首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A primary mechanism of lentivirus persistence is the ability of these viruses to evolve in response to biological and immunological selective pressures with a remarkable array of genetic and antigenic variations that constitute a perpetual natural experiment in genetic engineering. A widely accepted paradigm of lentivirus evolution is that the rate of genetic variation is correlated directly with the levels of virus replication: the greater the viral replication, the more opportunities that exist for genetic modifications and selection of viral variants. To test this hypothesis directly, we examined the patterns of equine infectious anemia virus (EIAV) envelope variation during a 2.5-year period in experimentally infected ponies that differed markedly in clinical progression and in steady-state levels of viral replication as indicated by plasma virus genomic RNA assays. The results of these comprehensive studies revealed for the first time similar extents of envelope gp90 variation in persistently infected ponies regardless of the number of disease cycles (one to six) and viremia during chronic disease. The extent of envelope variation was also independent of the apparent steady-state levels of virus replication during long-term asymptomatic infection, varying from undetectable to 10(5) genomic RNA copies per ml of plasma. In addition, the data confirmed the evolution of distinct virus populations (genomic quasispecies) associated with sequential febrile episodes during acute and chronic EIA and demonstrated for the first time ongoing envelope variation during long-term asymptomatic infections. Finally, comparison of the rates of evolution of the previously defined EIAV gp90 variable domains demonstrated distinct differences in the rates of nucleotide and amino acid sequence variation, presumably reflecting differences in the ability of different envelope domains to respond to immune or other biological selection pressures. Thus, these data suggest that EIAV variation can be associated predominantly with ongoing low levels of virus replication and selection in target tissues, even in the absence of substantial levels of plasma viremia, and that envelope variation continues during all stages of persistent infection as the virus successfully avoids clearance by host defense mechanisms.  相似文献   

2.
3.
Genetic analysis of hepatitis B virus (HBV) frequently involves study of intra-host variants, identification of which is commonly achieved using short regions of the HBV genome. However, the use of short sequences significantly limits evaluation of genetic relatedness among HBV strains. Although analysis of HBV complete genomes using genetic cloning has been developed, its application is highly labor intensive and practiced only infrequently. We describe here a novel approach to whole genome (WG) HBV quasispecies analysis based on end-point, limiting-dilution real-time PCR (EPLD-PCR) for amplification of single HBV genome variants, and their subsequent sequencing. EPLD-PCR was used to analyze WG quasispecies from serum samples of patients (n = 38) infected with HBV genotypes A, B, C, D, E and G. Phylogenetic analysis of the EPLD-isolated HBV-WG quasispecies showed the presence of mixed genotypes, recombinant variants and sub-populations of the virus. A critical observation was that HBV-WG consensus sequences obtained by direct sequencing of PCR fragments without EPLD are genetically close, but not always identical to the major HBV variants in the intra-host population, thus indicating that consensus sequences should be judiciously used in genetic analysis. Sequence-based studies of HBV WG quasispecies should afford a more accurate assessment of HBV evolution in various clinical and epidemiological settings.  相似文献   

4.
High mutation rates and strong selective pressures imposed on human immunodeficiency viruses in vivo result in the formation of pools of genetic variants known as quasispecies. DNA heteroduplex mobility and tracking analyses were used to monitor the generation of HIV sequence diversity, to estimate quasispecies complexity, and to assess the turnover of genetic variants to approach an understanding of the relationship between viral quasispecies evolution in vivo and disease progression. Proviral DNA pools were nearly homogeneous soon after sexual transmission. The emergence and clearance of individual variants then occurred at different rates in different individuals. High quasispecies complexity was found in long-term-infected, asymptomatic individuals, while rapid CD4+ cell decline and AIDS were often, but not always, associated with lower quasispecies complexity. Proviral genetic variation was often low following in vitro culture, because of the outgrowth of one or a few variants that often became more abundant only later as proviruses in peripheral blood mononuclear cells. These studies provide insight into the dynamics of human immunodeficiency virus sequence changes in vivo and illustrate the utility of heteroduplex analysis for the study of phenomena associated with rapid genetic changes.  相似文献   

5.
Trace elements exert a strong influence on immune function. Debilitated humoral and cellular immune responses may impair virus clearance in infected organisms, and favor the generation of virus variants with altered biological properties. The population size in evolving viral quasispecies, as well as increased mutagenesis trigered by oxidative stress, may contribute to altering the outcome of quasispecies evolution in infected hosts. The genetic plasticity of RNA viruses is one of the main obstacles for the control of the diseases they cause and probably a major force in the emergence of new viral pathogens. Recent results suggest links between nutritional deficiencies and the generation of variant viruses, a possibility that is addressed in the present article.  相似文献   

6.
To understand viral and host factors that contribute to transplacental transmission of human immunodeficiency virus, we developed an animal model using pregnant female macaques infected with simian immunodeficiency virus (SIV). Pregnant females were inoculated intravenously during midgestation with either a well-characterized primary isolate of SIV (SIV/DeltaB670) or a combination of SIV/DeltaB670 and the macrophage-tropic molecular clone SIV/17E-Fr. The viral genetic diversity in five infected female macaques and their in utero-infected infants was analyzed. All of the mothers harbored a genetically diverse virus population at parturition, whereas a single genotype from the maternal quasispecies was identified in the infants at birth. Only one of two variants was found in the infants: SIV/17E-Fr (two cases) or a genotype contained within the SIV/DeltaB670 quasispecies (three cases). The macrophage-tropic properties of both transmitted genotypes were suggested by productive replication in primary rhesus macrophage cultures in vitro and the clonal presence in central nervous system tissue of infected monkeys with encephalitis. These observations provide compelling evidence for both genotypic and phenotypic selection in transplacental transmission of SIV and suggest a critical role for macrophages in fetal infection in utero.  相似文献   

7.
ABSTRACT: BACKGROUND: Lamivudine (LAM) is associated with the highest known rate of resistance mutations amongnucleotide analogs used to treat chronic hepatitis B virus (HBV) infection. Despite this, LAMcontinues in widespread use, especially in combination therapies. The primary LAMresistance mutation (rtM204V/I) occurs in the YMDD motif of HBV polymerase. The aim ofthis study was to characterize Brazilian HBV isolates from acute and chronic cases by directsequencing, and to identify HBV quasispecies in the YMDD motif using a pyrosequencingmethod capable of detecting single-nucleotide polymorphisms. HBV DNA from serumsamples of 20 individuals with acute HBV infection and 44 with chronic infectionundergoing antiviral therapies containing LAM were analyzed by direct sequencing andpyrosequencing methods. RESULTS: Phylogenic analyses of direct-sequenced isolates showed the expected genotypes (A, D andF) for the Brazilian population in both acute and chronic infections. However, withingenotype A isolates, subgenotype A2 was more frequently detected in acute cases than inchronic cases (P = 0.012). As expected, none of the individuals with acute hepatitis B hadLAM-resistant isolates as a dominant virus population, whether detected by direct sequencingor pyrosequencing. However, pyrosequencing analyses showed that 45% of isolates (9/20)had minor subpopulations (4-17%) of LAM-resistant isolates. Among chronic patientsundergoing LAM treatment, YMDD mutants were frequently found as a dominant viruspopulation. In cases where wild-type virus was the dominant population, subpopulations ofYMDD variants were usually found, demonstrating the complexity of HBV quasispecies. CONCLUSIONS: YMDD variants were frequently detected as a minor population in acute HBV infection. Theoccurrence of pre-existing variants may lead to a high frequency of resistant mutants duringantiviral therapy in the chronic phase. In chronic infection, detection of YMDD variantsbefore virological or biochemical breakthrough might contribute to making better therapychoices and thus improving treatment outcome.  相似文献   

8.
The persistently infected carrier stallion is the critical natural reservoir of equine arteritis virus (EAV), as venereal infection of mares frequently occurs after breeding to such stallions. Two Thoroughbred stallions that were infected during the 1984 outbreak of equine viral arteritis in central Kentucky subsequently became long-term EAV carriers. EAV genomes amplified from the semen of these two stallions were compared by sequence analysis of the six 3' open reading frames (ORFs 2 through 7), which encode the four known structural proteins and two uncharacterized glycoproteins. The major variants of the EAV population that sequentially arose within the reproductive tract of each carrier stallion varied by approximately 1% per year, and the heterogeneity of the viral quasispecies increased during the course of long-term persistent infection. The various ORFs of the dominant EAV variants evolved independently, and there was apparently strong selective pressure on the uncharacterized GP3 protein during persistent infection. Amino acid changes also occurred in the V1 variable region of the GL protein. This region has been previously identified as a crucial neutralization domain, and selective pressures exerted on the V1 region during persistent EAV infection led to the emergence of virus variants with distinct neutralization properties. Thus, evolution of the EAV quasispecies that occurs during persistent infection of the stallion clearly can influence viral phenotypic properties such as neutralization and perhaps virulence.  相似文献   

9.
The quasispecies model of RNA virus evolution differs from those formulated in conventional population genetics in that neutral mutations do not lead to genetic drift of the population, and natural selection acts on the mutant distribution as a whole rather than on individual variants. By computer simulation, we show that this model could be inappropriate for many RNA viruses because the neutral sequence space may be too large to allow the formation of a quasispecies distribution. This view is supported by our analysis of gene sequences from vesicular stomatitis virus, which is considered a prototype RNA virus quasispecies. Our results are relevant to the evolution of RNA systems in general.  相似文献   

10.
More often than not, analyses of virus evolution have considered that virus populations are so large that evolution can be explained by purely deterministic models. However, virus populations could have much smaller effective numbers than the huge reported census numbers, and random genetic drift could be important in virus evolution. A reason for this would be population bottlenecks during the virus life cycle. Here we report a quantitative estimate of population bottlenecks during the systemic colonization of tobacco leaves by Tobacco mosaic virus (TMV). Our analysis is based on the experimental estimation of the frequency of different genotypes of TMV in the inoculated leaf, and in systemically infected leaves, of tobacco plants coinoculated with two TMV genotypes. A simple model, based on the probability that a leaf in coinoculated plants is infected by just one genotype and on the frequency of each genotype in the source, was used to estimate the effective number of founders for the populations in each leaf. Results from the analysis of three leaves per plant in plants inoculated with different combinations of three TMV genotypes yielded highly consistent estimates. Founder numbers for each leaf were small, in the order of units. This would result in effective population numbers much smaller than the census numbers and indicates that random effects due to genetic drift should be considered for understanding virus evolution within an infected plant.  相似文献   

11.
Sustained hepatitis C virus (HCV) RNA clearance is achieved in 8 to 12% of patients with chronic HCV infection treated with alpha interferon (IFN-alpha) at the approved dose of 3 MU three times a week for 6 months and in about 25% of those receiving this treatment for 12 months. We used single-strand conformation polymorphism analysis combined with cloning and sequencing strategies to characterize the genetic evolution of HCV second envelope gene hypervariable region 1 (HVR1) quasispecies during and after IFN therapy in patients who failed to clear HCV RNA. Sustained HCV RNA clearance was achieved in 6% of patients. Profound changes in HVR1 quasispecies major variants were estimated to occur in 70% of the patients during and after therapy. These changes were evolutionary and were characterized by shifts in the virus population, related to selection and subsequent diversification of minor pretreatment variants. The quasispecies changes appeared to be induced by changes in the host environment likely resulting from the IFN-induced enhancement and post-IFN attenuation of neutralizing and possibly cytotoxic responses against HVR1. The remaining patients had no apparent changes in HVR1 quasispecies major variants, suggesting selection of major pretreatment variants, but some changes were observed in other genomic regions. We conclude that IFN-alpha administration and withdrawal profoundly alters the nature of circulating HCV quasispecies, owing to profound changes in virus-host interactions, in patients in whom sustained HCV RNA clearance fails to occur. These changes are associated with profound alterations of the natural outcome of HCV-related liver disease, raising the hypothesis of a causal relationship.  相似文献   

12.
Regardless of the route of transmission, it is generally accepted that the human immunodeficiency virus type 1 (HIV-1) quasispecies transmitted from an infected individual to an uninfected individual is genetically homogeneous. This finding and the observation that HIV-1 genotypes in recipients are minor variants in the donors suggest strongly that selection for specific variants occurs. However, most analyses have been limited to the V3 region of env. In addition, the exact time at which most new infections occurred was not known, making it almost impossible to analyze virus populations present in donor-recipient pairs at the time of HIV-1 transmission. To circumvent this problem, three chimpanzees were inoculated with a genetically defined stock of cell-free HIV-1/JC499 by one of three routes: intravenously or via the cervical or penile mucosa. PCR products of the C2-to-V5 region of env were amplified from both proviral DNA and virion RNA in blood samples collected soon after infection and were screened by heteroduplex analysis (HDA). Those PCR products with distinct HDA banding patterns were cloned and sequenced. In all three animals, transmitted variants encoded one of two V3-loop populations identified in the inoculum, indicating relative homogeneity in this region. However, different virus populations, defined by combinations of specific V4 and V5 sequences, were found when variants in the animal inoculated intravenously (at least 13 V4-plus-V5 combinations) were compared with those in the two animals inoculated by the mucosal routes (limited to only four V4-plus-V5 combinations). The only V4-plus-V5 population in variants found in all three chimpanzees was the major population in the inoculum, which contained viruses with more than 30 different V4-plus-V5 combinations. That the majority of the V4-plus-V5 genotypes in variants transmitted to all three animals were minor populations in the inoculum indicated that selective transmission defined by the V4-plus-V5 regions had occurred but that distinct populations were transmitted by parenteral versus mucosal routes. These results indicate that the putative homogeneity of HIV-1 variants in a newly infected individual might be an artifact of the region of the env gene evaluated and that regions other than V3 might play a major role in selective transmission.  相似文献   

13.
Quasispecies variants and recombination were studied longitudinally in an emergent outbreak of beak and feather disease virus (BFDV) infection in the orange-bellied parrot (Neophema chrysogaster). Detailed health monitoring and the small population size (<300 individuals) of this critically endangered bird provided an opportunity to longitudinally track viral replication and mutation events occurring in a circular, single-stranded DNA virus over a period of four years within a novel bottleneck population. Optimized PCR was used with different combinations of primers, primer walking, direct amplicon sequencing and sequencing of cloned amplicons to analyze BFDV genome variants. Analysis of complete viral genomes (n = 16) and Rep gene sequences (n = 35) revealed that the outbreak was associated with mutations in functionally important regions of the normally conserved Rep gene and immunogenic capsid (Cap) gene with a high evolutionary rate (3.41×10−3 subs/site/year) approaching that for RNA viruses; simultaneously we observed significant evidence of recombination hotspots between two distinct progenitor genotypes within orange-bellied parrots indicating early cross-transmission of BFDV in the population. Multiple quasispecies variants were also demonstrated with at least 13 genotypic variants identified in four different individual birds, with one containing up to seven genetic variants. Preferential PCR amplification of variants was also detected. Our findings suggest that the high degree of genetic variation within the BFDV species as a whole is reflected in evolutionary dynamics within individually infected birds as quasispecies variation, particularly when BFDV jumps from one host species to another.  相似文献   

14.
To evaluate the possibility that distinct viral quasispecies play a role in the pathogenesis of progressive hepatitis C virus (HCV) infection, we performed a detailed evaluation of HCV quasispecies before and after liver transplantation in five patients infected with HCV genotype 1, three of whom developed severe recurrent hepatitis C and two of whom developed asymptomatic posttransplant infections with high-titered viremia. HCV quasispecies were characterized by using a combination of nucleotide sequencing plus heteroduplex tracking assay of the second envelope gene hypervariable region (HVR). An average of 30 HVR clones were analyzed per specimen; an average of five specimens were analyzed per patient over a 6- to 24-month study period. The complexity of HCV quasispecies in pretransplant serum varied, ranging from one to nine genetically distinct variants for the five patients. However, in all five cases, relatively homogenous quasispecies variants emerged after liver transplantation. In the three patients who developed recurrent hepatitis, quasispecies major variants present in pretransplant serum were efficiently propagated immediately after liver transplantation and were propagated throughout the course of acute and chronic hepatitis. In contrast, in the two asymptomatic cases, we observed rapid depletion of pretransplant quasispecies major variants from posttransplant serum, followed by emergence of new quasispecies variants by posttransplant day 30. Genetic analysis suggested that in these cases, the new quasispecies variants were derived from minor variants present at relatively low clonal frequency (less than 5% of HVR clones) within the pretransplant quasispecies populations. These data demonstrate that quasispecies tracking patterns are associated with the rapidity and severity of HCV-associated liver disease after liver transplantation. Further characterization of HCV quasispecies in animal model systems is warranted.  相似文献   

15.
The high mutation rate of RNA viruses enables a diverse genetic population of viral genotypes to exist within a single infected host. In-host genetic diversity could better position the virus population to respond and adapt to a diverse array of selective pressures such as host-switching events. Multiple new coronaviruses, including SARS, have been identified in human samples just within the last ten years, demonstrating the potential of coronaviruses as emergent human pathogens. Deep sequencing was used to characterize genomic changes in coronavirus quasispecies during simulated host-switching. Three bovine nasal samples infected with bovine coronavirus were used to infect human and bovine macrophage and lung cell lines. The virus reproduced relatively well in macrophages, but the lung cell lines were not infected efficiently enough to allow passage of non lab-adapted samples. Approximately 12 kb of the genome was amplified before and after passage and sequenced at average coverages of nearly 950×(454 sequencing) and 38,000×(Illumina). The consensus sequence of many of the passaged samples had a 12 nucleotide insert in the consensus sequence of the spike gene, and multiple point mutations were associated with the presence of the insert. Deep sequencing revealed that the insert was present but very rare in the unpassaged samples and could quickly shift to dominate the population when placed in a different environment. The insert coded for three arginine residues, occurred in a region associated with fusion entry into host cells, and may allow infection of new cell types via heparin sulfate binding. Analysis of the deep sequencing data indicated that two distinct genotypes circulated at different frequency levels in each sample, and support the hypothesis that the mutations present in passaged strains were “selected” from a pre-existing pool rather than through de novo mutation and subsequent population fixation.  相似文献   

16.
The rate of development of disease varies considerably among human immunodeficiency virus type 1 (HIV-1)-infected children. The reasons for these observed differences are not clearly understood but most probably depend on the dynamic interplay between the HIV-1 quasispecies virus population and the immune constraints imposed by the host. To study the relationship between disease progression and genetic diversity, we analyzed the evolution of viral sequences within six perinatally infected children by examining proviral sequences spanning the C2 through V5 regions of the viral envelope gene by PCR of blood samples obtained at sequential visits. PCR product DNAs from four sample time points per child were cloned, and 10 to 13 clones from each sample were sequenced. Greater genetic distances relative to the time of infection were found for children with low virion-associated RNA burdens and slow progression to disease relative to those found for children with high virion-associated RNA burdens and rapid progression to disease. The greater branch lengths observed in the phylogenetic reconstructions correlated with a higher accumulation rate of nonsynonymous base substitutions per potential nonsynonymous site, consistent with positive selection for change rather than a difference in replication kinetics. Viral sequences from children with slow progression to disease also showed a tendency to form clusters that associated with different sampling times. These progressive shifts in the viral population were not found in viral sequences from children with rapid progression to disease. Therefore, despite the HIV-1 quasispecies being a diverse, rapidly evolving, and competing population of genetic variants, different rates of genetic evolution could be found under different selective constraints. These data suggest that the evolutionary dynamics exhibited by the HIV-1 quasispecies virus populations are compatible with a Darwinian system evolving under the constraints of natural selection.  相似文献   

17.
18.
The evolution of human immunodeficiency virus type 1 (HIV-1) quasispecies at the envelope gene was studied from the time of infection in 11 men who experienced different rates of CD4+ cell count decline and 6 men with unknown dates of infection by using DNA heteroduplex mobility assays. Quasispecies were genetically homogeneous near the time of seroconversion. Subsequently, slower proviral genetic diversification and higher plasma viremia correlated with rapid CD4+ cell count decline. Except for the fastest progressors to AIDS, highly diverse quasispecies developed in all subjects within 3 to 4 years. High quasispecies diversity was then maintained for years until again becoming more homogeneous in a subset of late-stage AIDS patients. Individuals who maintained high CD4+ cell counts showed continuous genetic turnover of their complex proviral quasispecies, while more closely related sets of variants were found in longitudinal samples of severely immunocompromised patients. The limited number of variants that grew out in short-term PBMC cocultures were rare in the uncultured proviral quasispecies of healthy, long-term infected individuals but more common in vivo in patients with low CD4+ cell counts. The slower evolution of HIV-1 observed during rapid progression to AIDS and in advanced patients may reflect ineffective host-mediated selection pressures on replicating quasispecies.  相似文献   

19.
A large number of medically important viruses, including HIV, hepatitis C virus, and influenza, have RNA genomes. These viruses replicate with extremely high mutation rates and exhibit significant genetic diversity. This diversity allows a viral population to rapidly adapt to dynamic environments and evolve resistance to vaccines and antiviral drugs. For the last 30 years, quasispecies theory has provided a population-based framework for understanding RNA viral evolution. A quasispecies is a cloud of diverse variants that are genetically linked through mutation, interact cooperatively on a functional level, and collectively contribute to the characteristics of the population. Many predictions of quasispecies theory run counter to traditional views of microbial behavior and evolution and have profound implications for our understanding of viral disease. Here, we discuss basic principles of quasispecies theory and describe its relevance for our understanding of viral fitness, virulence, and antiviral therapeutic strategy.  相似文献   

20.
A novel hantavirus has been discovered in European common voles, Microtus arvalis and Microtus rossiaemeridionalis. According to sequencing data for the genomic RNA S segment and nucleocapsid protein and data obtained by immunoblotting with a panel of monoclonal antibodies, the virus, designated Tula virus, is a distinct novel member of the genus Hantavirus. Phylogenetic analyses of Tula virus indicate that it is most closely related to Prospect Hill, Puumala, and Muerto Canyon viruses. The results support the view that the evolution of hantaviruses follows that of their primary carriers. Comparison of strains circulating within a local rodent population revealed a genetic drift via accumulation of base substitutions and deletions or insertions. The Tula virus population from individual animals is represented by quasispecies, indicating the potential for rapid evolution of the agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号