首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Journal of biomechanics》2014,47(16):3847-3854
A significant challenge in cartilage tissue engineering is to successfully culture functional tissues that are sufficiently large to treat osteoarthritic joints. Transport limitations due to nutrient consumption by peripheral cells produce heterogeneous constructs with matrix-deficient centers. Incorporation of nutrient channels into large constructs is a promising technique for alleviating transport limitations, in conjunction with simple yet effective methods for enhancing media flow through channels. Cultivation of cylindrical channeled constructs flat in culture dishes, with or without orbital shaking, produced asymmetric constructs with poor tissue properties. We therefore explored a method for exposing the entire construct surface to the culture media, while promoting flow through the channels. To this end, chondrocyte-seeded agarose constructs (10 mm, 2.34 mm thick), with zero or three nutrient channels (1 mm), were suspended on their sides in custom culture racks and subjected to three media stirring modes for 56 days: uniaxial rocking, orbital shaking, or static control. Orbital shaking led to the highest construct EY, sulfated glycosaminoglycan (sGAG), and collagen contents, whereas rocking had detrimental effects on sGAG and collagen versus static control. Nutrient channels increased EY as well as sGAG homogeneity, and the beneficial effects of channels were most marked in orbitally shaken samples. Under these conditions, the constructs developed symmetrically and reached or exceeded native levels of EY (~400 kPa) and sGAG (~9%/ww). These results suggest that the cultivation of channeled constructs in culture racks with orbital shaking is a promising method for engineering mechanically competent large cartilage constructs.  相似文献   

2.
The limited availability of fresh osteochondral allograft tissues necessitates the use of banking for long-term storage. A vitrification solution containing a 55% cryoprotectant formulation, VS55, previously studied using rabbit articular cartilage, was evaluated using porcine articular cartilage. Specimens ranging from 2 to 6 mm in thickness were obtained from 6 mm distal femoral cartilage cores and cryopreserved by vitrification or freezing. The results of post-rewarming viability assessments employing alamarBlue demonstrated a large decrease (p < 0.001) in viability in all three sizes of cartilage specimen vitrified with VS55. This is in marked contrast with prior experience with full thickness, 0.6 mm rabbit cartilage. Microscopic examination following cryosubstitution confirmed ice formation in the chondrocytes of porcine cartilage vitrified using VS55. Experiments using a more concentrated vitrification formulation (83%), VS83, showed a significant treatment benefit for larger segments of articular cartilage. Differences between the VS55 and the VS83 treatment groups were significant at p < 0.001 for 2 mm and 4 mm plugs, and at p < 0.01 for full thickness, 6 mm plugs. The percentage viability in fresh controls, compared to VS55 and VS83, was 24.7% and 80.7% in the 2 mm size group, 18.2% and 55.5% in the 4 mm size group, and 5.2% and 43.6% in the 6 mm group, respectively. The results of this study continue to indicate that vitrification is superior to conventional cryopreservation with low concentrations of dimethyl sulfoxide by freezing for cartilage. The vitrification technology presented here may, with further process development, enable the long-term storage and transportation of living cartilage for repair of human articular surfaces.  相似文献   

3.
Articular cartilage injuries are a common source of joint pain and dysfunction. We hypothesized that pulsed electromagnetic fields (PEMFs) would improve growth and healing of tissue-engineered cartilage grafts in a direction-dependent manner. PEMF stimulation of engineered cartilage constructs was first evaluated in vitro using passaged adult canine chondrocytes embedded in an agarose hydrogel scaffold. PEMF coils oriented parallel to the articular surface induced superior repair stiffness compared to both perpendicular PEMF (p = .026) and control (p = .012). This was correlated with increased glycosaminoglycan deposition in both parallel and perpendicular PEMF orientations compared to control (p = .010 and .028, respectively). Following in vitro optimization, the potential clinical translation of PEMF was evaluated in a preliminary in vivo preclinical adult canine model. Engineered osteochondral constructs (∅ 6 mm × 6 mm thick, devitalized bone base) were cultured to maturity and implanted into focal defects created in the stifle (knee) joint. To assess expedited early repair, animals were assessed after a 3-month recovery period, with microfracture repairs serving as an additional clinical control. In vivo, PEMF led to a greater likelihood of normal chondrocyte (odds ratio [OR]: 2.5, p = .051) and proteoglycan (OR: 5.0, p = .013) histological scores in engineered constructs. Interestingly, engineered constructs outperformed microfracture in clinical scoring, regardless of PEMF treatment (p < .05). Overall, the studies provided evidence that PEMF stimulation enhanced engineered cartilage growth and repair, demonstrating a potential low-cost, low-risk, noninvasive treatment modality for expediting early cartilage repair.  相似文献   

4.
Recent works have shown that mechanical loading can alter the metabolic activity of chondrocytes cultured in 3D scaffolds. In this study we determined whether the stage of development of engineered cartilaginous constructs (expanded adult human articular chondrocytes/Polyactive foams) regulates the effect of dynamic compression on glycosaminoglycan (GAG) metabolism. Construct maturation depended on the culture time (3-14 days) and the donor (4 individuals). When dynamic compression was subsequently applied for 3 days, changes in GAG synthesized, accumulated, and released were significantly positively correlated to the GAG content of the constructs prior to loading, and resulted in stimulation of GAG formation only in the most developed tissues. Conversely, none of these changes were correlated with the expression of collagen type II mRNA, indicating that the response of chondrocytes to dynamic compression does not depend directly upon the stage of cell differentiation, but rather on the extracellular matrix surrounding the cells.  相似文献   

5.
生物可降解材料构建组织工程软骨的研究进展   总被引:3,自引:0,他引:3  
关节软骨修复困难,目前临床上治疗关节软骨损伤难以达到满意的效果。组织工程学的兴起为其提供了新的选择。本文介绍了组织工程软骨的发展历史,重点叙述了各种天然支架材料、人工合成材料、复合材料及纳米材料在软骨组织工程中的应用及其优势。目前应用的天然材料存在力学强度差及免疫源性的不足;人工合成材料降解速率快,降解产物具有细胞毒性,有待进一步完善。表面修饰等技术的应用在一定程度上克服了某些材料的不足;复合材料综合了数种材料的优点,是今后材料技术发展的方向;纳米技术的出现使新合成的材料成为纳米量级,具有了普通材料无可比拟的优势,这为组织工程材料的发展提供了新的思路。本文还对组织工程支架材料存在的问题、下一步的发展方向和前瞻性研究做了介绍。  相似文献   

6.
The use of autologous chondrocyte implantation (ACI) and its further development combining autologous chondrocytes with bioresorbable matrices may represent a promising new technology for cartilage regeneration in orthopaedic research. Aim of our study was to evaluate the applicability of a resorbable three-dimensional polymer of pure polyglycolic acid (PGA) for the use in human cartilage tissue engineering under autologous conditions. Adult human chondrocytes were expanded in vitro using human serum and were rearranged three-dimensionally in human fibrin and PGA. The capacity of dedifferentiated chondrocytes to re-differentiate was evaluated after two weeks of tissue culture in vitro and after subcutaneous transplantation into nude mice by propidium iodide/fluorescein diacetate (PI/FDA) staining, scanning electron microscopy (SEM), gene expression analysis of typical chondrocyte marker genes and histological staining of proteoglycans and type II collagen. PI/FDA staining and SEM documented that vital human chondrocytes are evenly distributed within the polymer-based cartilage tissue engineering graft. The induction of the typical chondrocyte marker genes including cartilage oligomeric matrix protein (COMP) and cartilage link protein after two weeks of tissue culture indicates the initiation of chondrocyte re-differentiation by three-dimensional assembly in fibrin and PGA. Histological analysis of human cartilage tissue engineering grafts after 6 weeks of subcutaneous transplantation demonstrates the development of the graft towards hyaline cartilage with formation of a cartilaginous matrix comprising type II collagen and proteoglycan. These results suggest that human polymer-based cartilage tissue engineering grafts made of human chondrocytes, human fibrin and PGA are clinically suited for the regeneration of articular cartilage defects.  相似文献   

7.
One of the most important factors concerning the successful clinical outcome after transplantation of osteochondral allografts is the viability of the cartilage.The viability of cryopreserved cartilage is quite poor, 20–30% cell survival has been published. The purpose of this study was to develop a new storage method which improves the chondrocyte viability. The talus of cadaveric donors was used as a model tissue to compare human osteochondral allograft cartilage viability following cryopreservation with that remaining after prolonged refrigerated storage. Full-thickness cartilage punch biopsies had been cryopreserved, and tali were divided into two matched groups and stored in TCM for 60 days at +4 °C, either with or without regular medium replacement. The cartilage of each graft was biopsied and assayed for viability on every third day by the MTT reduction assay. During 4 °C storage, a recurring pattern of large fluctuations in apparent cartilage viability was observed in every stored graft, with or without medium replacement. These fluctuations did not appear in control specimens of either fresh or cryopreserved human skin that were assayed in parallel with the cartilage biopsies, so the viability fluctuation seems an intrinsic property of the cartilage in these conditions. Cartilage stored for 60 days at +4 °C showed significantly higher viability (35.2 ± 3.3 %) than fresh cartilage that had been cryopreserved (21.6 ± 1.8 %). This was true even when cryopreserved and thawed cartilage was subjected to a 3 day post thaw incubation under presumably favorable conditions (17.7 ± 1.6 %). These viability assay results, (reflective of intracellular metabolic activity), were corroborated by the fluorescent dye mixture SYTO-16 and propidium iodide. The data indicate that long-term stored refrigerated cartilage appears to retain a viability higher than that of cryopreserved cartilage for up to and perhaps beyond 60 days of storage. There was no viability index difference between the medium replaced and non-replaced groups. Although an exceptional result, in one individual case, more than 65% viable cells could be detected in the talar cartilage after 60 days storage at +4 °C. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
The aim of this study was to adapt a reliable, reproducible and simple viability assay for cartilage and osteochondral studies. The previous assays (radioisotope uptake, assessment of matrix components, histological methods, oxygen consumption etc.) were complex, laborious, time consuming or suffer from difficulty of interpretation. MTT assay was chosen because it has been widely and successfully used in different cell and tissue studies, but has not been published on human solid articular cartilage. Fresh intact cartilage samples of human tali were tested to investigate the assay. The reliability of the MTT assay was also tested by an fluorescent dye combination. The MTT assay is based on the production of purple formazan pigment from methyltetrazolium salt by the mitochondrial enzymes of viable chondrocytes. The enzyme kinetics of the reaction was also investigated because it was unknown in the case of cartilage. The amount of pigment formed can be measured by spectrophotometry after extraction by methyl cellosolve. The color density is proportional to mitochondrial enzyme activity, reflecting the number of viable chondrocytes. The optimal reagent concentration, biopsy size, and incubation period were established. There is a linear relationship between the cartilage weight and the pigment production activity. A 9.8% nonspecific raction was observed in the negative controls. The enzyme kinetics of the reaction was also investigated. The MTT clevage up to 0.1% (w/v) follows the Michaelis kinetics. We calculated the Michaelis constant (2835 ± 130 μM), the maximal velocity (36 ± 3.2 × 10−5μMsec−1) and the velocity constant (1.27 ± 0.2 × 10−7sec−1) of the reaction. The latter is a significant marker for each tissue type. The viability of cartilage was also assessed and calculated by a fluorescent dye combination comprising 1 μg/ml propidium iodide (PI) and 4 μM/ml SYTO-16 stains. The PI stains dead cells (red fluorescence), the SYTO-16 stains live cells (green fluorescence). The staining can be visualised simultaneously, and the live/dead ratio can be calculated by image analysis software from saved image files. The MTT assay is a simple, non-expensive, efficient, reliable, reproducible, sensitive viability test for cartilage studies. The MTT reduction assay and the staining method were corrobative. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

9.
10.
Articular cartilage cannot repair itself in response to degradation from injury or osteoarthritis. As such, there is a substantial clinical need for replacements of damaged cartilage. Tissue engineering aims to fulfill this need by developing replacement tissues in vitro. A major goal of cartilage tissue engineering is to produce tissues with robust biochemical and biomechanical properties. One technique that has been proposed to improve these properties in engineered tissue is the use of non-enzymatic glycation to induce collagen crosslinking, an attractive solution that may avoid the risks of cytotoxicity posed by conventional crosslinking agents such as glutaraldehyde. The objectives of this study were (1) to determine whether continuous application of ribose would enhance biochemical and biomechanical properties of self-assembled articular cartilage constructs, and (2) to identify an optimal time window for continuous ribose treatment. Self-assembled constructs were grown for 4 weeks using a previously established method and were subjected to continuous 7-day treatment with 30 mM ribose during culture weeks 1, 2, 3, or 4, or for the entire 4-week culture. Control constructs were grown in parallel, and all groups were evaluated for gross morphology, histology, cellularity, collagen and sulfated glycosaminoglycan (GAG) content, and compressive and tensile mechanical properties. Compared to control constructs, it was found that treatment with ribose during week 2 and for the entire duration of culture resulted in significant 62% and 40% increases in compressive stiffness, respectively; significant 66% and 44% increases in tensile stiffness; and significant 50% and 126% increases in tensile strength. Similar statistically significant trends were observed for collagen and GAG. In contrast, constructs treated with ribose during week 1 had poorer biochemical and biomechanical properties, although they were significantly larger and more cellular than all other groups. We conclude that non-enzymatic glycation with ribose is an effective method for improving tissue engineered cartilage and that specific temporal intervention windows exist to achieve optimal functional properties.  相似文献   

11.
Articular cartilage is susceptible to impact injury. Impact may occur during events ranging from trauma to surgical insertion of an OsteoChondral Graft (OCG) into an OsteoChondral Recipient site (OCR). To evaluate energy density as a mediator of cartilage damage, a specialized drop tower apparatus was used to impact adult bovine samples while measuring contact force, cartilage surface displacement, and OCG advancement. When a single impact was applied to an isolated (non-inserted) OCG, force and surface displacement each rose monotonically and then declined. In each of five sequential impacts of increasing magnitude, applied to insert an OCG into an OCR, force rose rapidly to an initial peak, with minimal OCG advancement, and then to a second prolonged peak, with distinctive oscillations. Energy delivered to cartilage was confirmed to be higher with larger drop height and mass, and found to be lower with an interposed cushion or OCG insertion into an OCR. For both single and multiple impacts, the total energy density delivered to the articular cartilage correlated to damage, quantified as total crack length. The corresponding fracture toughness of the articular cartilage was 12.0 mJ/mm2. Thus, the biomechanics of OCG insertion exhibits distinctive features compared to OCG impact without insertion, with energy delivery to the articular cartilage being a factor highly correlated with damage.  相似文献   

12.
Large-sized cartilage constructs suffer from inhomogeneous extracellular matrix deposition due to insufficient nutrient availability. Computational models of nutrient consumption and tissue growth can be utilized as an efficient alternative to experimental trials to optimize the culture of large constructs; models require system-specific growth and consumption parameters. To inform models of the [bovine chondrocyte]−[agarose gel] system, total synthesis rate (matrix accumulation rate+matrix release rate) and matrix retention fractions of glycosaminoglycans (GAG), collagen, and cartilage oligomeric matrix protein (COMP) were measured either in the presence (continuous or transient) or absence of TGF-β3 supplementation. TGF-β3's influences on pyridinoline content and mechanical properties were also measured. Reversible binding kinetic parameters were characterized using computational models. Based on our recent nutrient supplementation work, we measured glucose consumption and critical glucose concentration for tissue growth to computationally simulate the culture of a human patella-sized tissue construct, reproducing the experiment of Hung et al. (2003). Transient TGF-β3 produced the highest GAG synthesis rate, highest GAG retention ratio, and the highest binding affinity; collagen synthesis was elevated in TGF-β3 supplementation groups over control, with the highest binding affinity observed in the transient supplementation group; both COMP synthesis and retention were lower than those for GAG and collagen. These results informed the modeling of GAG deposition within a large patella construct; this computational example was similar to the previous experimental results without further adjustments to modeling parameters. These results suggest that these nutrient consumption and matrix synthesis models are an attractive alternative for optimizing the culture of large-sized constructs.  相似文献   

13.
Many studies have measured the global compressive properties of tissue engineered (TE) cartilage grown on porous scaffolds. Such scaffolds are known to exhibit strain softening due to local buckling under loading. As matrix is deposited onto these scaffolds, the global compressive properties increase. However the relationship between the amount and distribution of matrix in the scaffold and local buckling is unknown. To address this knowledge gap, we studied how local strain and construct buckling in human TE constructs changes over culture times and GAG content. Confocal elastography techniques and digital image correlation (DIC) were used to measure and record buckling modes and local strains. Receiver operating characteristic (ROC) curves were used to quantify construct buckling. The results from the ROC analysis were placed into Kaplan-Meier survival function curves to establish the probability that any point in a construct buckled. These analysis techniques revealed the presence of buckling at early time points, but bending at later time points. An inverse correlation was observed between the probability of buckling and the total GAG content of each construct. This data suggests that increased GAG content prevents the onset of construct buckling and improves the microscale compressive tissue properties. This increase in GAG deposition leads to enhanced global compressive properties by prevention of microscale buckling.  相似文献   

14.
Articular cartilage suffers from a limited repair capacity when damaged by mechanical insult or degraded by disease, such as osteoarthritis. To remedy this deficiency, several medical interventions have been developed. One such method is to resurface the damaged area with tissue-engineered cartilage; however, the engineered tissue typically lacks the biochemical properties and durability of native cartilage, questioning its long-term survivability. This limits the application of cartilage tissue engineering to the repair of small focal defects, relying on the surrounding tissue to protect the implanted material. To improve the properties of the developed tissue, mechanical stimulation is a popular method utilized to enhance the synthesis of cartilaginous extracellular matrix as well as the resultant mechanical properties of the engineered tissue. Mechanical stimulation applies forces to the tissue constructs analogous to those experienced in vivo. This is based on the premise that the mechanical environment, in part, regulates the development and maintenance of native tissue1,2. The most commonly applied form of mechanical stimulation in cartilage tissue engineering is dynamic compression at physiologic strains of approximately 5-20% at a frequency of 1 Hz1,3. Several studies have investigated the effects of dynamic compression and have shown it to have a positive effect on chondrocyte metabolism and biosynthesis, ultimately affecting the functional properties of the developed tissue4-8. In this paper, we illustrate the method to mechanically stimulate chondrocyte-agarose hydrogel constructs under dynamic compression and analyze changes in biosynthesis through biochemical and radioisotope assays. This method can also be readily modified to assess any potentially induced changes in cellular response as a result of mechanical stimuli.  相似文献   

15.
Summary Cartilage cubes, prepared from the proximal epiphyses of neonatal rat humeri and consisting of cartilage tissue only, were cultured in the presence of retinoic acid. The retinoid induced the loss of metachromatic staining with toluidine blue, which correlates with the loss of proteoglycan, followed by tissue degradation processes resulting in a distinct reduction of the cartilage mass. Histologically, fibroblast-like cells appeared within chondrones, indicating a transformation of chondroblasts. Focal tissue degradation was observed after only 2 days. Electron microscopically, the clustered cells within the zone of tissue degradation were rich in various lysosomal structures indicating their lytic activity. Cycloheximide and EDTA completely blocked the retinoic acid effects suggesting that protein synthesis was required and that metalloproteinases may be involved in the degradation processes. In conclusion, with the new test system described here we demonstrated that cartilage cells themselves performed the tissue degradation induced by retinoic acid.  相似文献   

16.
In osteochondral tissue engineering, cell recruitment, proliferation, differentiation, and patterning are critical for forming biologically and structurally viable constructs for repair of damaged or diseased tissue. However, since constructs prepared ex vivo lack the multitude of cues present in the in vivo microenvironment, cells often need to be supplied with external biological and physical stimuli to coax them toward targeted tissue functions. To determine which stimuli to present to cells, bioengineering strategies can benefit significantly from endogenous examples of skeletogenesis. As an example of developmental skeletogenesis, the developing limb bud serves as an excellent model system in which to study how osteochondral structures form from undifferentiated precursor cells. Alongside skeletal formation during embryogenesis, bone also possesses innate regenerative capacity, displaying remarkable ability to heal after damage. Bone fracture healing shares many features with bone development, driving the hypothesis that the regenerative process generally recapitulates development. Similarities and differences between the two modes of bone formation may offer insight into the special requirements for healing damaged or diseased bone. Thus, endogenous fracture healing, as an example of regenerative skeletogenesis, may also inform bioengineering strategies. In this review, we summarize the key cellular events involving stem and progenitor cells in developmental and regenerative skeletogenesis, and discuss in parallel the corresponding cell- and scaffold-based strategies that tissue engineers employ to recapitulate these events in vitro.  相似文献   

17.
18.
软骨的修复是当前医学界十分棘手的难题,人们采取若干手段均收效甚微。由于软骨缺损时,其下的软骨下骨常出现硬化、退变,而新生软骨是无法与病变的软骨下骨进行整合的,所以在修复软骨的同时,必须重视软骨下骨的修复。近十几年来,人们开始发明和利用各种骨软骨复合支架,进行同时修复软骨与软骨下骨的动物实验研究。在正常骨软骨组织中,软骨与软骨下骨被钙化层所相连,此外钙化层也将软骨与软骨下骨分隔在不同的生存环境中。根据仿生学原理,人们又设计出一种带有隔离层的新型骨软骨复合支架,并取得了较为理想的实验结果。本文就国内外骨软骨复合支架的研完进展作一综述。  相似文献   

19.
Articular cartilage extracellular matrix imposes a significant transport barrier to albumin, the principal carrier of fatty acids. It has not been previously established whether it also influences the transport of fatty acids important for chondrocyte metabolism. Albumin was labelled with rhodamine-maleimide and bound to NBD-labelled lauric acid. Plugs of fresh equine metacarpal-phalangeal cartilage and subchondral bone were incubated with the complex at 4 degrees C for 2-160 h. The fluorophore distribution was quantified using quantitative microscopy in histological sections. The fluorescence intensity of both fluorophores fell steeply over 300 microm below the articular surface and remained relatively uniform through the mid zone but the ratio of lauric acid to albumin was higher than in the incubation medium. The effective diffusivity of lauric acid in the mid zone was (2.2+/-0.7) x 10(-12) m2 s(-1) (n = 33), higher than that of the carrier albumin, suggesting dissociation in the surface layer. Lauric acid accumulated reversibly at the tidemark.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号