首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main virulence factor of Streptococcus pneumoniae is the capsule. The polysaccharides comprising this capsule are encoded by approximately 15 genes and differences in these genes result in different serotypes. The aim of this study was to investigate the sequence diversity of the capsular genes of serotypes 6A, 6B, 6C, 19A and 19F and to explore a possible effect of vaccination on variation and distribution of these serotypes in the Netherlands. The complete capsular gene locus was sequenced for 25 serogroup 6 and for 20 serogroup 19 isolates. If one or more genes varied in 10 or more base pairs from the reference sequence, it was designated as a capsular subtype. Allele-specific PCRs and specific gene sequencing of highly variable capsular genes were performed on 184 serogroup 6 and 195 serogroup 19 isolates to identify capsular subtypes. This revealed the presence of 6, 3 and a single capsular subtype within serotypes 6A, 6B and 6C, respectively. The serotype 19A and 19F isolates comprised 3 and 4 capsular subtypes, respectively. For serogroup 6, the genetic background, as determined by multi locus sequence typing (MLST) and multiple-locus variable number of tandem repeat analysis (MLVA), seemed to be closely related to the capsular subtypes, but this was less pronounced for serogroup 19 isolates. The data also suggest shifts in the occurrence of capsular subtypes within serotype 6A and 19A after introduction of the 7-valent pneumococcal vaccine. The shifts within these non-vaccine serotypes might indicate that these capsular subtypes are filling the niche of the vaccine serotypes. In conclusion, there is considerable DNA sequence variation of the capsular genes within pneumococcal serogroup 6 and 19. Such changes may result in altered polysaccharides or in strains that produce more capsular polysaccharides. Consequently, these altered capsules may be less sensitive for vaccine induced immunity.  相似文献   

2.
The polysaccharide capsule which surrounds bacterial species such as Haemophilus influenzae, Streptococcus pneumoniae, Neisseria meningitidis and Salmonella typhi is a potent virulence factor by protecting the bacteria from phagocytosis. The host responds with antibody production and specific antibodies plus complement binding to the capsule facilitate opsonization of the micro-organism, which is phagocytized and eliminated. Purified capsular polysaccharides elicit T-independent antibody responses without a memory function, but are often poorly immunogenic in infants where much of the invasive H. influenzae type b (Hib) and pneumococcal infections is seen. Therefore purified polysaccharides have found limited use as vaccines. However, covalent linkage of the capsular polysaccharide, or fractions thereof, to immunogenic carrier proteins creates glycoconjugates which are T-dependent antigens and which elicit antibodies also in infants and which prime for boosting either with the glycoconjugate or the capsular polysaccharide. In the last decade Hib glycoconjugate vaccines have been successfully introduced and in countries with very high immunization coverage the disease has been virtually eliminated and a decline of over 95% has been seen in countries with slightly lower vaccine rates. World-wide use of Hib glycoconjugate vaccines offers the possibility of elimination of invasive Hib disease. Pneumococcal (11 serotypes with coverage of approximately 85% of invasive disease), meningococcal (A, C, W 135, Y but not B) and S. typhi glycoconjugates are in advanced development and offer the prospect of being as successful as the Hib glycoconjugates.  相似文献   

3.
Pneumococcal Virulence Factors: Structure and Function   总被引:22,自引:0,他引:22       下载免费PDF全文
The overall goal for this review is to summarize the current body of knowledge about the structure and function of major known antigens of Streptococcus pneumoniae, a major gram-positive bacterial pathogen of humans. This information is then related to the role of these proteins in pneumococcal pathogenesis and in the development of new vaccines and/or other antimicrobial agents. S. pneumoniae is the most common cause of fatal community-acquired pneumonia in the elderly and is also one of the most common causes of middle ear infections and meningitis in children. The present vaccine for the pneumococcus consists of a mixture of 23 different capsular polysaccharides. While this vaccine is very effective in young adults, who are normally at low risk of serious disease, it is only about 60% effective in the elderly. In children younger than 2 years the vaccine is ineffective and is not recommended due to the inability of this age group to mount an antibody response to the pneumococcal polysaccharides. Antimicrobial drugs such as penicillin have diminished the risk from pneumococcal disease. Several pneumococcal proteins including pneumococcal surface proteins A and C, hyaluronate lyase, pneumolysin, autolysin, pneumococcal surface antigen A, choline binding protein A, and two neuraminidase enzymes are being investigated as potential vaccine or drug targets. Essentially all of these antigens have been or are being investigated on a structural level in addition to being characterized biochemically. Recently, three-dimensional structures for hyaluronate lyase and pneumococcal surface antigen A became available from X-ray crystallography determinations. Also, modeling studies based on biophysical measurements provided more information about the structures of pneumolysin and pneumococcal surface protein A. Structural and biochemical studies of these pneumococcal virulence factors have facilitated the development of novel antibiotics or protein antigen-based vaccines as an alternative to polysaccharide-based vaccines for the treatment of pneumococcal disease.  相似文献   

4.
Pneumococcal virulence factors: structure and function.   总被引:3,自引:0,他引:3  
M J Jedrzejas 《Microbiology and molecular biology reviews》2001,65(2):187-207 ; first page, table of contents
The overall goal for this review is to summarize the current body of knowledge about the structure and function of major known antigens of Streptococcus pneumoniae, a major gram-positive bacterial pathogen of humans. This information is then related to the role of these proteins in pneumococcal pathogenesis and in the development of new vaccines and/or other antimicrobial agents. S. pneumoniae is the most common cause of fatal community-acquired pneumonia in the elderly and is also one of the most common causes of middle ear infections and meningitis in children. The present vaccine for the pneumococcus consists of a mixture of 23 different capsular polysaccharides. While this vaccine is very effective in young adults, who are normally at low risk of serious disease, it is only about 60% effective in the elderly. In children younger than 2 years the vaccine is ineffective and is not recommended due to the inability of this age group to mount an antibody response to the pneumococcal polysaccharides. Antimicrobial drugs such as penicillin have diminished the risk from pneumococcal disease. Several pneumococcal proteins including pneumococcal surface proteins A and C, hyaluronate lyase, pneumolysin, autolysin, pneumococcal surface antigen A, choline binding protein A, and two neuraminidase enzymes are being investigated as potential vaccine or drug targets. Essentially all of these antigens have been or are being investigated on a structural level in addition to being characterized biochemically. Recently, three-dimensional structures for hyaluronate lyase and pneumococcal surface antigen A became available from X-ray crystallography determinations. Also, modeling studies based on biophysical measurements provided more information about the structures of pneumolysin and pneumococcal surface protein A. Structural and biochemical studies of these pneumococcal virulence factors have facilitated the development of novel antibiotics or protein antigen-based vaccines as an alternative to polysaccharide-based vaccines for the treatment of pneumococcal disease.  相似文献   

5.
Pneumonia is the leading cause of mortality in children in developing countries and is also the leading infectious cause of death in adults. The most important cause of pneumonia is the Gram-positive bacterial pathogen, Streptococcus pneumoniae, also known as the pneumococcus. It has thus become the leading vaccine-preventable cause of death and is a successful and diverse human pathogen. The development of conjugate pneumococcal vaccines has made possible the prevention of pneumococcal disease in infants, but has also elucidated aspects of pneumococcal biology in a number of ways. Use of the vaccine as a probe has increased our understanding of the burden of pneumococcal disease in children globally. Vaccination has also elucidated the clinical spectrum of vaccine-preventable pneumococcal infections; the identification of a biological niche for multiple pneumococcal serotypes in carriage and the differential invasiveness of pneumococcal serotypes; the impact of pneumococcal transmission among children on disease burden in adults; the role of carriage as a precursor to pneumonia; the plasticity of a naturally transformable pathogen to respond to selective pressure through capsular switching and the accumulation of antibiotic-resistance determinants; and the role of pneumococcal infections in hospitalization and mortality associated with respiratory viral infections, including both seasonal and pandemic influenza. Finally, there has been a recent demonstration that pneumococcal pneumonia in children may be an important cause of hospitalization for those with underlying tuberculosis.  相似文献   

6.
Streptococcus pneumoniae cell wall and cytoplasmic proteins contribute directly to pathogenesis of pneumococcal infection. Protective effect of pneumococcal proteins such as pneumolysin (Ply), muramylamidase (LytA) and pneumococcal surface protein A (PspA). There is discussion in the literature about development of conjugared pneumococcal vaccines, which should include polysaccharides of invasive serotypes of pneumococci as well as protein antigens of this pathogen, for prevention of infections caused by S. pneumoniae. Researches suggest that such hybrid vaccines will be effective, first of all, for children < 2 years of age and elderly > 65 years old because immune response to polysaccharide vaccines either do not form at all or insufficient for prevention of pneumococcal infection.  相似文献   

7.
A simple and sensitive gas chromatographic method was designed for quantitative analysis of Streptococcus pneumoniae capsular polysaccharides, activated polysaccharides, and polysaccharide conjugates. Pneumococcal serotypes 1, 3, 4, 5, 6A, 6B, 7F, 9V, 14, 18C, 19A, 19F, and 23F polysaccharide or conjugate were subjected to methanolysis in 3N hydrochloric acid in methanol followed by re-N-acetylation and trimethylsilylation. Derivatized samples were chromatographed and detected using gas chromatography with mass selective detector. Gas chromatographic results were compared with colorimetric values with agreement of 92 to 123% over the range of all samples tested. Monosaccharides released during methanolysis included hexoses, uronic acids, 6-deoxy-hexoses, amino sugars, and alditols. Quantitative recovery of monosaccharides was achieved for all serotypes by the use of a single methanolysis, derivatization, and chromatography procedure. Response factors generated from authentic monosaccharide standards were used for quantitation of pneumococcal polysaccharides and conjugates with confirmation of peak assignments by retention time and mass spectral analysis. This method allows saccharide quantitation in multivalent pneumococcal vaccine intermediates and final drug products with low-level detection (10 pg) and peak purity.  相似文献   

8.
Jones C 《Carbohydrate research》2005,340(6):1097-1106
Glycoconjugate vaccines based on the capsular polysaccharides (CPSs) from Staphylococcus aureus serotypes 5 and 8 conjugated to genetically detoxified recombinant exoprotein A (rEPA) from Pseudomonas aeruginosa have been shown, in Phase 3 clinical trials, to elicit a strong bactericidal immune response in end-stage renal disease patients. Such vaccines have the potential to reduce morbidity and mortality due to methicillin-resistant Staphylococcus aureus (MRSA), a major cause of hospital-acquired infection. The serotype 5 and 8 polysaccharides have been fully characterized by NMR spectroscopy and full structural analyses carried out. Published structures were found incorrect and the revised structures of the repeat units of the two polysaccharides are: [carbohydrate structure: see text]. Resonances indicative of the presence of peptidoglycan were observed in the spectra of both CPSs, consistent with reports that the CPS is covalently linked to peptidoglycan.  相似文献   

9.
The problem of pneumococcal infections is pressing for the whole world. Existing vaccines based only on pneumococci polysaccharide antigens or polysaccharide antigens and diphtherial anatoxin are not capable of protecting from all serotypes of the microorganism. Reasonability of creation of pneumococcal vaccine based on surface proteins of Streptococcus pneumoniae is discussed in the literature. One of such key pneumococcal proteins is pneumococcal surface protein A (PSPA), because it is detected in all the S. pneumoniae strains, has cross activity and switches B-cell immune response to T-cell. Currently the development of conjugated vaccine based on surface proteins and capsule polysaccharides of pneumococcus seems promising.  相似文献   

10.
Experimental human pneumococcal carriage models for vaccine research   总被引:1,自引:0,他引:1  
Pneumococcal conjugate vaccines have had unprecedented success in controlling vaccine-type invasive pneumococcal disease. As serotype replacement and the complexity of designing vaccines to multiple capsular polysaccharides ultimately pose a threat to these vaccines, the development of alternative protein vaccines is important. Protein vaccines offer the promise of extended serotype coverage, reduced cost, and improved protection against otitis media and pneumococcal pneumonia. As placebo-controlled trials are not currently ethically justifiable, human pneumococcal challenge models using prevention of carriage as a test endpoint offer an attractive link between preclinical studies and clinical efficacy trials. Experimental human pneumococcal carriage studies offer a means of describing mechanisms of protection against carriage and a clinical tool to choose between vaccine candidates.  相似文献   

11.
12.
Base hydrolysis of phosphodiester bonds in pneumococcal polysaccharides   总被引:1,自引:0,他引:1  
A comprehensive study of the base hydrolysis of all phosphodiester bond-containing capsular polysaccharides of the 23-valent pneumococcal vaccine is described here. Capsular polysaccharides from serotypes 6B, 10A, 17F, 19A, 19F, and 20 contain a phosphodiester bond that connects the repeating units in these polysaccharides (also referred to as backbone phosphodiester bonds), and polysaccharides from serotypes 11A, 15B, 18C, and 23F contain a phosphodiester bond that links a side chain to their repeating units. Molecular weight measurements of the polysaccharides, using high performance size exclusion chromatography with tandem multiangle laser light scattering and refractive index detection, was used to evaluate the kinetics of hydrolysis. The measurement of molecular weight provides a high degree of sensitivity in the case of small extents of reaction, thus allowing reliable measurements of the kinetics over short times. Pseudo-first-order rate constants for these polysaccharides were estimated using a simple model that accounts for the polydispersity of the starting sample. It was found that the relative order of backbone phosphodiester bond instability due to base hydrolysis was 19A > 10A > 19F > 6B > 17F, 20. Degradation of side-chain phosphodiester bonds was not observed, although the high degree of sensitivity in measurements is lost in this case, due to the low contribution of the side chains to the total polysaccharide molecular weight. In comparison with literature data on pneumococcal polysaccharide 6A, 19A was found to be the more labile, and hence appears to be the most labile pneumococcal polysaccharide studied to date. The rate of hydrolysis increased at higher pH and in the presence of divalent cation, but the extent was lower than expected based on similar data on RNA. Finally, the differences in the phosphodiester bond stabilities were analyzed by considering stereochemical factors in these polysaccharides. These results also provide a framework for evaluation of molecular integrity of phosphodiester-bond-containing polysaccharides in different solution conditions.  相似文献   

13.
纯化的6B、18C血清型肺炎链球菌荚膜多糖用生化试验和免疫学试验检测分析后再用一维氢谱核磁共振波谱(1H-NMR)法分析。生化检测其相应多糖的主要化学基团含量是否合格,免疫学检测旨在了解多糖纯化工艺是否影响了多糖的抗原活性,并间接佐证纯化多糖的生化特性是否正确。在此基础上进行1H-NMR分析,可以对纯化多糖的特性有进一步的了解。结果表明,常规的生化检测试验和免疫学检测试验并联合应用1H-NMR分析法后可更好地控制纯化肺炎链球菌荚膜多糖的质量。  相似文献   

14.
Pneumococcus is the leading cause of bacterial illness in children worldwide. The development, clinical evaluation, and postlicensure impact of the pneumococcal CRM(197) protein conjugate vaccine, PCV13, (Prevnar 13?) builds upon the excellent safety and substantial effectiveness of PCV7 (Prevnar?) in preventing pneumococcal disease in children. PCV13 adds pneumococcal serotypes 1, 3, 5, 6A, 7F, and 19A to serotypes 4, 6B, 9V, 14, 18C, 19F, 23F in PCV7 to provide comprehensive coverage for over 85% of epidemiologically important pneumococcal serotypes in the United States and throughout the world. PCV13 development required demonstration of immunologic responses to the 13 serotypes contained in the vaccine that were noninferior to the responses elicited by PCV7, and demonstration of a satisfactory safety profile. Studies were also performed to demonstrate compatibility with other childhood vaccines. Now licensed in many countries worldwide, PCV13 shows significant promise for expanded protection against pneumococcal disease in children.  相似文献   

15.
Streptococcus pneumoniae is a leading cause of some diseases such as pneumonia, sepsis, and meningitis mostly in children less than 5?years of age. Presently, two types of pneumococcal vaccine are available on the market: polysaccharide vaccines (PPV) that are based on capsular polysaccharides of at least 92 different serotypes, and protein-conjugated polysaccharide vaccine (PCV). The PPVs such as PPV23 do not stimulate efficient protective immunity in children under 2?years old, while the PCVs such as PCV7, PCV10, and PCV13 that cover 7, 10, and 13 serotypes, respectively, highly protect newborns, but have some disadvantages such as complications in manufacturing, costly production, and also requires refrigeration and multiple injections. Epitope-based vaccines, including varied mixtures of conserved virulence proteins, are a promising alternative to the existing capsular antigen vaccines. In this study, it has been tried to design an efficient subunit vaccine in order to elicit both CTL and HTL responses. The immunodominant epitopes from highly protective antigens of S. pneumoniae (PspA, CbpA, PiuA, and PhtD) were selected from different databanks, such as IEDB, PROPRED, RANKPEP, and MHCPRED. The PspA and CbpA were chosen as CTL epitope stimulants, and PhtD and PiuA were defined as helper epitopes. Because of low immunogenicity of epitope vaccines, PorB protein as a TLR2 agonist was employed to increase the immunogenicity of the vaccine. All the peptide segments were fused to each other by proper linkers, and the physicochemical, structural, and immunological characteristics of the construct were also evaluated. To achieve a high-quality 3?D structure of the protein, modeling, refinement, and validation of the final construct were done. Docking and molecular dynamics analyses demonstrated an appropriate and stable interaction between the vaccine and TLR2 during the simulation period. The computational studies suggested the designed vaccine as a novel construct, capable to elicit efficient humoral and cellular immunities, which are crucial for protection against S. pneumoniae.

Communicated by Ramaswamy H. Sarma  相似文献   


16.
Streptococcus pneumoniae (the pneumococcus) produces 1 of 91 capsular polysaccharides (CPS) that define the serotype. The cps loci of 88 pneumococcal serotypes whose CPS is synthesized by the Wzy-dependent pathway were compared with each other and with additional streptococcal polysaccharide biosynthetic loci and were clustered according to the proportion of shared homology groups (HGs), weighted for the sequence similarities between the genes encoding the shared HGs. The cps loci of the 88 pneumococcal serotypes were distributed into eight major clusters and 21 subclusters. All serotypes within the same serogroup fell into the same major cluster, but in six cases, serotypes within the same serogroup were in different subclusters and, conversely, nine subclusters included completely different serotypes. The closely related cps loci within a subcluster were compared to the known CPS structures to relate gene content to structure. The Streptococcus oralis and Streptococcus mitis polysaccharide biosynthetic loci clustered within the pneumococcal cps loci and were in a subcluster that also included the cps locus of pneumococcal serotype 21, whereas the Streptococcus agalactiae cps loci formed a single cluster that was not closely related to any of the pneumococcal cps clusters.  相似文献   

17.
刘小宇  陈敏 《微生物学报》2022,62(2):446-457
肺炎链球菌(Streptococcus pneumoniae)是引起多种疾病的主要病原体,包括侵袭性感染(如败血症和脑膜炎菌血症),以及更常见的粘膜部位感染(如肺炎、中耳炎和鼻窦炎).根据肺炎链球菌表面荚膜多糖结构的不同可以分成不同的血清型,至今已经鉴定出98种,其中有20种具有高毒力.为了预防肺炎链球菌感染,已研制出...  相似文献   

18.

Background

Since the use of pneumococcal conjugate vaccines PCV7 and PCV13 in children became widespread, invasive pneumococcal disease (IPD) has dramatically decreased. Nevertheless, there has been a rise in incidence of Streptococcus pneumoniae non-vaccine serotypes (NVT) colonising the human nasopharynx. Nasopharyngeal colonisation, an essential step in the development of S. pneumoniae-induced IPD, is associated with biofilm formation. Although the capsule is the main pneumococcal virulence factor, the formation of pneumococcal biofilms might, in fact, be limited by the presence of capsular polysaccharide (CPS).

Methodology/Principal Findings

We used clinical isolates of 16 emerging, non-PCV13 serotypes as well as isogenic transformants of the same serotypes. The biofilm formation capacity of isogenic transformants expressing CPSs from NVT was evaluated in vitro to ascertain whether this trait can be used to predict the emergence of NVT. Fourteen out of 16 NVT analysed were not good biofilm formers, presumably because of the presence of CPS. In contrast, serotypes 11A and 35B formed ≥45% of the biofilm produced by the non-encapsulated M11 strain.

Conclusions/Significance

This study suggest that emerging, NVT serotypes 11A and 35B deserve a close surveillance.  相似文献   

19.

Background

Even though the pathogenicity and invasiveness of pneumococcus largely depend on capsular types, the impact of serotypes on post-viral pneumococcal pneumonia is unknown.

Methods and Findings

This study was performed to evaluate the impact of capsular serotypes on the development of pneumococcal pneumonia after preceding respiratory viral infections. Patients with a diagnosis of pneumococcal pneumonia were identified. Pneumonia patients were divided into two groups (post-viral pneumococcal pneumonia versus primary pneumococcal pneumonia), and then their pneumococcal serotypes were compared. Nine hundred and nineteen patients with pneumococcal pneumonia were identified during the study period, including 327 (35.6%) cases with post-viral pneumococcal pneumonia and 592 (64.4%) cases with primary pneumococcal pneumonia. Overall, serotypes 3 and 19A were the most prevalent, followed by serotypes 19F, 6A, and 11A/11E. Although relatively uncommon (33 cases, 3.6%), infrequently colonizing invasive serotypes (4, 5, 7F/7A, 8, 9V/9A, 12F, and 18C) were significantly associated with preceding respiratory viral infections (69.7%, P<0.01). Multivariate analysis revealed several statistically significant risk factors for post-viral pneumococcal pneumonia: immunodeficiency (OR 1.66; 95% CI, 1.10–2.53), chronic lung diseases (OR 1.43; 95% CI, 1.09–1.93) and ICI serotypes (OR 4.66; 95% CI, 2.07–10.47).

Conclusions

Infrequently colonizing invasive serotypes would be more likely to cause pneumococcal pneumonia after preceding respiratory viral illness, particularly in patients with immunodeficiency or chronic lung diseases.  相似文献   

20.
Streptococcus pneumoniae is a major cause of morbidity and mortality worldwide. The existence of approximately 90 antigenically distinct capsular serotypes has greatly complicated the development of an effective pneumococcal vaccine. Virulence-associated proteins common and conserved among all capsular types now represent the best strategy to combat pneumococcal infections. PiuA and PiaA are the lipoprotein components of two pneumococcal iron ABC transporters and are required for full virulence in mouse models of infection. Here we describe a study of the distribution and genetic diversity of PiuA and PiaA within typical and atypical S. pneumoniae, Streptococcus oralis, and Streptococcus mitis strains. The genes encoding both PiuA and PiaA were present in all typical pneumococci tested, (covering 20 and 27 serotypes, respectively). The piuA gene was highly conserved within the typical pneumococci (0.3% nucleotide divergence), but was also present in "atypical" pneumococci and the closely related species S. mitis and S. oralis, showing up to 10.4% nucleotide divergence and 7.5% amino acid divergence from the typical pneumococcal alleles. Conversely, the piaA gene was found to be specific to typical pneumococci, 100% conserved, and absent from the oral streptococci, including isolates of S. mitis known to possess pneumolysin and autolysin. These are desirable qualities for a vaccine candidate and as a diagnostic tool for S. pneumoniae.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号