首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of cold plasma on Deinococcus radiodurans, plasmid DNA, and model proteins were assessed using microbiological, spectrometric, and biochemical techniques. In low power O(2) plasma (approximately 25 W, approximately 45 mTorr, 90 min), D. radiodurans, a radiation-resistant bacterium, showed a 99.999% reduction in bioburden. In higher power O(2) plasma (100 W and 500 mTorr), the reduction rate increased about 10-fold and observation by atomic force microscopy showed significant damage to the cell. Damage to cellular lipids, proteins, and chromosome was indicated by losses of infrared spectroscopic peaks at 2930, 1651, 1538, and 1245 cm(-1), respectively. In vitro experiments show that O(2) plasmas induce DNA strand scissions and cross-linking as well as reduction of enzyme activity. The observed degradation and removal of biomolecules was power-dependent. Exposures to 200 W at 500 mTorr removed biomolecules to below detection limits in 60 s. Emission spectroscopy indicated that D. radiodurans cells were volatilized into CO(2), CO, N(2), and H(2)O, confirming that these plasmas were removing complex biological matter from surfaces. A CO(2) plasma was not as effective as the O(2) plasma, indicating the importance of plasma composition and the dominant role of chemical degradation. Together, these findings have implications for NASA planetary protection schemes and for the contamination of Mars.  相似文献   

2.
Generation of electron Bernstein waves by the ordinary-extraordinary-Bernstein (O-X-B) mode conversion process has been successfully demonstrated on W7-AS. According to Kirchoff’s law, the inverse process of plasma EC emission by B-X-O mode conversion at particular angles must take place in tokamak plasmas. The optical depth at electron cyclotron harmonics is generally very high for electron Bernstein waves in tokamak plasmas. Consequently the O-mode ECE spectrum measured below the plasma frequency will show steps in the emitted power when each EC harmonic coincides with the upper hybrid resonance zone, where the mode conversion occurs, giving a local measurement of the relationship between the total magnetic field and plasma density. In a spherical tokamak, there are several EC harmonics below the plasma frequency, so several such steps can be observed via the B-X-O mode conversion mechanism. This is a very promising way to get information about the q profile in ST plasmas.  相似文献   

3.
Non‐thermal atmospheric‐pressure plasmas have been developed that will be used in future for several purposes, e.g. medicine. Living tissues and cells are at the focus of plasma treatment, e.g. to improve wound healing, or induce apoptosis and growth arrest in tumour cells. Detailed investigations of plasma‐cell interactions are needed. Cell surface adhesion molecules as integrins, cadherins or the EGFR (epidermal growth factor receptor) are of importance in wound healing and also for development of cancer metastasis. This study has focused on measurement of cell surface molecules on human HaCaT keratinocytes (human adult low calcium temperature keratinocytes) promoting adhesion, migration and proliferation as one important feature of plasma‐cell interactions. HaCaT keratinocytes were treated with plasma by a surface dielectric barrier discharge in air. Cell surface molecules and induction of intracellular ROS (reactive oxygen species) were analysed by flow cytometry 24 h after plasma treatment. Besides a reduction of cell viability a significant down‐regulation of E‐cadherin and the EGFR expression occurred. The influence on α2‐ and β1‐integrins was less pronounced, and expression of ICAM‐1 (intercellular adhesion molecule 1) was unaffected. The extent of effects depended on the exposure time of cells to the plasma and the treatment regimen. Intracellular level of ROS detected by the fluorescent dye H2DCFDA (2′,7′‐dichlorodihydrofluorescein diacetate) increased by plasma treatment, but it was neither dependent on the treatment time nor related to the different treatment regimens. Two‐dimensional cultures of HaCaT keratinocytes appear to be a suitable method of investigating plasma‐cell interactions.  相似文献   

4.
Physiotherapists consider ultrasound an indispensable tool, which is commonly employed in clinical practice as a treatment aid for musculoskeletal dysfunctions. The aim of our study has been to analyze fibroblast cell structures following low-intensity pulsed ultrasonic irradiation. Fibroblast cell cultures irradiated with ultrasound were analyzed through electron microscopy to determine an ideal irradiation beam that preserved cell morphology and integrity. Analysis by fluorescence microscopy and transmission electron microscopy was used to follow morphological changes of the nucleus and cytoskeleton following different ultrasound irradiation intensities. According to the parameters used in the pulsed irradiation of fibroblast cultures, control over the intensity employed is fundamental to the optimal use of therapeutic ultrasound. Cell cultures submitted to low-intensity pulsed ultrasonic irradiation (0.2-0.6 W/cm2) at 10% (1:9 duty cycle) and 20% (2:8 duty cycle) maintained shape and cellular integrity, with little damage. In the group irradiated with an intensity of 0.8 W/cm2, a loss of adhesion was observed along with an alteration in the morphology of some cells at an intensity of 1.0 W/cm2, which resulted in the presence of cellular fragments and a decrease of adhering cells. In cells irradiated at 2.0 W/cm2, there was a complete loss of adhesion and aggregation of cellular fragments. The present study confirms that biophysical properties of pulsed ultrasound may accelerate proliferation processes in different biological tissues.  相似文献   

5.
Summary Cultures generated from tissues consisting of multiple types of cells are often heterogeneous. Unless the cell type of interest has or can be given some selective growth advantage it may be overgrown by other cells. While developing techniques for the tissue culture of microvascular endothelial cells we evaluated an electrosurgical generator (diathermy) to selectively kill nonendothelail cells. Primary cell cultures were observed at ×100 magnification under phase contrast microscopy and a needle electrode apposed to the cell to be destroyed. A return electrode was constructed by placing a sterile clip in contact with the culture medium. The diathermy power setting controlled the area of lysis. Use of this technique allowed weeding of unwanted cells without damage to endothelial cells, which were able to grow to confluence in pure culture. Dr. Marks receives a Medical Postgraduate Research Scholarship from the National Health and Medical Research Council of Australia. Financial support was received from the Leo Leukaemia and Cancer Research Trust and the Scleroderma Association of New South Wales.  相似文献   

6.
We have previously reported that low intensity microwave exposure (0.75-1.0 GHz CW at 0.5 W; SAR 4-40 mW/kg) can induce an apparently non-thermal heat-shock response in Caenorhabditis elegans worms carrying hsp16-1::reporter genes. Using matched copper TEM cells for both sham and exposed groups, we can detect only modest reporter induction in the latter exposed group (15-20% after 2.5 h at 26 degrees C, rising to approximately 50% after 20 h). Traceable calibration of our copper TEM cell by the National Physical Laboratory (NPL) reveals significant power loss within the cell (8.5% at 1.0 GHz), accompanied by slight heating of exposed samples (approximately 0.3 degrees C at 1.0 W). Thus, exposed samples are in fact slightly warmer (by < or =0.2 degrees C at 0.5 W) than sham controls. Following NPL recommendations, our TEM cell design was modified with the aim of reducing both power loss and consequent heating. In the modified silver-plated cell, power loss is only 1.5% at 1.0 GHz, and sample warming is reduced to approximately 0.15 degrees C at 1.0 W (i.e., < or =0.1 degrees C at 0.5 W). Under sham:sham conditions, there is no difference in reporter expression between the modified silver-plated TEM cell and an unmodified copper cell. However, worms exposed to microwaves (1.0 GHz and 0.5 W) in the silver-plated cell also show no detectable induction of reporter expression relative to sham controls in the copper cell. Thus, the 20% "microwave induction" observed using two copper cells may be caused by a small temperature difference between sham and exposed conditions. In worms incubated for 2.5 h at 26.0, 26.2, and 27.0 degrees C with no microwave field, there is a consistent and significant increase in reporter expression between 26.0 and 26.2 degrees C (by approximately 20% in each of the six independent runs), but paradoxically expression levels at 27.0 degrees C are similar to those seen at 26.0 degrees C. This surprising result is in line with other evidence pointing towards complex regulation of hsp16-1 gene expression across the sub-heat-shock range of 25-27.5 degrees C in C. elegans. We conclude that our original interpretation of a non-thermal effect of microwaves cannot be sustained; at least part of the explanation appears to be thermal.  相似文献   

7.
Altered phosphorylation status of the C-terminal Thr residues of Ezrin/Radixin/Moesin (ERM) is often linked to cell shape change. To determine the role of phophorylated ERM, we modified phosphorylation status of ERM and investigated changes in cell adhesion and morphology. Treatment with Calyculin-A (Cal-A), a protein phosphatase inhibitor, dramatically augmented phosphorylated ERM (phospho-ERM). Cal-A-treatment or expression of phospho-mimetic Moesin mutant (Moesin-TD) induced cell rounding in adherent cells. Moreover, reattachment of detached cells to substrate was inhibited by either treatment. Phospho-ERM, Moesin-TD and actin cytoskeleton were observed at the plasma membrane of such round cells. Augmented cell surface rigidity was also observed in both cases.

Meanwhile, non-adherent KG-1 cells were rather rich in phospho-ERM. Treatment with Staurosporine, a protein kinase inhibitor that dephosphorylates phospho-ERM, up-regulated the integrin-dependent adhesion of KG-1 cells to substrate.

These findings strongly suggest the followings: (1) Phospho-ERM inhibit cell adhesion, and therefore, dephosphorylation of ERM proteins is essential for cell adhesion. (2) Phospho-ERM induce formation and/or maintenance of spherical cell shape. (3) ERM are constitutively both phosphorylated and dephosphorylated in cultured adherent and non-adherent cells.  相似文献   

8.
In this paper, we present the effect of the plasma needle on tumor cell surface. The plasma is generated at the tip of a metal needle by using a radio-frequency generator of 13.56 MHz, 100's V amplitude. In our study we investigated the interaction of non-thermal plasma (plasma needle) with living monolayer tumour cells in culture medium. We applied short needle to sample distance (1 mm) at temperature of 25 degrees C, 30 degrees C and 37 degrees C, respectively. Our data sugest that the plasma needle reduces the viability and induces apoptosis of tumour cells. These activities may be very useful in dermatology, where a part of the tissue must be removed with high-precision, without damage to the adjacent cells and without inflammatory reaction.  相似文献   

9.
Effects of non-thermal plasma on mammalian cells   总被引:1,自引:0,他引:1  
Thermal plasmas and lasers have been widely used in medicine to cut, ablate and cauterize tissues through heating; in contrast, non-thermal plasma produces no heat, so its effects can be selective. In order to exploit the potential for clinical applications, including wound healing, sterilization, blood coagulation, and cancer treatment, a mechanistic understanding of the interaction of non-thermal plasma with living tissues is required. Using mammalian cells in culture, it is shown here that non-thermal plasma created by dielectric barrier discharge (DBD) has dose-dependent effects that range from increasing cell proliferation to inducing apoptosis. It is also shown that these effects are primarily due to formation of intracellular reactive oxygen species (ROS). We have utilized γ-H2AX to detect DNA damage induced by non-thermal plasma and found that it is initiated by production of active neutral species that most likely induce formation of organic peroxides in cell medium. Phosphorylation of H2AX following non-thermal plasma treatment is ATR dependent and ATM independent, suggesting that plasma treatment may lead to replication arrest or formation of single-stranded DNA breaks; however, plasma does not lead to formation of bulky adducts/thymine dimers.  相似文献   

10.
A freeze-fracture investigation of the putative cellulose synthesizing complex (terminal complex) morphology in Nitella translucens var. axillaris (A. Br.) R.D.W. internodal cells revealed single solitary EF globules and PF rosettes on the plasma membrane. The average density of rosettes in elongating internodal cells was 5.6 μm?2 with slight spatial variation observed. In only three other algal genera (all zygnematalean) have rosette / globule terminal complexes been observed, while this characteristic is common to all vascular plants and one moss thus far investigated. This evidence strongly suggests that the rosette type of terminal complex morphology is an additional characteristic of charophycean algae and lends further support to the hypothesis that this group of algae represents the evolutionary line that gave rise to vascular plants. Observations were also made from the freeze-fracture of Nitella internodal cells concerning the orientation of cell wall microfibrils and cytoskeletal elements near the plasma membrane. The pattern of microfibril orientation in growing internodal cells is initially transverse to the cell long axis, becoming progressively axial presumably due to the strain of elongation. In mature internodal cells, the pattern of microfibril orientation is helicoidal. Microtubules appressed to the inner surface of the plasma membrane are oriented parallel to the most recently formed microfibrils in elongating and mature internodal cells.  相似文献   

11.
Microbial fuel cells are attracting attention as one of the systems for producing electrical energy from organic compounds. We used commercial baker's yeast (Saccharomyces cerevisiae) for a glucose fuel cell because the yeast is a safe organism and relatively high power can be generated in the system. In the present study, a milliliter (mL)-scale dual-chamber fuel cell was constructed for evaluating the power generated by a variety of yeasts and their mutants, and the optimum conditions for high performance were investigated. When carbon fiber bundles were used as an electrode in the fuel cell, high volumetric power density was obtained. The maximum power produced per volume of anode solution was 850 W/m3 under optimum conditions. Furthermore, the power was examined using seven kinds of yeast. In Kluyveromyces marxianus, not only the power but also the power per consumed glucose was high. Moreover, it was suggested that xylose is available as fuel for the fuel cell. The fuel cell powered by K. marxianus may prove to be helpful for the effective utilization of woody biomass.  相似文献   

12.
The aim of this study was to test the susceptibility of mice to Trypanosoma evansi treated with human plasma containing different concentrations of apolipoprotein L-1 (APOL1). For this experiment, a strain of T. evansi and human plasma (plasmas 1, 2, and 3) from 3 adult males clinically healthy were used. In vivo test used 50 mice divided in 5 groups (A to E) with 10 animals in each group. Animals of groups B to E were infected, and then treated with 0.2 ml of human plasma in the following outline: negative control (A), positive control (B), treatment with plasma 1 (C), treatment with plasma 2 (D), and treatment with plasma 3 (E). Mice treated with human plasma showed an increase in longevity of 40.9 ± 0.3 (C), 20 ± 9.0 (D) and 35.6 ± 9.3 (E) days compared to the control group (B) which was 4.3 ± 0.5 days. The number of surviving mice and free of the parasite (blood smear and PCR negative) at the end of the experiment was 90%, 0%, and 60% for groups C, D, and E, respectively. The quantification of APOL1 was performed due to the large difference in the treatments that differed in the source plasma. In plasmas 1, 2, and 3 was detected the concentration of 194, 99, and 115 mg/dl of APOL1, respectively. However, we believe that this difference in the treatment efficiency is related to the level of APOL1 in plasmas.  相似文献   

13.
14.
The effects of cold plasmas are due to charged particles, reactive oxygen species (ROS), reactive nitrogen species (RNS), UV photons, and intense electric field. In order to obtain a more efficient action on mammalian cells (useful for cancer therapy), we used in our studies chemically activated cold plasma (He and O2 gas mixture). V79-4 cells were exposed to plasma jet for different time periods (30, 60, 90, 120 and 150s), using different combinations of helium and oxygen inputs (He:2.5l/min + 02:12.5ml/min; He:2.51/min + O2:25ml/min; He:2.51/min + O2:37.5 ml/min). Using MTT test we demonstrated that plasma jet induced cell viability decrease in all cases. The effect of chemically activated cold plasma--apoptosis or necrosis--depends on gas mixture and treatment period. Taking into account that ROS density in cell microenvironment is related to O2 percent in the gas mixture and treatment period, we can presume that cell death is due to ROS produced in plasma jet.  相似文献   

15.
Ultraviolet radiation (wavelength, 280-315 nm; power, 0.2-13.0 W/m2; exposure, 1 or 3 h) was shown to change the growth of campion callus and the polysaccharide (pectin and arabinogalactan) composition of cell walls. An increase in the concentration of polysaccharides and a decrease in the content of arabinose and galactose residues in pectin and arabinogalactan were noted. For the majority of calluses, growth indices, specific growth rate, and biomass productivity (per 11 medium) were almost the same as in nonirradiated control cells. Maximum values of the growth index and specific growth rate, determined for dry biomass, were observed at a low dose of irradiation (0.2 W/m2) and an exposure of 3 h. A considerable decrease in the content of arabinose and galactose in pectin was noted at high doses of irradiation (exposure, 3 h). Samples of arabinogalactan were characterized by variable arabinose to galactose ratios, which were in the range 1 : (3.4-8.3).  相似文献   

16.
This review covers the use of plasma technology relevant to the preparation of dressings for wound healing. The current state of knowledge of plasma treatments that have potential to provide enhanced functional surfaces for rapid and effective healing is summarized. Dressings that are specialized to the needs of individual cases of chronic wounds such as diabetic ulcers are a special focus. A summary of the biology of wound healing and a discussion of the various types of plasmas that are suitable for the customizing of wound dressings are given. Plasma treatment allows the surface energy and air permeability of the dressing to be controlled, to ensure optimum interaction with the wound. Plasmas also provide control over the surface chemistry and in cases where the plasma creates energetic ion bombardment, activation with long-lived radicals that can bind therapeutic molecules covalently to the surface of the dressing. Therapeutic innovations enabled by plasma treatment include the attachment of microRNA or antimicrobial peptides. Bioactive molecules that promote subsequent cell adhesion and proliferation can also be bound, leading to the recruitment of cells to the dressing that may be stem cells or patient-derived cells. The presence of a communicating cell population expressing factors promotes healing.  相似文献   

17.
Altered phosphorylation status of the C-terminal Thr residues of Ezrin/Radixin/Moesin (ERM) is often linked to cell shape change. To determine the role of phophorylated ERM, we modified phosphorylation status of ERM and investigated changes in cell adhesion and morphology. Treatment with Calyculin-A (Cal-A), a protein phosphatase inhibitor, dramatically augmented phosphorylated ERM (phospho-ERM). Cal-A-treatment or expression of phospho-mimetic Moesin mutant (Moesin-TD) induced cell rounding in adherent cells. Moreover, reattachment of detached cells to substrate was inhibited by either treatment. Phospho-ERM, Moesin-TD and actin cytoskeleton were observed at the plasma membrane of such round cells. Augmented cell surface rigidity was also observed in both cases.Meanwhile, non-adherent KG-1 cells were rather rich in phospho-ERM. Treatment with Staurosporine, a protein kinase inhibitor that dephosphorylates phospho-ERM, up-regulated the integrin-dependent adhesion of KG-1 cells to substrate.These findings strongly suggest the followings: (1) Phospho-ERM inhibit cell adhesion, and therefore, dephosphorylation of ERM proteins is essential for cell adhesion. (2) Phospho-ERM induce formation and/or maintenance of spherical cell shape. (3) ERM are constitutively both phosphorylated and dephosphorylated in cultured adherent and non-adherent cells.  相似文献   

18.
Ultraviolet radiation (wavelength, 280–315 nm; power, 0.2–13.0 W/m2; exposure, 1 or 3 h) was shown to change the growth of campion callus and the polysaccharide (pectin and arabinogalactan) composition of cell walls. An increase in the concentration of polysaccharides and a decrease in the content of arabinose and galactose residues in pectin and arabinogalactan were noted. For the majority of calluses, growth indices, specific growth rate, and biomass productivity (per 11 medium) were almost the same as in nonirradiated control cells. Maximum values of the growth index and specific growth rate, determined for dry biomass, were observed at a low dose of irradiation (0.2 W/m2) and an exposure of 3 h. A considerable decrease in the content of arabinose and galactose in pectin was noted at high doses of irradiation (exposure, 3 h). Samples of arabinogalactan were characterized by variable arabinose to galactose ratios, which were in the range 1: (3.4–8.3).  相似文献   

19.
Centrifugal counter-current distribution (CCCD) in a dextran, Ficoll, poly(ethylene glycol) two-phase system was used to study the effect of seminal plasma proteins on the partition behaviour of ram spermatozoa exposed to thermal shock. Ram spermatozoa freed from seminal plasma by a ‘swim-up’ procedure were submitted to thermal shock and fractionated by CCCD. Cell viability decreased from 68% to 18% after the treatment, showing a slight displacement of the cells from the right (where a higher enrichment of live cells is found) to the centre of the profile. A change of the distribution profile was shown in the presence of either ram or bull seminal plasma. Bull seminal plasma was able to move the profile to the right, whereas ram seminal plasma increased the proportion of cells with enhanced affinity for the lower dextran-rich phase. Plasma proteins isolated from both seminal plasmas moved the profile to the right. In addition, cell viability rose to 48% after the CCCD run in the presence of ram plasma proteins. This restoring effect was lost when ram plasma proteins were thermally denatured. Bovine serum albumin was not only unable to move the profile to the right but even promoted displacement of the profile to the left. This negative effect was also observed when proteins from bull seminal plasma were in the presence of protein-free ram seminal plasma. However, proteins isolated from ram seminal plasma still restored the profile in the presence of bull seminal plasma freed from proteins. The results presented here strongly suggest that seminal plasma proteins are absorbed by a spermatozoal surface previously exposed to thermic shock. These proteins would exert a highly specific protective effect on ram spermatozoa. In addition, in the ram seminal plasma there must be some factor which avoids this adsorption.  相似文献   

20.
The effect of short-circuit across the final anode-cathode gap of powerful pulsed current generators could hamper efficient power delivery to the Z-pinch plasma. To study this effect, a novel EUV diagnostics of plasmas created in the final section of the transmission line (the anode-cathode gap near the main load) of the Z-Machine high-current generator (Sandia National Laboratories, United States) was developed. The work included developing spectroscopic instruments, theoretical and experimental studies of EUV spectra of iron ions in well-diagnosed laser-produced plasmas, and a comparison of these spectra with those of plasmas created in the final anode-cathode gap of the transmission line. The EUV spectra of highly charged Fe ions in the spectral range λ ~ 20–800 Å were investigated. In experiments performed at Sandia National Laboratories, spectra of FeXIII-FeXVII ions were observed. A comparison of the measured and calculated spectra shows that the electron plasma temperature in the anode-cathode gap is T e ~ 200 eV.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号