共查询到20条相似文献,搜索用时 15 毫秒
1.
E S Alnemri A B Maksymowych N M Robertson G Litwack 《The Journal of biological chemistry》1991,266(27):18072-18081
The full-length human renal mineralocorticoid receptor (hMR) has been overproduced in Spodoptera frugiperda (Sf9) insect cells using baculovirus-mediated expression. The overproduced hMR binds aldosterone with high affinity (Kd = 1.36 nM) and has high affinity for cortisol, cortexolone, and progesterone. Immunoprecipitation and immunoblot analysis of the recombinant hMR with MR-specific antibodies reveal three major protein bands with molecular masses of 115, 119, and 125 kDa. hMR isoforms show maximal accumulation at 48 h post-infection with the recombinant baculovirus. Maximal aldosterone binding was detected at 24 h rather than at 48 h post-infection, suggesting that the assembly of hMR monomers into the nonactivated steroid-binding receptor complexes and/or their stability deteriorates after 24 h post-infection. It is estimated by specific aldosterone binding that 1.2 x 10(6) hMR molecules are expressed per Sf9 cell (equivalent to 7 pmol/mg of cytosolic protein) at 24 h post-infection. 5-Fold more receptor molecules/cell are expressed but not detected by steroid binding at 48 h post-infection as determined by immunoblot analysis. Using the MR-specific H10E anti-idiotypic monoclonal antibody, immunoprecipitation of cytosol from recombinant baculovirus-infected Sf9 cells pulse-labeled with 32Pi demonstrated for the first time that the recombinant hMR is highly phosphorylated. The hMR is expressed as 9-10 S oligomeric complexes (Stokes radii approximately 67-85 A) that are slightly heavier than the unactivated glucocorticoid receptor and can be converted to smaller 4 S receptor monomers (Stokes radii approximately 25-55 A) by elevated temperature, pH, and ionic strength. Unlike the glucocorticoid receptor, the oligomeric hMR complex can bind DNA-cellulose without prior activation. Finally, indirect immunofluorescence demonstrated that the hMR is expressed primarily as a cytoplasmic protein that can be induced to translocate to the nucleus upon treatment with hormone. 相似文献
2.
Rat lung possesses the mineralocorticoid receptor. 总被引:1,自引:0,他引:1
Lung cytosol from male, adrenalectomized rats was screened for the mineralocorticoid receptor (MCR) by a polyclonal antiserum raised in the rabbit against rat renal antigen. Western blot analysis revealed a single 98 kDa band, like the MCR purified biochemically. The MCR could also be photolabelled for the first time by 3H-R 5020 in this very 98 kDa region that was displaced by RU 26752 specific to MCR. Immune IgG was able to precipitate the MCR-3H-RU 26752 complex, and to displace the same to high molecular weight regions during gel permeation chromatography on Sephacryl columns. Thus, MCR mediated actions need to be redefined. Furthermore, the technique of photochemical labelling forms a novel tool to assess MCR specificity, and to dissect its structure and function. 相似文献
3.
D Armanini M Wehling L Da Dalt M Zennaro U Scali U Keller C Pratesi F Mantero U Kuhnle 《The Journal of steroid biochemistry and molecular biology》1991,40(1-3):363-365
Pseudohypoaldosteronism is a rare inherited disease characterized by renal salt loss, hyperkalemia and metabolic acidosis despite highly elevated aldosterone values. We previously reported absent or reduced numbers of mineralocorticoid receptors in mononuclear leukocytes and defective effector mechanism as shown by no response in vitro to the incubation of aldosterone in terms of intracellular electrolyte content. We have studied the inheritance of this disorder in ten families and found two different kinds of inheritance: autosomal recessive--often in interrelated families--and autosomal dominant in unrelated families. Parallel studies in the families with the autosomal dominant form of inheritance demonstrated in addition that the effector mechanism of aldosterone is impaired in vitro both in the affected patients and in the carrier relatives characterized by a low number of mineralocorticoid receptors. 相似文献
4.
Modulators are proposed to be novel ether aminophosphoglycerides that stabilize unoccupied and occupied glucocorticoid receptor steroid binding and inhibit glucocorticoid receptor complex activation. Two isoforms, modulator 1 and modulator 2, have been purified from rat liver cytosol [Bodine, P.V., & Litwack, G. (1990) J. Biol. Chem. 265, 9544-9554]. Since the mineralocorticoid receptor is relatively resistant to activation, modulator's effect on rat distal colon mineralocorticoid receptor function was examined. Warming of unoccupied receptor decreased residual specific [3H]aldosterone binding by 86 +/- 2%. Both modulator isoforms completely prevented this destabilization with Km's of 2 +/- 1 microM modulator 1 and 24 +/- 5 microM modulator 2. Warming of occupied mineralocorticoid receptors decreased [3H]aldosterone binding by 56 +/- 3%. Modulator only partially stabilized occupied receptor binding with Km's of 10 +/- 2 microM modulator 1 and 68 +/- 8 microM modulator 2. Modulator inhibited receptor activation with Km's of 3 +/- 1 microM modulator 1 and 33 +/- 10 microM modulator 2. Double-reciprocal analysis showed linear kinetics, and mixing modulator isoforms together had additive effects on unoccupied and occupied receptor steroid binding stabilization and activation inhibition. Colon cytosol contained a low molecular weight, heat-stable factor(s) which inhibited receptor activation and stabilized occupied receptor steroid binding. Molybdate completely stabilized unoccupied mineralocorticoid receptor steroid binding and inhibited activation with half-maximal effects at 3-4 mM but only stabilized occupied receptor binding by approximately 40%. These data indicate that (i) apparent physiologic concentrations of modulator stabilize mineralocorticoid receptor steroid binding and inhibit receptor activation, (ii) an aldosterone-responsive tissue contains a modulator-like activity, and (iii) molybdate mimics the effects of modulator.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
5.
6.
7.
8.
Norma Morrison Stephen B. Harrap Jeffrey L. Arriza Elizabeth Boyd J. Michael Connor 《Human genetics》1990,85(1):130-132
Summary The gene for human mineralocorticoid receptor (hMR), previously mapped to chromosome 4, has been further localized to 4q31.1 by in situ hybridization using a biotinylated 3.75kb human cDNA clone encoding the primary amino acid sequence of hMR as a probe. Preliminary comparative mapping studies in orangutan (Pongo pygmaeus) suggest localization of the probe to the long arm of chromosome 3. 相似文献
9.
10.
11.
Anny Souque Jerome Fagart Brigitte Couette Marie-Edith Rafestin-Oblin 《The Journal of steroid biochemistry and molecular biology》1996,57(5-6):315-321
To investigate the role of sulfhydryl groups in the interaction of agonists and antagonists with the human mineralocorticoid receptor (hMR) the effect of methyl methanethiosulfonate (MMTS) on free and liganded-hMR was examined. hMR was expressed in insect cells (Sf9) using the baculovirus system. Treatment of cytosol with MMTS at 4°C inhibited the binding to hMR of both [3H]aldosterone and [3H]RU26752 (a synthetic aldosterone antagonist). At 4°C, the sensitivity to MMTS of the liganded-hMR complexes was dependent upon the nature of the ligands: agonists (aldosterone, corticosterone and cortisol) rendered the hMR resistant to MMTS, whereas antagonists (progesterone and RU26752) did not protect the receptor against MMTS inactivation. Analysis of the dose- and time-dependent effects of MMTS revealed that the free hMR and the RU26752-hMR complexes displayed a similar sensitivity to MMTS and that MMTS increased the dissociation of RU26752 from the hMR. At 4°C the aldosterone-hMR complexes were not affected by MMTS treatment, whereas at 20°C MMTS increased the dissociation of aldosterone from hMR. This effect was unrelated to the dissociation of hsp90 from hMR, because the sensitivity of the aldosterone-hMR complexes to MMTS remained unchanged after covalent linkage between hsp90 and the receptor. Our results suggest that agonists and antagonists modify the receptor conformation in distinct ways that render cysteine residues of the ligand binding domain more or less accessible to the MMTS action. 相似文献
12.
Neel DA Brown ML Lander PA Grese TA Defauw JM Doti RA Fields T Kelley SA Smith S Zimmerman KM Steinberg MI Jadhav PK 《Bioorganic & medicinal chemistry letters》2005,15(10):2553-2557
Syntheses and SAR studies of 3,3-bisaryloxindole analogues provided potent mineralocorticoid receptor (MR) antagonists that were selective over other steroid nuclear hormone receptors. 相似文献
13.
Rogerson FM Brennan FE Fuller PJ 《The Journal of steroid biochemistry and molecular biology》2003,85(2-5):389-396
The molecular mechanisms by which aldosterone regulates epithelial sodium transport in the distal colon and the distal nephron remain to be fully elucidated. Aldosterone acts via the mineralocorticoid receptor (MR) to induce the expression of genes whose products are involved in sodium transport. The structural basis of MR interactions with aldosterone has been examined by creating chimeras of the MR and the closely related glucocorticoid receptor; we have exploited differences in ligand-binding specificity to determine the region(s) of the MR that confer aldosterone-binding specificity. These findings have been related to a three-dimensional model of the MR based on the crystal structure of the progesterone receptor. These studies have been extended to include the characterisation of interactions between the N- and C-termini of the MR. We have characterised six genes that are regulated in vivo in the distal colon and/or kidney of the rat that are directly and acutely regulated by aldosterone administration: the three subunits of the epithelial sodium channel, serum and glucocorticoid-induced kinase, channel-inducing factor and K-ras2A. These studies provide insights into the molecular pathways that mediate aldosterone-induced amiloride-sensitive epithelial sodium transport. 相似文献
14.
15.
16.
17.
Fifteen years ago Wehling and colleagues showed unequivocal rapid effects of aldosterone, neither mimicked by cortisol nor blocked by spironolactone, and postulated that these nongenomic effects are mediated via a membrane receptor distinct from the classical mineralocorticoid receptor (MR). Several recent studies have challenged this view. Alzamora et al. showed 11beta-hydroxysteroid denydrogenase 1 and 2 (11betaHSD1, 11betaHSD2) expression in human vascular smooth muscle cells, and that aldosterone rapidly raises intracellular pH via sodium-hydrogen exchange; cortisol is without effect and spironolactone does not block the aldosterone response. When, however, 11betaHSD activity is blocked by carbenoxolone, cortisol shows agonist effects indistinguishable from aldosterone; in addition, the effect of both aldosterone and cortisol is blocked by the open E-ring, water soluble MR antagonist RU28318. In rabbit cardiomyocytes, aldosterone increases intracellular [Na+] by activating Na+/K+/2Cl- cotransport, with secondary effects on Na+/K+ pump activity. Pump current rises approximately 10-fold within 15', is unaffected by actinomycin D or the MR antagonist canrenone, and not elevated by cortisol. Pump current is, however, completely blocked by the open E-ring, water soluble MR antagonist K+ canrenoate and stoichometrically by cortisol. PKCepsilon agonist peptides (but not PKCalpha, PKCdelta or scrambled PKCepsilon peptides) mimic the effect of aldosterone, and PKCepsilon antagonist peptides block the effect. Very recently, cortisol has been shown to mimic the effect of aldosterone when cardiomyocyte redox state is altered by the installation of oxidized glutathione (GSSG) via the pipet, paralleling the effect of carbenoxolone on vascular smooth cells and suggesting possible pathophysiologic roles for an always glucocorticoid occupied MR. 相似文献
18.
Cardiac failure is a major health problem with increasing incidence due to aging of the population. Studies in both experimental animals and humans have suggested that aldosterone excess may have deleterious effects on cardiac function. In order to generate a novel screening system for the identification of aldosterone antagonists, we expressed the human mineralocorticoid receptor (MR) and the human glucocorticoid receptor (GR), respectively, in the fission yeast Schizosaccharomyces pombe. Reporter plasmids containing two hormone-responsive elements upstream of a fission yeast minimal promotor and either a lacZ gene (for quantification) or a neomycin gene (for survival screening) were constructed and cotransformed into fission yeast strains with expression plasmids for MR or GR. The functionality of the reporter systems was then tested using physiological ligands of both receptors as well as known inhibitors. Transactivating activity of MR could be stimulated by aldosterone, 11-deoxycorticosterone, 11-deoxycortisol, cortisol, cortisone, and spironolactone, but not by progesterone, while GR activity was stimulated by cortisol and cortisone, but also not by progesterone. Taken together, we have succeeded in establishing fission yeast-based screening systems that allow the identification of MR- or GR-interacting compounds. Moreover, our data show that after expression in fission yeast both receptors did not differentiate between steroids with different configurations at positions 11beta, 17 and 18. This finding suggests that only recognition of C-21 substituents may be accomplished by the receptor proteins alone, while the physiologically important selectivity towards other positions of the steroid ligand depends on other factors which are not conserved from fission yeast to man. 相似文献
19.
Ohtani T Ohta M Yamamoto K Mano T Sakata Y Nishio M Takeda Y Yoshida J Miwa T Okamoto M Masuyama T Nonaka Y Hori M 《American journal of physiology. Regulatory, integrative and comparative physiology》2007,292(2):R946-R954
Cardiac aldosterone levels have not been evaluated in diastolic heart failure (DHF), and its roles in this type of heart failure remain unclear. This study aimed to detect cardiac aldosterone by use of a liquid chromatographic-mass spectrometric method and to assess the effects of mineralocorticoid receptor blockade on hypertensive DHF. Dahl salt-sensitive rats fed 8% NaCl diet from 7 wk (hypertensive DHF model) were divided at 13 wk into three groups: those treated with subdepressor doses of eplerenone (12.5 or 40 mg x kg(-1) x day(-1)) and an untreated group. Dahl salt-sensitive rats fed 0.3% NaCl diet served as controls. Cardiac aldosterone was detected in the DHF rats but not in the control rats, with increased ventricular levels of mineralocorticoid receptor. Cardiac levels of 11-deoxycorticosterone, corticosterone, and 11-dehydrocorticosterone were not different between the control and DHF rats, but the tissue level of corticosterone that has an affinity to mineralocorticoid receptor was 1,000 times as high as that of aldosterone. Aldosterone synthase activity and CYP11B2 mRNA were undetectable in the ventricular tissue of the DHF rats. Administration of eplerenone attenuated ventricular hypertrophy, ventricular fibrosis, myocardial stiffening, and relaxation abnormality, leading to the prevention of overt DHF. In summary, the myocardial aldosterone level increased in the DHF rats. However, its value was extremely low compared with corticosterone, and no evidence for enhancement of intrinsic myocardial aldosterone production was found. The upregulation of mineralocorticoid receptor may play a central role in the pathogenesis of DHF, and blockade of mineralocorticoid receptor is likely an effective therapeutic regimen of DHF. 相似文献
20.
E. Ronald de Kloet Win Sutanto Dsire T.W.M. van den Berg Margaret P. Carey Aernout D. van Haarst C. Diane Hornsby Onno C. Meijer Nynke Y. Rots Melly S. Oitzl 《The Journal of steroid biochemistry and molecular biology》1993,47(1-6):183-190
Mineralocorticoid receptors (MRs) in neurons of the anterior hypothalamus and the periventricular brain regions mediate aldosterone-selective actions on sodium hemeostasis, salt appetite and cardiovascular regulation. Corticosterone is not effective in these neurons, possibly because it is enzymatically inactivated. However, MRs in limbic brain regions, notably in the hippocampal neurons, do already respond to very low concentrations of both corticosterone and aldosterone. The MR-mediated effects stabilize neuronal transmission and appear critical for neuronal integrity of a sub-region of the hippocampus: the dentate gyrus. Higher concentrations of corticosterone induced by stress and the circadian rise progressively activate the lower affinity glucocorticoid receptors (GRs), which in coordination with MR-mediated actions then facilitate adaptive processes required for recovery of homeostasis. It is postulated that this balanced MR- and GR-mediated action of corticosterone is of critical importance for regulation of the stress response and behavioural adaptation. 相似文献