-phosphate. The addition of 10 nM fructose 2,6-bisphosphate decreased the K0.5 for fructose 6-phosphate from 3 mM to 0.4 mM in the presence of 1.5 mM ATP. These results clearly show that fructose 2,6-bisphosphate increases the affinity of the enzyme for fructose 6-phosphate and decreases the inhibitory effect of ATP. The extent of inhibition by citrate was also significantly decreased in the presence of fructose 2,6-phosphate.The influence of various effectors of phosphofructokinase on the binding of ATP and fructose 6-P to the enzyme was examined in gel filtration studies. It was found that kidney phosphofructokinase binds 5.6 moles of fructose 6-P per mole of enzyme, which corresponds to about one site per subunit of tetrameric enzyme. The KD for fructose 6-P was 13 µM and in the presence of 0.5 mM ATP it increased to 27 µM. The addition of 0.3 mM citrate also increased the KD for fructose 6-P to about 40 µM. AMP, 10 µM, decreased the KD to 5 µM and the addition of fructose 2,6-phosphate decreased the KD for fructose 6-P to 0.9 µM. The addition of these compounds did not effect the maximal amount of fructose 6-P bound to the enzyme, which indicated that the binding site for these compounds might be near, but was not identical to the fructose 6-P binding site. The enzyme bound a maximum of about 12.5 moles of ATP per mole, which corresponds to 3 moles per subunit. The KD of the site with the highest affinity for ATP was 4 µM, and it increased to 15 µM in the presence of fructose 2,6-bisphosphate. The addition of 50 µM fructose 1,6-bisphosphate increased the KD for ATP to 5.9 µM. AMP increased the KD to 5.9 µM whereas 0.3 mM citrate decreased the KD for ATP to about 2 µM. The KD for AMP, was 2.0 µM; the KD for cyclic AMP was 1.0 µM; the KD for ADP was 0.9 µM; the KD for fructose 1,6-bisphosphate was 0.5 µM; the KD for citrate was 0.4 µM and the KD for fructose 2,6-bisphosphate was about 0.1 µM. A maximum of about 4 moles of AMP, ADP and cyclic AMP and fructose 2,6-bisphosphate were bound per mole of enzyme. Taken collectively, these and previous studies (9) indicate that fructose 2,6-phosphate is a very effective activator of swine kidney phosphofructokinase. This effector binds to the enzyme with a very high affinity, and significantly decreases the binding of ATP at the inhibitory site on the enzyme.  相似文献   

13.
Kinetic properties of homogeneous preparations of pig kidney and pig muscle pyruvate kinases (EC 2.7.1.40) were studied. Both isozymes showed a hyperbolic relationship to ADP with an apparent Km of 0.3 mm. K+ and Mg2+ were necessary for the activity of both isozymes, and their dependences on these cations were similar. The muscle isozyme expressed Michaelis-Menten type of kinetics with respect to phosphoenolpyruvate, and the apparent Km was the same (0.03 mm) from pH 5.5 to pH 8.0. In contrast, the dependence on phosphoenolpyruvate changed with pH for the kidney isozyme. It showed similar properties to the muscle isozyme at pH 5.5–7.0 (apparent Km of 0.08 mm), while two apparent Km values for this substrate were present at pH 7.5–8.0, one low (0.1 mm) and one high (0.3–0.6 mm). At pH 7.5, fructose 1,6-bisphosphate converted the kidney isozyme to a kinetical form where only the lower apparent Km for phosphoenolpyruvate was detected. On the other hand, in the presence of alanine or phenylalanine the kidney pyruvate kinase showed only the higher Km for this substrate. At low phosphoenolpyruvate levels both isozymes were inhibited by phenylalanine, and half-maximal inhibition was found at 0.3 and 2.2 mm for the kidney and muscle isozymes, respectively. At a 5 mm concentration of the substrate only the kidney isozyme was inhibited, the apparent Ki being the same. Alanine inhibited the kidney isozyme (apparent Ki at 0.3 mm, irrespective of substrate concentration). No effect was seen on the muscle isozyme. Fructose 1,6-bisphosphate was an activator of the kidney isozyme at phosphoenolpyruvate concentrations below 1.0 mm It also counteracted the inhibition by alanine or phenylalanine of this isozyme. ATP inhibited both isozymes, and this inhibition was not counteracted by fructose 1,6-bisphosphate. The kidney isozyme showed both a high and a low apparent Km for phosphoenolpyruvate in the presence of ATP. The influence of the effectors on the activity of both isozymes varied markedly with pH, except for the action of ATP. At low substrate concentrations, however, the inhibitor action of ATP on the muscle enzyme was diminished around pH 7.5, in contrast to higher or lower pH values. Alanine or phenylalanine were more effective as inhibitors at higher pH values, and fructose 1,6-bisphosphate stimulated the kidney isozyme only at pH levels above pH 6.5. The influence of activators and inhibitors on the regulation of the kidney and muscle pyruvate kinases is discussed.  相似文献   

14.
31P NMR spectra of rat kidney and heart, in situ, were obtained at 97.2 MHz by using chronically implanted radio-frequency coils. Previous investigators have used magnetization transfer techniques to study phosphorus exchange in perfused kidney and heart. In the current experiments, saturation transfer techniques were used to measure the steady-state rate of exchange between inorganic phosphate (Pi) and the gamma-phosphate of ATP (gamma ATP) in kidney, and between phosphocreatine (PCr) and gamma ATP, catalyzed by creatine kinase, in heart. The rate constant for the exchange detected between Pi and gamma ATP in kidney, presumably catalyzed by oxidative phosphorylation, was 0.12 +/- 0.03 s-1. This corresponds to an ATP synthesis rate of 12 mumol min-1 (g wet weight)-1. Comparison of previously published O2 consumption and Na+ reabsorption rates for the intact kidney with the NMR-derived rate for ATP synthesis gave flux ratios of JATP/JO2 = 1.6-3.3 and JNa+/JATP = 4-10. The rate constants for the creatine kinase reaction, assuming a simple two-site exchange, were found to be 0.57 +/- 0.12 s-1 for the forward direction (PCr----ATP) and 0.50 +/- 0.16 s-1 for the reverse direction (ATP----PCr). The forward rate (0.78 +/- 0.18 intensity unit/s) was significantly larger (p less than 0.05) than the reverse rate (0.50 +/- 0.16 intensity unit/s). This difference between the forward and reverse rates of creatine kinase has been previously noted in the perfused heart. The difference has been attributed to participation of ATP in other reactions.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
16.
Effects of 10-(6′-plastoquinonyl) decyltriphenylphosphonium (SkQ1) and 10-(6′-plastoquinonyl) decylrhod-amine 19 (SkQR1) on rat models of H2O2- and ischemia-induced heart arrhythmia, heart infarction, kidney ischemia, and stroke have been studied ex vivo and in vivo. In all the models listed, SkQ1 and/or SkQR1 showed pronounced protective effect. Supplementation of food with extremely low SkQ1 amount (down to 0.02 nmol SkQ1/kg per day for 3 weeks) was found to abolish the steady heart arrhythmia caused by perfusion of isolated rat heart with H2O2 or by ischemia/reperfusion. Higher SkQ1 (125–250 nmol/kg per day for 2–3 weeks) was found to decrease the heart infarction region induced by an in vivo ischemia/reperfusion and lowered the blood levels of lactate dehydrogenase and creatine kinase increasing as a result of ischemia/reperfusion. In single-kidney rats, ischemia/reperfusion of the kidney was shown to kill the majority of the animals in 2–4 days, whereas one injection of SkQ1 or SkQR1 (1 μmol/kg a day before ischemia) saved lives of almost all treated rats. Effect of SkQR1 was accompanied by decrease in ROS (reactive oxygen species) level in kidney cells as well as by partial or complete normalization of blood creatinine and of some other kidney-controlled parameters. On the other hand, this amount of SkQ1 (a SkQ derivative of lower membrane-penetrating ability than SkQR1) saved the life but failed to normalize ROS and creatinine levels. Such an effect indicates that death under conditions of partial kidney dysfunction is mediated by an organ of vital importance other than kidney, the organ in question being an SkQ1 target. In a model of compression brain ischemia/reperfusion, a single intraperitoneal injection of SkQR1 to a rat (1 μmol/kg a day before operation) effectively decreased the damaged brain area. SkQ1 was ineffective, most probably due to lower permeability of the blood-brain barrier to this compound. Electronic Supplementary Material  Supplementary material is available for this article at and is accessible for authorized users. Published in Russian in Biokhimiya, 2008, Vol. 73, No. 12, pp. 1607–1621.  相似文献   

17.
Ischemic preconditioning (IPC) induces distinctive changes in mitochondrial bioenergetics during warm (37 degrees C) ischemia and improves function and tissue viability on reperfusion. We examined whether IPC before 2 h of hypothermic (27 degrees C) ischemia affords additive cardioprotection and improves mitochondrial redox balance assessed by mitochondrial NADH and flavin adenine dinucleotide (FAD) autofluorescence in intact hearts. A mediating role of ATP-sensitive K(+) (K(ATP)) channel opening was investigated. NADH and FAD fluorescence was measured in the left ventricular wall of guinea pig isolated hearts assigned to five groups of eight animals each: hypothermia alone, hypothermia with ischemia, IPC with cold ischemia, 5-hydroxydecanoic acid (5-HD) alone, and 5-HD with IPC and cold ischemia. IPC consisted of two 5-min periods of warm global ischemia spaced 5 min apart and 15 min of reperfusion before 2 h of ischemia at 27 degrees C and 2 h of warm reperfusion. The K(ATP) channel inhibitor 5-HD was perfused from 5 min before until 5 min after IPC. IPC before 2 h of ischemia at 27 degrees C led to better recovery of function and less tissue damage on reperfusion than did 27 degrees C ischemia alone. These improvements were preceded by attenuated increases in NADH and decreases in FAD during cold ischemia and the reverse changes during warm reperfusion. 5-HD blocked each of these changes induced by IPC. This study indicates that IPC induces additive cardioprotection with mild hypothermic ischemia by improving mitochondrial bioenergetics during and after ischemia. Because effects of IPC on subsequent changes in NADH and FAD were inhibited by 5-HD, this suggests that mitochondrial K(ATP) channel opening plays a substantial role in improving mitochondrial bioenergetics throughout mild hypothermic ischemia and reperfusion.  相似文献   

18.
In an attempt to ameliorate the morphological abnormalities and decreased renal function produced by hypoxia in the isolated perfused rat kidney, adenosine triphosphate (ATP) was added to the perfusate medium. No improvement was noted in the histological changes or renal function. Paradoxically, however, in oxygenated control kidneys, ATP (2.5-10 mM), caused a severe injury remarkably limited to the S2 segments of proximal tubule. This injury was more destructive than that observed with complete ischemia for the same period of time or with inhibitors of glycolysis, intermediary metabolism, or respiratory chain function. Tubular damage produced by ATP was paradoxically prevented by hypoxia and mitochondrial inhibition. The mechanism of this selective toxic injury to the proximal tubule remains unclear and may depend upon intact transport metabolism of the cell.  相似文献   

19.
The effect of hypothermia on the function of isolated dog kidney cortex mitochondria was determined with an FAD- and NAD+-linked substrate. In dog kidney mitochondria, temperatures of 10 °C or less suppress ADP stimulation of respiration but have little or no effect upon uncoupler, Ca2+ or valinomycin-K+ stimulation of respiration. This suggests that the adenine nucleotide translocase which catalyses the transport of ADP into the mitochondria limits the rate of respiration and generation of ATP at 10 °C in kidneys undergoing preservation. The coupling of oxidation to phosphylation, as determined by measuring the amount of ATP formed at low temperatures, indicates, however, that mitochondria are fully coupled at both 10 and 5 °C. The respiratory control index at 15 °C is greater (with pyruvate plus malate) than at 30 or 10 °C and suggests that 15 °C may be the optimum perfusion temperature for maintaining adenine nucleotide levels in the perfused kidney.  相似文献   

20.
Acute tubular necrosis is a frequent occurrence following hypovolemic shock and human renal transplantation. Although this postischemic injury was originally thought to result from ischemia alone, it has recently been recognized that significant tissue injury can occur during the period of reperfusion. The demonstration of the oxygen free-radical-mediated postischemic reperfusion injury by Granger, Rutili, and McCord in ischemic cat intestine suggested that this mechanism might also be operative following renal ischemia. In the kidney, postischemic injury results in necrosis of the proximal renal tubule and accumulation of erythrocytes in the outer renal medulla. It has been proposed that the primary event leading to these pathologic changes is a free-radical-mediated injury to the endothelial cells in the inner stripe of the outer medulla. Experimental evidence in animals subjected to warm and cold ischemia supports a free-radical-mediated mechanism. The clinical significance of these findings is demonstrated in preclinical animal studies of renal transplantation in which approximately two-thirds of the injury following cold ischemia could be ablated by superoxide dismutase administered just prior to reperfusion or by allopurinol when administered both at the time of preservation and reperfusion or at the time of preservation alone.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号