首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 The roles of gibberellins, abscisic acid and phytochrome B in the vernalization response were investigated by combining mutations causing defects in their biosynthesis and response with the Arabidopsis thaliana (L.) Heynh. fca-1 mutation. The fca-1 mutation confers a very late-flowering phenotype which can be reversed to wild-type flowering if the seedlings are vernalized. Vernalization was unaffected in ga1-3, gai, abi1-1, abi2-1, abi3-1 and phyB-1 backgrounds, suggesting that gibberellin action mediated via GA1 and GAI, abscisic acid action mediated through ABI1 and ABI2, and phytochrome B, function independently of vernalization. However, the mutations did interact with fca-1 to change flowering time in the absence of vernalization. The abi1 fca-1 and abi2 fca-1 double mutants flowered earlier than fca-1 implying a role for abscisic acid in floral repression. Combination of ga1-3 or gai with fca-1 unexpectedly resulted in opposite interactions, with gai partially suppressing the late flowering of fca-1. Received: 17 July 1999 / Accepted: 11 October 1999  相似文献   

2.
3.
Signals produced in leaves are transported to the shoot apex where they cause flowering. Protein of the gene FLOWERING LOCUS T (FT) is probably a long day (LD) signal in Arabidopsis. In the companion paper, rapid LD increases in FT expression associated with flowering driven photosynthetically in red light were documented. In a far red (FR)-rich LD, along with FT there was a potential role for gibberellin (GA). Here, with the GA biosynthesis dwarf mutant ga1-3, GA(4)-treated plants flowered after 26 d in short days (SD) but untreated plants were still vegetative after 6 months. Not only was FT expression low in SD but applied GA bypassed some of the block to flowering in ft-1. On transfer to LD, ga1-3 only flowered when treated simultaneously with GA, and FT expression increased rapidly (<19.5 h) and dramatically (15-fold). In contrast, in the wild type in LD there was little requirement for GA for FT increase and flowering so its endogenous GA content was near to saturating. Despite this permissive role for endogenous GA in Columbia, RNA interference (RNAi) silencing of the GA biosynthesis gene, GA 20-OXIDASE2, revealed an additional, direct role for GA in LD. Flowering took twice as long after silencing the LD-regulated gene, GA 20-OXIDASE2. Such independent LD input by FT and GA reflects their non-sympatric expression (FT in the leaf blade and GA 20-OXIDASE2 in the petiole). Overall, FT acts as the main LD floral signal in Columbia and GA acts on flowering both via and independently of FT.  相似文献   

4.
The Arabidopsis mutant ga1-3 contains a deletion in an enzyme that catalyzes an early step in the synthesis of gibberellic acid. It has been shown that ga1-3 mutant plants cannot flower under 8-h short-day (SD) conditions, even after vernalization. In this article, we present data demonstrating that the ga1-3 mutation does not block the response to vernalization in intermediate photoperiods or in long-day conditions in a late-flowering, vernalization-responsive background. Thus, GA may not have a direct role in the vernalization response in Arabidopsis, but it may be required for an alternate pathway that promotes flowering in noninductive photoperiods.  相似文献   

5.
J C Chien  I M Sussex 《Plant physiology》1996,111(4):1321-1328
In wild-type (WT) Columbia and Landsberg erecta ecotypes of Arabidopsis thaliana (L.) Heynh., trichomes are present on the adaxial surfaces of all rosette leaves but are absent from the abaxial surfaces of the first-formed leaves. We have determined that both long-day (LD) photoperiod and gibberellin (GA) stimulate trichome formation. WT plants grown in LD conditions produce the first abaxial trichome on earlier leaves than plants grown in short-day (SD) conditions. Photoperiod sensitivity of abaxial trichome formation on WT plants develops gradually over time, reaching the maximum sensitivity about 24 d after germination. Application of gibberellic acid to WT plants growing in SD conditions accelerates the onset of abaxial trichomes. Conversely, application of 20 to 80 mg L-1 paclobutrazol, a GA biosynthesis inhibitor, to wild-type plants suppresses trichome initiation on the abaxial epidermis. The GA-deficient mutants ga1-5 and ga4-1 and the GA-insensitive mutant gai-1 exhibit delayed onset of abaxial trichomes when grown in LD conditions. The null mutant ga1-3 produces completely glabrous leaves when grown in SD conditions. Application of gibberellic acid to glabrous ga1-3 plants consistently induces earlier formation of trichomes on the adaxial epidermis than on the abaxial epidermis, demonstrating a difference between the adaxial and abaxial surfaces in their response to GA with regard to trichome formation.  相似文献   

6.
Three genetic pathways promote flowering of Arabidopsis under long photoperiods. These pathways are represented by the genes CO, FCA, and GA1, which act in the long-day, autonomous, and gibberellin pathways, respectively. To test whether these are the only pathways that promote flowering under long photoperiods, the co-2 fca-1 ga1-3 triple mutant was constructed. These plants never flowered under long- or short-day conditions, indicating that the three pathways impaired by these mutations are absolutely required for flowering under these conditions. The triple mutant background represents a "vegetative ground state" enabling the roles of single pathways to be described in the corresponding double mutants. The phenotypes of plants carrying all eight combinations of wild-type and mutant alleles at the three loci were compared under long- and short-day conditions. This analysis demonstrated that under long photoperiods the long-day pathway promoted flowering most effectively, whereas under short photoperiods the gibberellin pathway had the strongest effect. The autonomous pathway had a weak effect when acting alone under either photoperiod but appeared to play an important role in facilitating the promotion of flowering by the other two pathways. The vegetative phenotype of the triple mutant could be overcome by vernalization, suggesting that a fourth pathway promoted flowering under these conditions. These observations are discussed in light of current models describing the regulation of flowering time in Arabidopsis.  相似文献   

7.
Flowering responses of Lemna perpusilla strain 6746, a short-dayplant, and L. gibba strain G3, a long-day plant, to nitrateconcentration in Hoagland's type medium with or without EDTA,were compared. Maximum flowering of L. perpusilla under SD occurredat higher nitrate concentrations than did colony proliferation.Even under CL, L. perpusilla grown at sub-optimal nitrate concentrationsfor colony proliferation, flowered irrespective of the presenceof EDTA which reduces flowering. Unlike L. perpusilla, L. gibba failed to flower under SD atany nitrate concentration whether or not EDTA was added. UnderCL, however, L. gibba flowered at almost any nitrate concentrationwith or without EDTA. Double optima for nitrate concentrationwas exhibited in the presence of EDTA; optimal concentrationfor colony proliferation came between the two optima for flowering. We concluded that the nitrogen level of the medium is importantin regulating flowering of duckweeds, and that the effect ofEDTA, if any, may primarily be on colony proliferation and onlysecondarily or antagonistically on flowering. 1 Present address: Institute for Agricultural Research, TohokuUniversity, Sendai 980, Japan. (Received September 25, 1971; )  相似文献   

8.
True day-neutral (DN) plants flower regardless of day-length and yet they flower at characteristic stages. DN Nicotiana tabacum cv. Samsun, makes about forty nodes before flowering. The question still persists whether flowering starts because leaves become physiologically able to export sufficient floral stimulus or the shoot apical meristem (SAM) acquires developmental competence to interpret its arrival. This question was addressed using tobacco expressing the Schizosaccharomyces pombe cell cycle gene, Spcdc25, as a tool. Spcdc25 expression induces early flowering and we tested a hypothesis that this phenotype arises because of premature floral competence of the SAM. Scions of vegetative Spcdc25 plants were grafted onto stocks of vegetative WT together with converse grafts and flowering onset followed (as the time since sowing and number of leaves formed till flowering). Spcdc25 plants flowered significantly earlier with fewer leaves, and, unlike WT, also formed flowers from axillary buds. Scions from vegetative Spcdc25 plants also flowered precociously when grafted to vegetative WT stocks. However, in a WT scion to Spcdc25 stock, the plants flowered at the same time as WT. SAMs from young vegetative Spcdc25 plants were elongated (increase in SAM convexity determined by tracing a circumference of SAM sections) with a pronounced meristem surface cell layers compared with WT. Presumably, Spcdc25 SAMs were competent for flowering earlier than WT and responded to florigenic signal produced even in young vegetative WT plants. Precocious reproductive competence in Spcdc25 SAMs comprised a pronounced mantle, a trait of prefloral SAMs. Hence, we propose that true DN plants export florigenic signal since early developmental stages but the SAM has to acquire competence to respond to the floral stimulus.  相似文献   

9.
The protein encoded by the FLOWERING LOCUS T (FT) gene from Arabidopsis thaliana seems to be the long-searched florigen, and over-expression of FT orthologues resulted in accelerated flower development in annual and perennial plants. In the present study, we isolated two allelic mRNA sequences of an FT-homologous gene from apple, which was designated as MdFT1. Using a SSR motif this gene was mapped on LG 12 of apple. Over-expression of MdFT1 in Arabidopsis and the commercially important tree species poplar and apple itself using the CaMV 35S or the Arabidopsis Suc2 promoter resulted in significant accelerated flowering compared with wild-type plants. Transgenic T0 plants of Arabidopsis flowered 4–6 days on average earlier than wild-type Arabidopsis under LD conditions. Under short-day conditions Suc2::MdFT1 plants of the T1-generation flowered after 66 ± 18 days, while wild-type plants flowered about 22 days later. All transgenic Arabidopsis plants showed a normal habit except for the early flowering phenotype. Early flowering was detected 6–10 months after transformation in transgenic polar clones containing MdFT1 driven by the CaMV 35S, whereas plants of the transgenic apple clone T780 set up its first flowers during in vitro cultivation. Based on our results we conclude that MdFT1 is responsible for inducing flowering and that the function of the apple FT1 gene is conserved in annual herbaceous species as well as perennial woody species. Furthermore, we discuss the role of MdFT1 in flower development with regard to the findings of genetic studies on apple.  相似文献   

10.
11.
A. L. Silverstone  PYA. Mak  E. C. Martinez    T. Sun 《Genetics》1997,146(3):1087-1099
We have identified a new locus involved in gibberellin (GA) signal transduction by screening for suppressors of the Arabidopsis thaliana GA biosynthetic mutant ga1-3. The locus is named RGA for repressor of ga1-3. Based on the recessive phenotype of the digenic rga/ga1-3 mutant, the wild-type gene product of RGA is probably a negative regulator of GA responses. Our screen for suppressors of ga1-3 identified 17 mutant alleles of RGA as well as 10 new mutant alleles at the previously identified SPY locus. The digenic (double homozygous) rga/ga1-3 mutants are able to partially repress several defects of ga1-3 including stem growth, leaf abaxial trichome initiation, flowering time, and apical dominance. The phenotype of the trigenic mutant (triple homozygous) rga/spy/ga1-3 shows that rga and spy have additive effects regulating flowering time, abaxial leaf trichome initiation and apical dominance. This trigenic mutant is similar to wild type with respect to each of these developmental events. Because rga/spy/ga1-3 is almost insensitive to GA for hypocotyl growth and its bolting stem is taller than the wild-type plant, the combined effects of the rga and spy mutations appear to allow GA-independent stem growth. Our studies indicate that RGA lies on a separate branch of the GA signal transduction pathway from SPY, which leads us to propose a modified model of the GA response pathway.  相似文献   

12.
Heading date is one of most important agronomic traits in rice. Flowering regulatory mechanisms have been elucidated in many cultivars through various approaches. Although study about flowering has been extensively examined in rice, but contributions of floral regulators had been poorly understood in a common genetic background for rice grown under paddy conditions. Thus, we compared the expression of 10 flowering-time genes — OsMADS50, OsMADS51, OsVIL2, OsPhyA, OsPhyB, OsPhyC, Ghd7, Hd1, OsGI, and OsTrx1 — in the same genetic background for ‘Dongjin’ rice (Oryza sativa) grown under paddy conditions when days were longer than 13.5 h. Whereas the wild type (WT) rice flowered 105 days after sowing, the latest mutant to do so was ostrx1, flowering 53 d later. This indicated that the gene is the strongest inducer among all of those examined. Mutations in OsMADS50 delayed flowering by 45 d when compared with the WT, suggesting that this MADS gene is another strong positive element. The third positive element was OsVIL2; mutations in the gene caused plants to flower 27 d late. In contrast, the double phytochrome mutant osphyA osphyB flowered 44 d earlier than the WT. The single mutant osphyB and the double mutant osphyB osphyC did the same, although not as early as the osphyA osphyB double mutant. These results demonstrated that phytochromes are major inhibitors under paddy conditions. Mutations in Ghd7 accelerated flowering by 34 d, indicating that the gene is also a major inhibitor. The hd1 mutants flowered 16 d earlier than the WT while a mutation in OsGI hastened flowering by 10 d, suggesting that both are weak flowering repressors. Of the two florigen genes (Hd3a being the other one), RFT1 played a major role under paddy conditions. Its expression was strongly promoted by Ehd1, which was negatively controlled by Ghd7. Here we show that phytochromes strongly inhibit flowering and OsTrx1 and OsMADS50 significantly induce flowering under paddy conditions through Ghd7-Ehd1-RFT1 pathway. Thus, we may be able to control heading date under paddy conditions through manipulating those genes, Ghd7, Ehd1 and RFT1.  相似文献   

13.
以拟南芥的赤霉素 (GA)缺陷型突变体ga 1,ga 2 ,ga 3和GA不敏感型突变体ga i为材料 ,研究了光和 4种GA对拟南芥种子萌发和幼苗生长影响的相互关系。结果表明 :(1)烯效唑对ga i种子萌发的抑制在光下可明显被GA恢复 ,而在黑暗中GA的作用不明显。 (2 )在光下低浓度的外源GA3 可使ga 1,ga 2和ga 3的种子萌发 ,而在黑暗中同样浓度的GA3 则难以使种子萌发。 (3)光可以降低种子萌发所需求的GA的剂量。 (4 )ga i和ga 1的幼苗的呼吸代谢有明显差异。以上结果说明 :光对拟南芥种子萌发的促进主要是提高了种子对GA反应的敏感性而不是增加GA的生物合成  相似文献   

14.
The semi-dominant gai mutation of arabidopsis confers a dark-green dwarf phenotype resembling that of gibberellin (GA)-deficient mutants. In contrast to GA-deficient mutants, gai mutants do not respond to GA treatments and accumulate higher levels of bioactive GAs than are found in wild-type controls. The gai mutation thus alters the responses of plant cells to GA, indicating that the GAI (wild-type) gene product is involved in GA reception and/or signal transduction. Here we describe the isolation and preliminary characterization of a mutation, gas1-1, which is not linked to gai and which partially suppresses the effect of the gai mutation. Double mutant, gai gas1-1, homozygotes are less severely dwarfed and lighter green than gai GAS1 controls. However, comparisons of the effects of treatments with exogenous GA demonstrate that gas1-1 does not increase the GA responsiveness of the gai mutant. Thus the gas1-1 mutation appears to reduce the GA-dependency of plant growth, and identifies a gene (GAS1) whose product is a candidate GA signal-transduction component.Abbreviations GA gibberellin - GA3 gibberellic acid We thank Maarten Koornneef (Wageningen Agricultural University, The Netherlands) for providing mutant seed stocks; Mark Aarts and Bernard Mulligan (University of Nottingham, UK) for performing the -irradiation. This work was made possible by AFRC/BBSRC PMB Grants PG208/520 and PG208/0600, and by a grant from the Gatsby Charitable Foundation. P.C. was supported by a Human Capital and Mobility Fellowship from the EC.  相似文献   

15.
In Arabidopsis, expression of FLC and FLC-related genes (collectively called FLC clade) contributes to flowering time in response to environmental changes, such as day length and temperature, by acting as floral repressors. VIN3 is required for vernalization-mediated FLC repression and a VIN3 related protein, VIN3-LIKE 1/VERNALIZATION 5 (VIL1/VRN5), acts to regulate FLC and FLM in response to vernalization.13 VIN3 also exists as a small family of PHD finger proteins in Arabidopsis, including VIL1/VRN5, VIL2/VEL1, VIL3/VEL2 and VIL4/VEL3. We showed that the PHD finger protein, VIL2, is required for proper repression of MAF5, an FLC clade member, to accelerate flowering under non-inductive photoperiods. VIL2 acts together with POLYCOMB REPRESSIVE COMPLEX 2 (PRC2) to repress MAF5 in a photoperiod dependent manner.Key words: photoperiod, chromatin, floweringThe decision to flower is critical to the survival of flowering plants. Thus, plants sense environmental cues to initiate floral transition at a time that both ensures and optimizes their own reproductive fitness. Using a model plant, Arabidopsis thaliana, genetic studies have shown that the regulation of floral transition mainly consists of four genetic pathways: the inductive photoperiod pathway, the autonomous pathway, the vernalization pathway and the gibberellin pathway.4 In Arabidopsis, these four flowering pathways eventually merge into a group of genes called floral integrators, including FLOWERING LOCUS T (FT), SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1 (SOC1) and LEAFY (LFY). Based on the response to specific photoperiod conditions, the flowering behaviors of plants can be classified into three groups: long day (LD), short day (SD) and day neutral response.5,6 Depending on the requirement of day length, plants show either obligate or facultative responses. For example, henbane, carnation and ryegrass are obligate long day (LD) flowering plants which flower under increasing inductive photoperiod but do not flower at all under non-inductive photoperiod.5 On the other hand, plants including Arabidopsis, wheat, lettuce and barley, are considered to be facultative flowering plants. Thus, these plants exhibit early flowering under LD and late-flowering under non-inductive short days (SD). Studies on photoperiodic flowering time mainly focus on the inductive LD-photoperiod pathway in Arabidopsis.  相似文献   

16.
The purpose of this study was to demonstrate the metabolism of gibberellin A20 (GA20) to gibberellin A1 (GA1) by tall and mutant shoots of rice (Oryza sativa L.) and Arabidopsis thaliana (L.) Heynh. The data show that the tall and dx mutant of rice and the tall and ga5 mutant of Arabidopsis metabolize GA20 to GA1. The data also show that the dy mutant of rice and the ga4 mutant of Arabidopsis block the metabolism of GA20 to GA1. [17-13C,3H]GA20 was fed to tall and the dwarf mutants, dx and dy, of rice and tall and the dwarf mutants, ga5 and ga4, of Arabidopsis. The metabolites were analyzed by high-performance liquid chromatography and full-scan gas chromatography-mass spectrometry together with Kovats retention index data. For rice, the metabolite [13C]GA, was identified from tall and dx seedlings; [13C]GA1 was not identified from the dy seedlings. [13C]GA29 was identified from tall, dx, and dy seedlings. For Arabidopsis, the metabolite [13C]GA1 was identified from tall, ga5, and ga4 plants. The amount of [13C]GA1 from ga4 plants was less than 15% of that obtained from tall and ga5 plants. [13C]GA29 was identified from tall, ga5, and ga4 plants. [13C]GA5 and [13C]GA3 were not identified from any of the six types of plant material.  相似文献   

17.
A spontaneous mutation isolated from stocks of red clover (cultivarS123) prevents flower initiation unless plants are suppliedexogenously with gibberellin. Mutant plants are also more uprightand densely tillering in their growth habit. Inheritance ofthe non-flowering character was analysed in a series of crossesbetween wild-type S123 and mutant plants. Hybridity followingintercrossing was confirmed using electrophoretic variants ofcytoplasmic phosphoglucose isomerase coded by a- and b-allelesof the nuclear gene Pgi-2. All F1 plants flowered normally andwere heterozygous at the Pgi-2 locus. However, F2 segregationsdid not provide the expected ratios, with flowering plants exceedingpredicted levels. One back-cross involving an F1 plant and themutant parent gave flowering:non flowering and ab:aa Pgi-2 ratiosof 2:1 rather than the expected 1:1. The results are consistentwith the existence of a zygotic lethal factor, originally presentin heterozygous (non-lethal) form in the mutant (non-flowering)parent and tightly linked to the mutated gene. Segregants whichwere non-flowering always displayed the characteristic mutantgrowth form and seeds borne on these plants were lighter incolour than those borne on normal plants. Thus, there existsin red clover a gene designated ‘dig’ (developmentinfluencing gibberellin) which has several pleiotropic effectsincluding suppressing the initiation of flowering in normallyflorally-inductive environments. There are at least two allelicforms of the gene, F (flowering) and f (non-flowering).  相似文献   

18.
19.
We have previously shown that endoreduplication levels in hypocotyls of Arabidopsis thaliana (L.) Heynh. are under negative control of phytochromes. In this study, the hormonal regulation of this process was analysed using a collection of A. thaliana mutants. The results show that two hormones in particular, gibberellin (GA) and ethylene, play distinct roles. Hypocotyl cells of the GA-deficient mutant ga1-11 grown in the dark did not elongate and showed a greatly reduced endoreduplication. Normal endoreduplication could be restored by supplying 10−9 M of the gibberellin GA4+7, whereas the restoration of normal cell growth required 100-fold higher concentrations. The GA-insensitive mutant gai showed reduced cell elongation but normal ploidy levels. We conclude that (i) GA4+7 has a global positive effect on endoreduplication and (ii) that endoreduplication is more sensitive to GA4+7 than cell elongation. Ethylene had a completely different effect. It induced an extra round of endoreduplication both in light- and dark-grown seedlings and acted mainly on discrete steps rather than having a global effect on endoreduplication. The genes EIN2 and CTR1, components of the ethylene signal transduction pathway were both involved in this process. Received: 27 February 1999 / Accepted: 21 May 1999  相似文献   

20.
Dill A  Sun T 《Genetics》2001,159(2):777-785
RGA and GAI are negative regulators of the gibberellin (GA) signal transduction pathway in Arabidopsis thaliana. These genes may have partially redundant functions because they are highly homologous, and plants containing single null mutations at these loci are phenotypically similar to wild type. Previously, rga loss-of-function mutations were shown to partially suppress defects of the GA-deficient ga1-3 mutant. Phenotypes rescued include abaxial trichome initiation, rosette radius, flowering time, stem elongation, and apical dominance. Here we present work showing that the rga-24 and gai-t6 null mutations have a synergistic effect on plant growth. Although gai-t6 alone has little effect, when combined with rga-24, they completely rescued the above defects of ga1-3 to wild-type or GA-overdose phenotype. However, seed germination and flower development defects were not restored. Additionally, rga-24 and rga-24/gai-t6 but not gai-t6 alone caused increased feedback inhibition of expression of a GA biosynthetic gene in both the ga1-3 and wild-type backgrounds. These results demonstrate that RGA and GAI have partially redundant functions in maintaining the repressive state of the GA-signaling pathway, but RGA plays a more dominant role than GAI. Removing both RGA and GAI function allows for complete derepression of many aspects of GA signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号