首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The response of tundra plants to enhanced UV-B radiation simulating 15 and 30% ozone depletion was studied at two high arctic sites (Isdammen and Adventdalen, 78° N, Svalbard).The set-up of the UV-B supplementation systems is described, consisting of large and small UV lamp arrays, installed in 1996 and 2002. After 7 years of exposure to enhanced UV-B radiation, plant cover, density, morphological (leaf fresh and dry weight, leaf thickness, leaf area, reproductive and ecophysiological parameters leaf UV-B absorbance, leaf phenolic content, leaf water content) were not affected by enhanced UV-B radiation. DNA damage in the leaves was not increased with enhanced UV-B in Salix polaris and Cassiope tetragona. DNA damage in Salix polaris leaves was higher than in leaves of C. tetragona. The length of male gametophyte moss plants of Polytrichum hyperboreum was reduced with elevated UV-B as well as the number of Pedicularis hirsuta plants per plot, but the inflorescence length of Bistorta vivipara was not significantly affected. We discuss the possible causes of tolerance of tundra plants to UV-B (absence of response to enhanced UV-B) in terms of methodology (supplementation versus exclusion), ecophysiological adaptations to UV-B and the biogeographical history of polar plants  相似文献   

3.
Exclusion of UV (280–380 nm) radiation from the solar spectrum can be an important tool to assess the impact of ambient UV radiation on plant growth and performance of crop plants. The effect of exclusion of UV-B and UV-A from solar radiation on the growth and photosynthetic components in soybean (Glycine max) leaves were investigated. Exclusion of solar UV-B and UV-B/A radiation, enhanced the fresh weight, dry weight, leaf area as well as induced a dramatic increase in plant height, which reflected a net increase in biomass. Dry weight increase per unit leaf area was quite significant upon both UV-B and UV-B/A exclusion from the solar spectrum. However, no changes in chlorophyll a and b contents were observed by exclusion of solar UV radiation but the content of carotenoids was significantly (34–46%) lowered. Analysis of chlorophyll (Chl) fluorescence transient parameters of leaf segments suggested no change in the F v/F m value due to UV-B or UV-B/A exclusion. Only a small reduction in photo-oxidized signal I (P700+)/unit Chl was noted. Interestingly the total soluble protein content per unit leaf area increased by 18% in UV-B/A and 40% in UV-B excluded samples, suggesting a unique upregulation of biosynthesis and accumulation of biomass. Solar UV radiation thus seems to primarily affect the photomorphogenic regulatory system that leads to an enhanced growth of leaves and an enhanced rate of net photosynthesis in soybean, a crop plant of economic importance. The presence of ultra-violet components in sunlight seems to arrest carbon sequestration in plants. An erratum to this article can be found at  相似文献   

4.
Pea (Pisum sativum L.) and bean (Phaseolus vulgaris L.) plants were exposed to enhanced levels of UV-B radiation in a growth chamber. Leaf discs of UV-B treated and control plants were exposed to high-light (HL) stress (PAR: 1200 mol m–2 s–1) to study whether pre-treatment with UV-B affected the photoprotective mechanisms of the plants against photoinhibition. At regular time intervals leaf discs were taken to perform chlorophyll a fluorescence and oxygen evolution measurements to assess damage to the photosystems. Also, after 1 h of HL treatment the concentration of xanthophyll cycle pigments was determined. A significantly slower decline of maximum quantum efficiency of PSII (F v/F m), together with a slower decline of oxygen evolution during HL stress was observed in leaf discs of UV-B treated plants compared to controls in both plant species. This indicated an increased tolerance to HL stress in UV-B treated plants. The total pool of xanthophyll cycle pigments was increased in UV-B treated pea plants compared to controls, but in bean no significant differences were found between treatments. However, in bean plants thiol concentrations were significantly enhanced by UV-B treatment, and UV-absorbing compounds increased in both species, indicating a higher antioxidant capacity. An increased leaf thickness, together with increases in antioxidant capacity could have contributed to the higher protection against photoinhibition in UV-B treated plants.  相似文献   

5.
Arabidopsis Flavonoid Mutants Are Hypersensitive to UV-B Irradiation   总被引:22,自引:0,他引:22       下载免费PDF全文
Increases in the terrestrial levels of ultraviolet-B (UV-B) radiation (280 to 320 nm) due to diminished stratospheric ozone have prompted an investigation of the protective mechanisms that contribute to UV-B tolerance in plants. In response to UV-B stress, flowering plants produce a variety of UV-absorptive secondary products derived from phenylalanine. Arabidopsis mutants with defects in the synthesis of these compounds were tested for UV-B sensitivity. The transparent testa-4 (tt4) mutant, which has reduced flavonoids and normal levels of sinapate esters, is more sensitive to UV-B than the wild type when grown under high UV-B irradiance. The tt5 and tt6 mutants, which have reduced levels of UV-absorptive leaf flavonoids and the monocyclic sinapic acid ester phenolic compounds, are highly sensitive to the damaging effects of UV-B radiation. These results demonstrate that both flavonoids and other phenolic compounds play important roles in vivo in plant UV-B protection.  相似文献   

6.
Some have proposed that plant responses to above-ambient or supplemented levels of solar ultraviolet-B radiation (UV-B; 280–315 nm) are typically subtle because targets or receptors in plants become saturated. If true, in solar UV-B filter exclusion experiments we would expect that plant responses would level off or 'saturate' as doses approached ambient levels. To test this so-called 'saturation hypothesis' we examined the response of Gossypium hirsutum (cotton) and Sorghum bicolor (sorghum) to filter exclusions that provided five levels of biologically effective UV-B, ranging from 36 to 91% of ambient solar levels in Arizona, USA. UV-B dose had no effect on biomass production of either species. As UV-B dose increased or approached ambient, individual leaves of S. bicolor were smaller, but plants produced more tillers and leaves. In G. hirsutum , individual leaves as well as total plant leaf area were smaller, but plants produced more branches. Bulk concentrations of soluble UV-B absorbing compounds increased with UV-B dose in both species. Leaf epidermal UV-B transmittance, assessed with the chlorophyll fluorescence technique, declined with increasing UV-B dose, and was well correlated with bulk concentrations of soluble UV-B screening compounds. Bulk concentrations of insoluble or wall-bound UV-B absorbing compounds were not affected by UV-B dose. The intensity of UV-induced blue fluorescence from leaf surfaces was strongly correlated with bulk concentrations of wall-bound UV-B absorbing compounds, and this signal has the potential to provide a rapid, non-invasive method to estimate concentrations of these compounds, which are time-consuming to extract. While both species were responsive to solar UV-B, responses did not appear to become saturated as doses approached ambient levels. Rather, responses required a threshold dose of >70% of solar ambient UV-B levels before they became apparent.  相似文献   

7.
Iron deficiency is a stress frequently experienced by plants, owing to the low solubility of Fe(III) salts in neutral or alcaline soils. Iron is an essential plant nutrient as it is involved in fundamental metabolic processes. Furthermore, it is a constituent of important antioxidant enzymes, which are involved in maintaining the balance of cell redox state. UV-B radiation is an environmental problem which can alter the redox state of plants through the increased production of reactive oxygen species. In order to investigate if iron deficiency influences the antioxidant response of plants to UV-B radiation, barley seedlings, Hordeum vulgare L. cv. Express, were exposed to UV-B radiation while growing in nutrient solutions with or without iron. After eight days of growth, plants were harvested and analysed. Results show that, during the 8 days of the experimental period, in neither of the two nutritional conditions considered does UV-B exposure reduce shoot weight or induce evident alterations of thylakoid membranes in respect to controls. However, different responses to UV-B radiation between iron-deficient and iron-sufficient plants were observed at the level of parameters related to oxidative stress. In fact, in iron-sufficient plants the contents of photosynthetic pigments and ascorbate, and the enzyme activities of ascorbate peroxidase (EC 1.11.1.11) and catalase (EC 1.11.1.6) were not affected by UV-B radiation. Conversely, in iron-deficient plants the contents of ascorbate and zeaxanthin and the activity of ascorbate peroxidase increased under UV-B exposure, whereas catalase activity decreased. Furthermore, UV-B radiation induced an increase of hydrogen peroxide content which was higher in iron-deprived plants than in iron-sufficient ones. This may indicate that plants growing in an environment enriched in UV-B radiation may develop a high level of oxidative stress when iron supply is limited.  相似文献   

8.
Absorption or screening of ultraviolet-B (UV-B) radiation by the epidermis may be an important protective method by which plants avoid damage upon exposure to potentially harmful UV-B radiation. In the present study we examined the relationships among epidermal screening effectiveness, concentration of UV-absorbing compounds, epidermal anatomy and growth responses in seedlings of loblolly pine (Pinus taeda L.) and sweetgum (Liquidambar styraciflua L.). Seedlings of each species were grown in a greenhouse at the University of Maryland under either no UV-B radiation or daily supplemental UV-B radiation levels of 4, 8 or 11 kJ m?2 of biologically effective UV-B (UV-BBE) radiation. Loblolly pine seedlings were subsequently grown in the field under either ambient or supplemental levels of UV-B radiation. At the conclusion of the growing season, measurements of epidermal UV-B screening effectiveness were made with a fiber-optic microprobe. In loblolly pine, less than 0.5% of incident UV-B radiation was transmitted through the epidermis of fascicle needles and about 1% was transmitted in primary needles. In contrast, epidermal transmittance in sweetgum ranged from about 20% in leaves not preconditioned to UV-B exposure, to about 10% in leaves grown under UV-B radiation. The concentration of UV-absorbing compounds was unaffected by UV-B exposure, but generally increased with leaf age. Increases in epidermal thickness were observed in response to UV-B treatment in loblolly pine, and this accounted for over half of the variability in UV-B screening effectiveness. In spite of the low levels of UV-B penetration into the mesophyll, delays in leaf development (both species) and final needle size (loblolly pine) were observed. Seedling biomass was reduced by supplemental UV-B radiation in loblolly pine. We hypothesize that the UV-induced growth reductions were manifested by changes in either epidermal anatomy or epidermal secondary chemistry that might negatively impact cell elongation.  相似文献   

9.
Tosserams  Marcel  Magendans  Erwin  Rozema  Jelte 《Plant Ecology》1997,128(1-2):267-281
In a greenhouse study, plants of three monocotyledonous and five dicotyledonous species, which occur in a Dutch dune grassland, were exposed to four levels of ultraviolet-B (UV-B) radiation. UV-B levels simulated up to 30% reduction of the stratospheric ozone column during summertime in The Netherlands. Six of the plant species studied in the greenhouse were also exposed to enhanced UV-B irradiance in an experimental field study. In the field experiment plants either received the ambient UV-B irradiance (control) or an enhanced UV-B level simulating 15–20% ozone depletion during summertime in The Netherlands. The purpose of both experiments was to determine the response of the plant species to UV-B radiation and to compare results obtained in the greenhouse with results of the field experiment. Large intraspecific differences in UV-B sensitivity were observed in the greenhouse study. Total dry matter accumulation of monocotyledons was increased, while dry matter accumulation of dicotyledons remained unaffected or decreased. The increase in biomass production of monocotyledons at elevated UV-B was not related to the rate of photosynthesis but to alterations in leaf orientation. In the greenhouse study, UV-B radiation also affected morphological characteristics. Shoot height or maximum leaf length of five out of eight species was reduced. In the field study only one species showed a significantly decreased maximum leaf length at enhanced UV-B. Possible reasons for this discrepancy are discussed. The absorbance of methanolic leaf extracts also differed between species. UV absorbance of field-grown plants was higher than greenhouse-grown plants. In the greenhouse study, the highest UV-B level increased UV-B absorbance of some species. In the field study however, this stimulation of UV absorbance was not observed. In general, results obtained in the greenhouse study were similar to results obtained in the field study. Difficulties in extrapolating results of UV-B experiments conducted in the greenhouse to the field situation are discussed.  相似文献   

10.
There is limited information on the impacts of present-day solar ultraviolet-B radiation (UV-B) on biomass and grain yield of field crops and on the mechanisms that confer tolerance to UV-B radiation under field conditions. We investigated the effects of solar UV-B on aspects of the biochemistry, growth and yield of barley crops using replicated field plots and two barley strains, a catalase (CAT)-deficient mutant (RPr 79/4) and its wild-type mother line (Maris Mink). Solar UV-B reduced biomass accumulation and grain yield in both strains. The effects on crop biomass accumulation tended to be more severe in RPr 79/4 (≈ 32% reduction) than in the mother line (≈ 20% reduction). Solar UV-B caused measurable DNA damage in leaf tissue, in spite of inducing a significant increase in UV-absorbing sunscreens in the two lines. Maris Mink responded to solar UV-B with increased CAT and ascorbate peroxidase (APx) activity. No effects of UV-B on total superoxide dismutase (SOD) activity were detected. Compared with the wild type, RPr 79/4 had lower CAT activity, as expected, but higher APx activity. Neither of these activities increased in response to UV-B in RPr 79/4. These results suggest that growth inhibition by solar UV-B involves DNA damage and oxidative stress, and that constitutive and UV-B-induced antioxidant capacity may play an important role in UV-B tolerance.  相似文献   

11.
Levizou  Efi  Manetas  Yiannis 《Plant Ecology》2001,154(1-2):211-218
The combined effects of additional UV-B radiation and artificial wounding on leaf phenolics were studied in a short term field experiment with the drought semi-deciduous Mediterranean shrub Phlomis fruticosa L. The seedlings were grown under ambient or ambient plus supplemental UV-B radiation (biologically equivalent to a 15% ozone depletion over Patras, 38.3° N, 29.1° E) for 7 months before wounding. Unexpectedly, supplemental UV-B radiation decreased leaf phenolics. Subsequently, wounding was effected by removing leaf discs from some of the plants, while the rest remained intact and served as controls. Wounding significantly increased phenolics of the wounded leaves and the increase was more pronounced under supplemental UV-B radiation. In addition, wounding had a significant positive effect on the phenolics of the opposite, intact leaf, but only under additional UV-B radiation. We conclude that UV-B radiation, wounding and their combination may affect the chemical defensive potential of Phlomis fruticosa. In addition, increased levels of phenolics after herbivore attack under field conditions may afford extra protection against enhanced UV-B radiation levels.  相似文献   

12.
Enhanced UV-B irradiation is one of the most important abiotic stresses that can influence various aspects of plant morphology, biochemistry and physiology. Silicon as a beneficial element can increase the plant’s tolerance against different abiotic stresses, including UV-B stress. In this work, the effect of silicon supplementation on the sensitivity of young maize (Zea mays L.) seedlings exposed to short-term UV-B radiation was studied. The seedlings were grown with 0 or 5 mM silicon in cultivation medium and on the fifth day of cultivation, they were exposed for 15 and 30 min to UV-B (302 nm) radiation. No significant changes in growth and content of assimilation pigments and the chlorophyll a/b ratio were observed in any of tested irradiation periods in control or Si-treated plants. Under UV-B stress, the content of ROS (hydrogen peroxide and superoxide radical) and TBARS increased in control plants. The oxidative status of Si-treated plants was only slightly affected even after 30 min. Phenolic metabolites (total phenols and flavonoids), important for their screening function under radiation stress, slightly increased after UV-B exposure in control plants, however, only flavonoids increased after 30 min in Si-treated plants. The measured parameters indicated that to some extent silicon supplementation contributes to higher UV-B tolerance of maize seedlings.  相似文献   

13.
Leaf anatomical characteristics are important in determining the degree of injury sustained when plants are exposed to natural and enhanced levels of ultraviolet-B (UV-B) radiation (280–320 nm). The degree to which leaf anatomy can adapt to the increasing levels of UV-B radiation reaching the earth's surface is poorly understood in most tree species. We examined four tree species, representing a wide range of leaf anatomical characteristics, to determine responses of leaf area, specific leaf weight, and leaf tissue parameters after exposure to ambient and enhanced levels of UV-B radiation. Seedlings were grown in a greenhouse with photosynthetically active radiation of 39 mol m?2 day?1 and under one of three daily irradiances of biologically effective UV-B radiation (UV-BBE) supplied for 10 h per day: (1) approximate ambient level received at Pullman, Washington on June 21 (1 x ); two times ambient (2 x ), or three times ambient (3 x ). We hypothesized the response of each species to UV-B radiation would be related to inherent anatomical differences. We found that the conifers responded anatomically to nearly an equal degree as the broad-leaved trees, but that different tissues were involved. Populus trichocarpa, an indeterminate broadleaf species, showed significantly thicker palisade parenchyma in recently mature leaves at the 3 x level and in older leaves under the 2 x level. In addition, individual leaf area was generally greater with increased UV-B irradiance. Quercus rubra, a semi-determinate broadleaf species, exhibited significantly thicker palisade parenchyma at the 2 x and 3 x levels as compared to controls. Psuedotsuga menziesii, an evergreen coniferous species with bifacially flattened needles, and Pinus ponderosa, an evergreen coniferous species with a complete hypodermis, showed no significant change in leaf area or specific leaf weight under enhanced UV-B radiation. Epidermal thickness was unchanged in P. menziesii. However, P. ponderosa increased the thickness and number of hypodermal layers produced, presumably decreasing penetration of UV-B radiation into the leaf. We concluded that differences in inherent leaf anatomy of the four species examined are important in the responses to enhanced levels of UV-B radiation.  相似文献   

14.
15.
We investigated the interactions of abscisic acid (ABA) in the responses of grape leaf tissues to contrasting ultraviolet (UV)-B treatments. One-year-old field-grown plants of Vitis vinifera L. were exposed to photosynthetically active radiation (PAR) where solar UV-B was eliminated by using polyester filters, or where PAR was supplemented with UV-B irradiation. Treatments combinations included weekly foliar sprays of ABA or a water control. The levels of UV-B absorbing flavonols, quercetin and kaempferol were significantly decreased by filtering out UV-B, while applied ABA increased their content. Concentration of two hydroxycinnamic acids, caffeic and ferulic acids, were also increased by ABA, but not affected by plus UV-B (+UV-B) treatments. Levels of carotenoids and activities of the antioxidant enzymes, catalase, ascorbate peroxidase and peroxidase were elevated by +ABA treatments, but only if +UV-B was given. Cell membrane β -sitosterol was enhanced by ABA independently of +UV-B. Changes in photoprotective compounds, antioxidant enzymatic activities and sterols were correlated with lessened membrane harm by UV-B, as assessed by ion leakage. Oxidative damage expressed as malondialdehyde content was increased under +UV-B treatments. Our results suggest that the defence system of grape leaf tissues against UV-B is activated by UV-B irradiation with ABA acting downstream in the signalling pathway.  相似文献   

16.
17.
Three-year-old birch (Betula pendula Roth.) seedlings were exposed, in the field, to supplemental levels of UV-B radiation. Control seedlings were exposed to ambient levels of UV radiation, using arrays of unenergized lamps. A control for UV-A radiation was also included in the experiment. Enhanced UV-B radiation had no significant effects on height growth, and shoot and root biomass of birch seedlings. Leaf expansion rate increased transiently in the middle of the growing period in enhanced UV-B- and UV-A-exposed plants; however, final leaf size and relative growth rate remained unaffected. Leaf thickness and spongy intercellular spaces were increased in UV-B-exposed seedlings along with increased density of glandular trichomes. At the ultrastructural level, enhanced UV-B increased the number of cytoplasmic lipid bodies, and abnormal membrane whorls were found. Both enhanced UV-B and UV-A radiation induced swelling of chloroplast thylakoids. Stomatal density and conductance were significantly increased by elevated UV-B radiation. UV-A radiation increased the length and width of stomata, whereas UV-B radiation had only a marginal effect on stomatal size. UV-A and enhanced UV-B radiation attenuated the appearance of necrotic spots in autumn, probably caused by the fungus Pyrenopeziza betulicola, suggesting a direct harmful effect of UV on pathogens or reduced susceptibility to pathogens in UV-exposed seedlings. Secondary metabolite analysis showed increases in (+)-catechin, quercetin, cinnamic acid derivative, apigenin and pentagalloylglucose in birch leaves under enhanced UV-B radiation. Negative correlations between apigenin, and particularly quercetin concentrations and lipid peroxidation levels indicated an antioxidant role of secondary metabolites in birch leaves exposed to UV-B radiation.  相似文献   

18.
种子植物对中波紫外辐射胁迫的响应研究进展   总被引:4,自引:0,他引:4  
任健  李春阳 《生态学杂志》2005,24(3):315-320
臭氧层的破坏导致到达地表的中波紫外辐射(UV-B)增加。增强的UV-B对植物产生不同程度的胁迫作用。综合论述了近些年来有关种子植物对UV-B胁迫响应的研究进展。对UV-B敏感的种子植物经UV-B处理,外部形态表现为植物变矮、叶面积减小、茎缩短等;内部结构表现为叶绿体结构失去完整性、叶肉面积减小等。种子植物受UV-B影响的主要部位包括光合器官、遗传物质、蛋白质等。为了减轻UV-B的伤害,种子植物形成了一系列的保护机制,包括表皮结构对UV-B的散射、反射,叶片厚度的增加、UV-B吸收物质的积累、受损DNA的修复、自由基的去除。此外,UV-B与干旱、增强C02具有互作效应。增强的UV-B对木本植物、生态系统等方面的影响研究应加以重视。  相似文献   

19.
Xue L  Li S  Sheng H  Feng H  Xu S  An L 《Current microbiology》2007,55(4):294-301
To study the role of nitric oxide (NO) on enhanced ultraviolet-B (UV-B) radiation (280–320 nm)-induced damage of Cyanobacterium, the growth, pigment content, and antioxidative activity of Spirulina platensis-794 cells were investigated under enhanced UV-B radiation and under different chemical treatments with or without UV-B radiation for 6 h. The changes in chlorophyll-a, malondialdehyde content, and biomass confirmed that 0.5 mM sodium nitroprusside (SNP), a donor of nitric oxide (NO), could markedly alleviate the damage caused by enhanced UV-B. Specifically, the biomass and the chlorophyll-a content in S. platensis-794 cells decreased 40% and 42%, respectively under enhanced UV-B stress alone, but they only decreased 10% and 18% in the cells treated with UV-B irradiation and 0.5 mM SNP. Further experiments suggested that NO treatment significantly increased the activities of superoxide dismutase (SOD) and catalase (CAT), and decreased the accumulation of O 2 in enhanced UV-B-irradiated cells. SOD and CAT activity increased 0.95- and 6.73-fold, respectively. The accumulation of reduced glutathione (GSH) increased during treatment with 0.5 mM SNP in normal S. platensis cells, but SNP treatment could inhibit the increase of GSH in enhanced UV-B-stressed S. platensis cells. Thus, these results suggest that NO can strongly alleviate oxidative damage caused by UV-B stress by increasing the activities of SOD, peroxidase, CAT, and the accumulation of GSH, and by eliminating O 2 in S. platensis-794 cells. In addition, the difference of NO origin between plants and cyanobacteria are discussed.  相似文献   

20.
Influences of UV-B radiation on Rhizophora apiculata were studied in terms of chlorophylls, their presence in protein complexes of the chloroplast, PS I and PS II photochemical activities, in vitro absorption spectrum of the chloroplast, in vivo leaf fluorescence and UV absorbing compounds. The seedlings were exposed to the various levels of UV-B radiations, equivalent to 0 (control), 10, 20, 30 and 40% stratospheric ozone depletion of the study area. The low doses of UV-B (10 and 20%) increased the reaction centre chlorophyll (10 and 8%) and activities of PS-I (98 and 39%) and PS-II (77 and 38%) respectively; whereas, 30 and 40% UV-B treatments decreased the reaction centre chlorophylls by 11 and 33% and PS II activity by 0 and 20%; while PS I activity did not show any inhibitory effect. Chloroplasts isolated from control and 10% UV-B treated plants exhibited the same level of absorption at 676 nm. In vivo leaf fluorescence was found to be diminished with UV-B radiation and at the 10% UV-B, variable fluorescence was promoted significantly by 10%. The content of UV-absorbing compounds was progressively enhanced with doses of UV-B radiation along with higher absorption at 276 and 330 nm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号