首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The structure of the human Toll-like receptor 3 (TLR3) ectodomain (ECD) was recently solved by x-ray crystallography, leading to a number of models concerning TLR3 function (Choe, J., Kelker, M. S., and Wilson, I. A. (2005) Science 309, 581-585; Bell, J. K., Botos, I., Hall, P. R., Askins, J., Shiloach, J., Segal, D. M., and Davies, D. R. (2005) Proc. Natl. Acad. Sci. U. S. A. 102, 10976-10980) The structure revealed four pairs of cysteines that are putatively involved in disulfide bond formation, several residues that are predicted to be involved in dimerization between ECD subunits, and surfaces that could bind to poly(I:C). In addition, there are two loops that protrude from the central solenoid structure of the protein. We examined the recombinant TLR3 ECD for disulfide bond formation, poly(I:C) binding, and protein-protein interaction. We also made over 80 mutations in the residues that could affect these features in the full-length TLR3 and examined their effects in TLR3-mediated NF-kappaB activation. A number of mutations that affected TLR3 activity also affected the ability to act as dominant negative inhibitors of wild type TLR3. Loss of putative RNA binding did not necessarily affect dominant negative activity. All of the results support a model where a dimer of TLR3 is the form that binds RNA and activates signal transduction.  相似文献   

2.
The A33 antigen is a cell surface glycoprotein expressed in human gastrointestinal epithelium and in 95% of colorectal cancers. We have compared the N-linked glycosylation profile of A33 antigen naturally expressed in a human colorectal cancer cell line with recombinant human A33 antigen (rA33) produced in insect cell culture using the baculovirus expression vector. N-Linked glycans were enzymatically released from the protein, and glycan composition was analyzed by HPLC. In three insect cell lines tested (Sf-21, Tn5B1-4, and Tn-4s), glycosylation of rA33 was dominated by high mannose structures (M5Gn2 to M9Gn2; 78-95% of total N-linked glycans), with M8Gn2 being the single most abundant glycoform. A33 antigen naturally expressed in the SW1222 human colon cancer cell line (A33) also possessed a high abundance of high mannose glycans (72%). No complex glycosylation was detected on rA33 expressed in insect cells. Natural A33 was galactosylated to a small extent (6%). These results illustrate a case of similar glycosylation of a glycoprotein between a recombinant version produced in insect cell culture and its counterpart naturally expressed in human cell culture.  相似文献   

3.
Lactoferrin (LF) is an iron-binding glycoprotein of the innate host defence system. To elucidate the role of N-linked glycosylation in protection of LF against proteolysis, we compared the tryptic susceptibility of human LF (hLF) variants from human milk, expressed in human 293(S) cells or in the milk of transgenic mice and cows. The analysis revealed that recombinant hLF (rhLF) with mutations Ile130-->Thr and Gly404-->Cys was about twofold more susceptible than glycosylated and unglycosylated variants with the naturally occurring Ile130 and Gly404. Hence, N-linked glycosylation is not involved in protection of hLF against tryptic proteolysis. Apparently, the previously reported protection by N-linked glycosylation of hLF [van Berkel, P.H.C., Geerts, M.E.J., van Veen, H.A., Kooiman, P.M., Pieper, F., de Boer, H.A. & Nuijens, J.H. (1995) Biochem. J. 312, 107-114] is restricted to rhLF containing the Thr130 and Cys404. Comparison of the tryptic proteolysis of hLF and bovine LF (bLF) revealed that hLF is about 100-fold more resistant than bLF. Glycosylation variants A and B of bLF differed by about 10-fold in susceptibility to trypsin. This difference is due to glycosylation at Asn281 in bLF-A. Hence, glycosylation at Asn281 protects bLF against cleavage by trypsin at Lys282.  相似文献   

4.
The receptor-linked tyrosine phosphatase RPTP alpha from human brain (Kaplan, R., Morse, B., Huebner, K., Croce, C., Howk, R., Ravera, M., Ricca, G., Jaye, M., and Schlessinger, J. (1990) Proc. Natl. Acad. Sci. U.S.A. 87, 7000-7004) was expressed in insect cells following infection with recombinant baculovirus. Two major forms of the enzyme, with molecular sizes of 98 kDa and 114 kDa, were detected by immunoblot analysis. This heterogeneity could be ascribed to N-linked glycosylation on the basis of two lines of evidence; namely, blockage of glycosylation with tunicamycin in vivo and removal of carbohydrates by endoglycosidase F in vitro. The 114-kDa form was purified to homogeneity by chromatography on Superose 12 and Mono Q. Compared to the low Mr placenta and T-cell tyrosine phosphatases, RPTP alpha displayed a low optimum pH of 6 and a high Km in the micromolar range toward two artificial substrates (tyrosyl-phosphorylated myelin basic protein and modified lysozyme, respectively). Most effectors had a different and often an opposite influence on phosphatase activity depending on the nature of the substrate and the pH at which the assays were performed. Determination of Km and Vmax values for RPTP alpha suggests that the enzyme could exist in low and high substrate affinity states.  相似文献   

5.
Human TLR7 and 8 (hTLR7/8) have been implicated in the sequence-dependent detection of RNA oligonucleotides in immune cells. Although hTLR7 sequence-specific sensing of short RNAs has been inferred from studies of murine TLR7, this has yet to be established for hTLR7. We found that different short ssRNA sequences selectively induced either TNF-alpha or IFN-alpha in human PBMCs. The sequence-specific TNF-alpha response to ssRNAs observed in PBMCs could be replicated in activated human macrophage-like (THP-1) cells pretreated with IFN-gamma. Surprisingly, suppression of hTLR7 expression by RNA interference in this model reduced sensing of all immunostimulatory ssRNAs tested. Modulation of the relative expression ratio of hTLR7 to hTLR8 in THP-1 cells correlated with differential sensing of immunostimulatory sequences. Furthermore, the sequence-specific IFN-alpha induction profile in human PBMCs was accurately modeled by a sequence-specific activation of murine TLR7 in mouse macrophages. Thus, we demonstrate for the first time that hTLR7 is involved in sequence-specific sensing of ssRNAs. We establish a novel cell model for the prediction of TNF-alpha induction by short RNAs in human macrophages. Our results suggest that differential sequence-specific sensing of RNA oligonucleotides between human and mouse macrophages is due to the modulation of TLR7 sensing by human TLR8.  相似文献   

6.
The natural cytotoxicity receptors are a unique set of activating proteins expressed mainly on the surface of natural killer (NK) cells. The human natural cytotoxicity receptor family comprises the three type I membrane proteins NKp30, NKp44, and NKp46. Especially NKp30 is critical for the cytotoxicity of NK cells against different targets including tumor, virus-infected, and immature dendritic cells. Although the crystal structure of NKp30 was recently solved (Li, Y., Wang, Q., and Mariuzza, R. A. (2011) J. Exp. Med. 208, 703-714; Joyce, M. G., Tran, P., Zhuravleva, M. A., Jaw, J., Colonna, M., and Sun, P. D. (2011) Proc. Natl. Acad. Sci. U.S.A. 108, 6223-6228), a key question, how NKp30 recognizes several non-related ligands, remains unclear. Therefore, we investigated the parameters that impact ligand recognition of NKp30. Based on various NKp30-hIgG1-Fc fusion proteins, which were optimized for minimal background binding to cellular Fcγ receptors, we identified the flexible stalk region of NKp30 as an important but so far neglected module for ligand recognition and related signaling of the corresponding full-length receptor proteins. Moreover, we found that the ectodomain of NKp30 is N-linked glycosylated at three different sites. Mutational analyses revealed differential binding affinities and signaling capacities of mono-, di-, or triglycosylated NKp30, suggesting that the degree of glycosylation could provide a switch to modulate the ligand binding properties of NKp30 and NK cell cytotoxicity.  相似文献   

7.
In this report, we have fortified and extended a previous investigation [Davidson, D. J., Fraser, M. J., & Castellino, F. J. (1990) Biochemistry 29, 5584-5590] in which we demonstrated for the first time that lepidopteran insect (Spodoptera frugiperda) cells (IPLB-SF-21AE) were capable of assembling N-linked complex oligosaccharide on a human protein (plasminogen), the cDNA of which had been inserted into these cells via recombinant DNA technology with a baculovirus vector. In order to investigate whether a more general capability of lepidopteran insect cells to produce complex oligosaccharide existed, and to identify the chemical nature of the types of oligosaccharides that such insect cells were able to assemble, we have infected Mamestra brassicae (IZD-MBO503) cells for 48 h with a recombinant (r) baculovirus containing the [R561E]human plasminogen (HPg) cDNA and characterized the nature of the glycopeptidase F (GF) released N-linked oligosaccharides contained on Asn289 of the r-HPg expressed by these cells. We found that approximately 63% of the total N-linked oligosaccharides were of the complex type, with bisialo-biantennary (28%), asialo-biantennary (7%), fucosylated bisialo-biantennary (25%), and fucosylated asialo-biantennary (3%) oligosaccharides representing the major complex-type carbohydrate species. The remainder of the oligosaccharides were of the high-mannose type, with (mannose)9(N-acetylglucosamine)2 (22%), (mannose)5(N-acetylglucosamine)2 (13%), and (mannose)3(N-acetylglucosamine)2 (2%) representing the major oligosaccharides observed.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
Members of the Toll-like receptor family are essential components of the innate immune system. Herein we report the molecular cloning and characterization of three novel human Toll-like receptors (hTLRs) designated hTLR7, hTLR8, and hTLR9. Human TLR7-9, like the previously described members hTLR1-6 contain an ectodomain with multiple leucine-rich repeats (LRRs) and a cytoplasmic domain homologous to that of the human interleukin-1 (IL-1) receptor. When compared with hTLR1-6, the hTLR7-9 has a higher molecular weight largely as a result of a longer ectodomain. Phylogenetic analysis shows that hTLR7-9 belong to a new sub-family of the hTLRs. Analysis of mRNA expression at the tissue levels shows differential expression patterns; hTLR7 is predominantly expressed in lung, placenta and spleen, hTLR8 is more abundant in lung, peripheral blood leukocytes, and hTLR9 is preferentially expressed in immune cell rich tissues, such as spleen, lymph node, bone marrow and peripheral blood leukocytes. The hTLR7 and hTLR8 genes are located on the sex chromosome X, hTLR9 gene is located on chromosome 3. Expression of constitutively active hTLR7-9 stimulates an NF-kappaB signaling pathway indirectly supporting the contention that these receptors are involved in cellular responses to stimuli, which activate innate immunity.  相似文献   

9.
Gelatin-binding chymotryptic fragments from placental fibronectin contain polylactosamine carbohydrates (Zhu, B.C.R., Fisher, S.R., Pande, H., Calaycay, J. Shively, J.E., and Laine, R.A. (1984) J. Biol. Chem. 259, 3962-3970). We have separated polylactosamine-containing gelatin-binding fragments of placental fibronectin from their counterparts containing smaller "complex" N-linked saccharides using Sephadex G-200 gel permeation chromatography. The peptide portions of both fragments have similar amino acid composition and N-terminal sequence (see reference above). The strength of binding of these two glycosylation types of chymotryptic fragments to gelatin differs as shown by the following experiments. 1) Upon urea gradient elution of affinity-bound fibronectin fragments from gelatin-Sepharose chromatography, the apex of the elution peak for polylactosamine-containing fragments occurs at 2.0 M urea while the peak for complex N-linked carbohydrate-containing fragments maximized at 2.5 M urea indicating a tighter binding. Removal of polylactosamine sequences from the former glycopeptide by endo-beta-galactosidase digestion caused the elution peak for this fraction to change from 2.0 to 2.5 M, the same as for the complex N-linked carbohydrate-containing glycopeptide. 2) Competitive displacement experiments give an apparent dissociation constant of polylactosamine-containing fragments at 3 X 10(-9) M whereas this constant for complex carbohydrate-containing fragments is 1 X 10(-9) M. These results indicate that the binding of placental fibronectin to gelatin is weakened by the presence of high molecular weight polylactosamine carbohydrate. To our knowledge this is the first report that the type and extent of glycosylation of a glycoprotein can affect its binding affinity to a proteinacious ligand. Thus, fetal placental fibronectin may have different biological properties than fibronectins containing only the smaller N-linked complex carbohydrate.  相似文献   

10.
X Pan  J Yue  G Ding  B Li  X Liu  X Zheng  M Yu  J Li  W Jiang  C Wu  J Zheng  H Zhou 《The Journal of biological chemistry》2012,287(36):30596-30609
TLR9 is a receptor for sensing bacterial DNA/CpG-containing oligonucleotides (CpG ODN). The extracellular domain (ECD) of human TLR9 (hTLR9) is composed of 25 leucine-rich repeats (LRR) contributing to the binding of CpG ODN. Herein, we showed that among LRR2, -5, -8, and -11, LRR11 of hTLR9 had the highest affinity for CpG ODN followed by LRR2 and -5, whereas LRR8 had almost no affinity. In vitro, preincubation with LRR11 more significantly decreased CpG ODN internalization, subsequent NF-κB activation, and cytokine release than with LRR2 and -5 in mouse peritoneal macrophages treated with CpG ODN. The LRR11 deletion mutant of hTLR9 conferred decreased cellular responses to CpG ODN. Single- or multiple-site mutants at five positively charged residues of LRR11 (LRR11m1-9), especially Arg-337 and Lys-367, were shown to contribute to hTLR9 binding of CpG ODN. LRR11m1-9 showed reduced inhibition of CpG ODN internalization and CpG ODN/TLR9 signaling, supporting the above findings. Prediction of whole hTLR9 ECD-CpG ODN interactions revealed that Arg-337 and Lys-338 directly contact CpG ODN through hydrogen bonding, whereas Lys-347, Arg-348, and His-353 contribute to stabilizing the shape of the ligand binding region. These findings suggested that although all five positively charged residues within LRR11 contributed to its high affinity, only Arg-337 and Lys-338 directly interacted with CpG ODN. In conclusion, the results suggested that LRR11 could strongly bind to CpG ODN, whereas mutations at the five positively charge residues reduced this high affinity. LRR11 may be further investigated as an antagonist of hTLR9.  相似文献   

11.
Heterogeneous glycosylation of murine transferrin receptor subunits   总被引:1,自引:0,他引:1  
The N-linked glycosylation of the murine receptor for transferrin has been investigated. Previously we have found that purified receptors appear as two bands after sodium dodecyl sulfate/polyacrylamide gel electrophoresis and Coomassie blue staining [van Driel, I.R., Stearne, P.A., Grego, B., Simpson, R.J. and Goding, J.W. (1984) J. Immunol. 133, 3220-3224]. In the current report we show that the two bands are due to different glycosylation of individual receptor molecules. The receptors have three asparagines to which N-linked glycans can be added, but only two sites are glycosylated in all receptors. The level of glycosylation of the third site varies depending on cell line or tissue. Limited endoglycosidase digestion of mature receptors indicates that differential glycosylation probably occurs at only one particular asparagine residue. Possible mechanisms that could result in such a glycosylation pattern are discussed.  相似文献   

12.
Previous studies from this laboratory have established that lepidopteran insect cells possess the glycosylation machinery needed to assemble N-linked complex-type oligosaccharides on Asn289 of recombinant human plasminogen (r-HPg). In the present paper, we show that the nature of N289-linked glycosylation of [R561E]r-HPg expressed in Spodoptera frugiperda (IPLB-SF-21AE) cells is dependent upon the length of time of infection of the cells with the recombinant baculovirus/HPg-cDNA construct. At the earliest postinfection (p.i.) time period studied, i.e., 0-20 h, virtually all (96%) of the oligosaccharides released with glycopeptidase F from N289 of the expressed r-HPg were of the high-mannose type and comprised nearly the full range of such structures, containing 3-9 mannose units. At a time window of 60-96 h, p.i., essentially all of the oligosaccharides (92% of the total) assembled on N289 of rHPg were of the biantennary, triantennary, and tetraantennary complex classes, with varying extents of outer arm completion. At an intermediate time period window, of 20-60 h, p.i., a mixture of complex-type oligosaccharides, totaling approximately 77% of the glycans, with various levels of branching and outer arm completion, and high-mannose type of oligosaccharides, totaling approximately 23% of the glycans, was assembled on N289 of the r-HPg produced. These studies demonstrate that lepidopteran insect cells contain the glycosyltransferase genes required for assembly of N-linked complex oligosaccharide and that these transferases are utilized under proper conditions. The time dependency of the assembly of complex-type oligosaccharides on r-HPg indicates that an activation of the appropriate glycosyl transferases and/or transferase genes can take place. Thus, one consequence of the infective process with the recombinant baculovirus/HPg-cDNA construct is to alter the normal glycosylation characteristics of insect cells and to allow complex-type oligosaccharide processing to occur.  相似文献   

13.
Large conductance Ca(2+)-dependent potassium (K(Ca) or maxi K) channels are composed of a pore-forming alpha subunit and an auxiliary beta subunit. We have shown that the brain-specific beta4 subunit modulates the voltage dependence, activation kinetics, and toxin sensitivity of the hSlo channel (Weiger, T. M., Holmqvist, M. H., Levitan, I. B., Clark, F. T., Sprague, S., Huang, W. J., Ge, P., Wang, C., Lawson, D., Jurman, M. E., Glucksmann, M. A., Silos-Santiago, I., DiStefano, P. S., and Curtis, R. (2000) J. Neurosci. 20, 3563-3570). We investigated here the N-linked glycosylation of the beta4 subunit and its effect on the modulation of the hSlo alpha subunit. When expressed alone in HEK293 cells, the beta4 subunit runs as a single molecular weight band on an SDS gel. However, when coexpressed with the hSlo alpha subunit, the beta4 subunit appears as two different molecular weight bands. Enzymatic deglycosylation or mutation of the N-linked glycosylation residues in beta4 converts it to a single lower molecular weight band, even in the presence of the hSlo alpha subunit, suggesting that the beta4 subunit can be present as an immature, core glycosylated form and a mature, highly glycosylated form. Blockage of protein transport from the endoplasmic reticulum to the Golgi compartment with brefeldin A abolishes the mature, highly glycosylated beta4 band. Glycosylation of the beta4 subunit is not required for its binding to the hSlo channel alpha subunit. It also is not necessary for cell membrane targeting of the beta4 subunit, as demonstrated by surface biotinylation experiments. However, the double glycosylation site mutant beta4 (beta4 N53A/N90A) protects the channel less against toxin blockade, as compared with the hSlo channel coexpressed with wild type beta4 subunit. Taken together, these data show that the pore-forming alpha subunit of the hSlo channel promotes N-linked glycosylation of its auxiliary beta4 subunit, and this in turn influences the modulation of the channel by the beta4 subunit.  相似文献   

14.
Toll-like receptors (TLRs) are pattern recognition receptors that recognize pathogens based on distinct molecular signatures. The human (h)TLR1, 2, 6 and 10 belong to the hTLR1 subfamilies, which are localized in the extracellular regions and activated in response to diverse ligand molecules. Due to the unavailability of the hTLR10 crystal structure, the understanding of its homo and heterodimerization with hTLR2 and hTLR1 and the ligand responsible for its activation is limited. To improve our understanding of the TLR10 receptor-ligand interaction, we used homology modeling to construct a three dimensional (3D) structure of hTLR10 and refined the model through molecular dynamics (MD) simulations. We utilized the optimized structures for the molecular docking in order to identify the potential site of interactions between the homo and heterodimer (hTLR10/2 and hTLR10/1). The docked complexes were then used for interaction with ligands (Pam3CSK4 and PamCysPamSK4) using MOE-Dock and ASEDock. Our docking studies have shown the binding orientations of hTLR10 heterodimer to be similar with other TLR2 family members. However, the binding orientation of hTLR10 homodimer is different from the heterodimer due to the presence of negative charged surfaces at the LRR11-14, thereby providing a specific cavity for ligand binding. Moreover, the multiple protein-ligand docking approach revealed that Pam3CSK4 might be the ligand for the hTLR10/2 complex and PamCysPamSK4, a di-acylated peptide, might activate hTLR10/1 hetero and hTLR10 homodimer. Therefore, the current modeled complexes can be a useful tool for further experimental studies on TLR biology.  相似文献   

15.
The ligand specificity of human TLR (hTLR) 2 is determined through the formation of functional heterodimers with either hTLR1 or hTLR6. The chicken carries two TLR (chTLR) 2 isoforms, type 1 and type 2 (chTLR2t1 and chTLR2t2), and one putative TLR1/6/10 homologue (chTLR16) of unknown function. In this study, we report that transfection of HeLa cells with the various chicken receptors yields potent NF-kappaB activation for the receptor combination of chTLR2t2 and chTLR16 only. The sensitivity of this complex was strongly enhanced by human CD14. The functional chTLR16/chTLR2t2 complex responded toward both the hTLR2/6-specific diacylated peptide S-(2,3-bispalmitoyloxypropyl)-Cys-Gly-Asp-Pro-Lys-His-Pro-Lys-Ser-Phe (FSL-1) and the hTLR2/1 specific triacylated peptide tripalmitoyl-S-(bis(palmitoyloxy)propyl)-Cys-Ser-(Lys)(3)-Lys (Pam(3)CSK(4)), indicating that chTLR16 covers the functions of both mammalian TLR1 and TLR6. Dissection of the species specificity of TLR2 and its coreceptors showed functional chTLR16 complex formation with chTLR2t2 but not hTLR2. Conversely, chTLR2t2 did not function in combination with hTLR1 or hTLR6. The use of constructed chimeric receptors in which the defined domains of chTLR16 and hTLR1 or hTLR6 had been exchanged revealed that the transfer of leucine-rich repeats (LRR) 6-16 of chTLR16 into hTLR6 was sufficient to confer dual ligand specificity to the human receptor and to establish species-specific interaction with chTLR2t2. Collectively, our data indicate that diversification of the central LRR region of the TLR2 coreceptors during evolution has put constraints on both their ligand specificity and their ability to form functional complexes with TLR2.  相似文献   

16.
MD-2 is physically associated with Toll-like receptor 4 (TLR4) and is required for TLR4-mediated LPS signaling. Western blotting analysis revealed the presence of three forms of human (h)MD-2 with different electrophoretic mobilities. After N-glycosidase treatment of the cellular extract prepared from cells expressing hMD-2, only a single form with the fastest mobility was detected. Mutation of either one of two potential glycosylation sites (Asn(26) and Asn(114)) of MD-2 resulted in the disappearance of the slowest mobility form, and only the fastest form was detected in hMD-2 carrying mutations at both Asn(26) and Asn(114). Although these mutants were expressed on the cell surface and maintained its ability to associate with human TLR4, these mutations or tunicamycin treatment substantially impaired the ability of MD-2 to complement TLR4-mediated activation of NF-kappaB by LPS. LPS binding to cells expressing CD14, TLR4, and MD-2 was unaffected by these mutations. These observations demonstrate that hMD-2 undergoes N-linked glycosylation at Asn(26) and Asn(114), and that these glycosylations are crucial for TLR4-mediated signal transduction of LPS.  相似文献   

17.
Toll-like receptors are a family of pattern-recognition receptors that contribute to the innate immune response. Toll-like receptor 3 (TLR3) signals in response to foreign, endogenous and synthetic ligands including viral dsRNA, bacterial RNA, mitochondrial RNA, endogenous necrotic cell mRNA and the synthetic dsRNA analog, poly(I:C). We have generated a monoclonal antibody (mAb CNTO2424) that recognizes the extracellular domain (ECD) of human TLR3 in a conformation-dependent manner. CNTO2424 down-regulates poly(I:C)-induced production of IL-6, IL-8, MCP-1, RANTES, and IP-10 in human lung epithelial cells. In addition, mAb CNTO2424 was able to interfere with the known TLR3-dependent signaling pathways, namely NF-κB, IRF-3/ISRE, and p38 MAPK. The generation of this neutralizing anti-TLR3 mAb provides a unique tool to better understand TLR3 signaling and potential cross-talk between TLR3 and other molecules.  相似文献   

18.
The vanilloid-like TRP-channel VRL-1 (TRPV2) is a nonselective cation channel expressed by primary sensory neurons and non-neuronal tissues [Caterina, M.J., Rosen, T.A., Tominaga, M., Brake, A.J and Julius, D. (1999) Nature 398, 436-441]. It is one of the six members of the vanilloid-like TRP-channel family which is now termed the TRPV family [Montell, G., Birnbaumer, L., Flockerzi, V., Bindels, R.J., Brutford, E.A., Caterina, M.J., Clapham, D.E., Harteneck, C., Heller, S., Julius, D., Kojima, I., Mori, Y., Penner, R., Prawitt, D., Scharenberg, A.M., Schultz, G., Shimizu, N. and Zhu, M.X. (2002) Mol. Cell 2, 229-231]. As it is a temperature-gated channel, VRL-1 appears to be functionally related to VR1. In contrast to VR1, VRL-1 is activated at a higher temperature threshold and it does not respond to capsaicin or protons. Here we describe the expression of VRL-1 in the rat dorsal root ganglion-derived cell line F-11, a hybridoma of mouse neuroblastoma (N18TG2) and rat dorsal root ganglion cells. We found by RT-PCR that F-11 cells express not only the rat VRL-1, but also its mouse orthologue in a single cell. The F-11 parental cell line N18TG2 also expressed murine VRL-1. Due to its neuronal character, the DRG-derived F-11 cell line provides an experimental system for the study of VRL-1 biochemistry. However, one has to be aware that both the mouse and the rat protein are expressed simultaneously. Furthermore we cloned VRL-1 from rat brain and analyzed its glycosylation and localization in comparison to the endogenously expressed protein in F-11 cells. In contrast to the endogenous VRL-1 the overexpressed protein is glycosylated. Similar to VR1 the glycosylation is N-linked as shown by an deglycosylation assay. Immunofluorescence analysis of the endogenous VRL-1 in F-11 cells gives only weak signals in the cytoplasm whereas the overexpressed rat VRL-1 appears mainly at the plasma membrane.  相似文献   

19.
Herein we describe the isolation of a cDNA encoding a novel human Toll-like receptor (hTLR) that we term hTLR10. Human TLR10 contains 811 amino acid residues. Deduced amino acid sequence analysis reveals that like the other known hTLRs (hTLR1-9) it is characterized by a signal peptide followed by multiple leucine-rich repeats (LRRs), a cysteine-rich domain, a transmembrane sequence and a cytoplasmic domain homologous to that of the human interleukin-1 receptor. Phylogenetic analysis indicates that among all the hTLRs, hTLR10 is most closely related to hTLR1 and hTLR6; the overall amino acid identity is 50% and 49%, respectively. hTLR10 mRNA is most highly expressed in lymphoid tissues such as spleen, lymph node, thymus, and tonsil. Expression analysis of cell lines indicates a predominance in a variety of immune cell types. Thus, hTLR10 is preferentially expressed in tissues and cells involved in immune responses.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号